
Using Machine Learning to Improve Stochastic Optimization

David H. Wolpert
Information Sciences Group

Los Alamos National Laboratory
Los Alamos, NM 87545

Dev Rajnarayan
Sensor Platforms, Inc.

2860 Zanker Road Ste. 210
San Jose CA 95134

Abstract

In many stochastic optimization algorithms there is a hyper-
parameter that controls how the next sampling distribution
is determined from the current data set of samples of the
objective function. This hyperparameter controls the explo-
ration/exploitation trade-off of the next sample. Typically
heuristic “rules of thumb” are used to set that hyperparameter,
e.g., a pre-fixed annealing schedule. We show how machine
learning provides more principled alternatives to (adaptively)
set that hyperparameter, and demonstrate that these alterna-
tives can substantially improve optimization performance.

1 Approach
Let G : X → R be an objective function. We use the
term Parametric Stochastic Optimization (PSO) to re-
fer to a class of algorithms that search for the minimizer
of G by iteratively stochastically sampling G. In PSO, at
each step t the set of all earlier samples of G, written as
dt ≡ {[x1,G(x1)], . . . [xt,G(xt)]}, is used to generate a value
θt parameterizing a distribution qθt (x). qθt (x) is then sam-
pled to generate xt+1. Then the resultant pair (xt+1,G(xt+1))
is added to dt to give dt+1, and the process repeats.

Examples of PSO include PBIL (Li, Kwong, and Hong
2011), PBIL2 (Sebag and Ducoulombier 1998), Monte
Carlo Optimization (MCO (Ermoliev and Norkin 1998;
Robert and Casella 2004))), EDA’s (Lozano et al. ) and the
related techniques of MIMIC (de Bonet, Isbell, and Viola
1997), Cross Entropy method (CE (Rubinstein and Kroese
2004; Rubinstein 2001; Rubenstein 2005; Kroese, Porotsky,
and Rubinstein 2006a)), and delayed sampling Probability
Collectives (PC (Wolpert, Strauss, and Rajnarayan 2006)).

Other algorithms not normally viewed as PSO can be re-
expressed as PSO algorithms. For example, many Genetic
Algorithms (GA’s (Mitchell 1996)) can be cast this way, by
identifying θt with {[xt−N ,G(xt−N)], . . . , [xt,G(xt)]}, the time
t population of N individuals and associated G values, which
is used to stochastically generate the time t + N population.

The central issue in PSO algorithms is how to map the cur-
rent data set dt to the next sampling distribution qθt+1 . Often
this map can be cast as a function Γγt : dt → θt+1 governed
by a hyperparameter γt that can vary in time. For example,

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in a GA, γt would be mutation rates, crossover rates, etc., all
of which in general are varied in time. As another example,
in the CE method applied to Euclidean-valued x, qθ can be a
mixture of Gaussians with parameter vector θ. That θ would
be updated to minimize a cross-entropy based on the dataset:
Γγt (d

t) ≡ argminθ[
∑

t′≤t I(G(xt′ ) ≤ γt) ln(qθ(xt′ ))], where I(.)
equals 1/0 depending on whether its argument is true/false.
(More precisely, θt+1 is given by running an algorithm like
EM to approximate the minimizer of the sum.)

In general γt determines the “width” of qθt+1 , and so con-
trols the exploration / exploitation trade-off in the generation
of the sample xt+1. So a major factor in how well a PSO al-
gorithm performs is how the hyperparameter γt is updated
from one step t to the next. Often this is done using a heuris-
tic “rule of thumb”. For example, in the CE method, γt is
typically set to the G value of the pair in dt whose G value is
the κ’th percentile of those pairs in dt. So κ is like an anneal-
ing rate. (Strictly speaking, κ is the hyperparameter, since
ultimately it is what specifies how dt gets mapped to θt+1.)
In the conventional CE method, κ is simply pre-fixed to an
arbitrary value that is used throughout the optimization.

How to set hyperparameters based on a current dataset
is also a major issue in machine learning (ML), which has
developed many techniques for doing it that far outperform
heuristics. Many of these techniques can be “translated”
to apply to PSO, thereby providing more principled alter-
natives to the heuristics conventionally used in PSO.

As an example, cross-validation for PSO proceeds as fol-
lows: At each t, multiple times partition dt into a dt

in and a
dt

out (each such partition is called a “fold”); For each candi-
date value of γt, run Γγt (d

t
in) to produce a value qθt;γt

; Use dt
out

to estimate the performance we would get if we formed xt+1

by sampling qθt;γt
; Choose that candidate γt which results

in the best average of these estimated performances over all
folds; Run Γγt (d

t) with that chosen γt to construct θt+1.
With each pair (xi,G(xi)) in the data set, we have the asso-

ciated (value of θ specifying the) distribution that generated
xi. So we can use importance sampling (Robert and Casella
2004) to combine the G pairs in each data set dt

out. This is
how we “estimate performance we would get ... by sampling
qθt;γt

”. For example, in a greedy approach, the performance
measure for γt is Eqθt;γt

(G) =
∫

dx G(x)qθt;γt
(x). We estimate

this integral as
∑

j qθt;in (x j
out)G(x j

out)
/

h j(x j
out), where h j(.)

146

Late-Breaking Developments in the Field of Artificial Intelligence 
Papers Presented at the Twenty-Seventh AAAI Conference on Artificial Intelligence



Figure 1: The top figure plots mean performance and er-
ror in the mean against dataset size, using 100 trials. The
bottom figure plots median performance (large symbols)
against dataset size along with best and worst performances
(small performances) out of all 100 trials. (Only best perfor-
mances are visible.) Graphs whose name ends in a number
are for the conventional CE method (that number is the value
of κ). The CEMX graphs are for cross-validation.

is defined as the distribution qθ(.) that was sampled at the
earlier stage of the PSO algorithm to generate x j.

No new samples of G are required in this use of cross-
validation; it is not simply a re-running of the entire PSO
algorithm. Note also that γt is updated dynamically, in re-
sponse to new data. So these updates will vary from one run
of the PSO algorithm to the next. This contrasts with many
conventional approaches where γt is updated by a pre-fixed,
“one size fits all” schedule. Note as well that in our proce-
dure all old data is used, in a principled fashion, weighted
by the sampling distributions h j. There is no need for ad
hoc data-aging to weight more recent data more heavily.

2 Experiments
We used a set of nine objective functions defined over Eu-
clidean x’s to compare the performance of the CE method

when cross-validation is used to set its hyperparameter κ to
performance of the CE method when the conventional CE
heuristic (described above) is used instead. The Euclidean
spaces range from 4 to 8 dimensional, and each has prop-
erties that make it difficult for local optimizers to find the
global optima, e.g., multiple local minima with the worst
minima having the largest basin of attraction. (A few of
these problems have previously been used to test the CE
method (Kroese, Porotsky, and Rubinstein 2006b).)

In all our experiments κ ∈ {5, 10, 15}. We tested perfor-
mance both when qθ is a single Gaussian and when it is a
mixture of Gaussians. For the latter case we used cross-
validation to (adaptively) set the number of mixing compo-
nents (1, 2, or 3) as well as set κ. (This can be thought of
as using to determine the number of “species” in a popula-
tion dynamically, to speed up the overall optimization.) As
is conventional, when measuring performance we treat the
cost of deciding where next to sample as negligible com-
pared to the cost of evaluating that sample.

As described in detail in (Rajnarayan and Wolpert 2008),
our results show that adaptively changing κ and/or the num-
ber of mixing components, to dynamically control the ex-
ploration / exploitation tradeoff, can substantially improve
optimization performance. In particular setting those hyper-
parameters via cross-validation can work well. Concretely,
in all our experiments the variant of the CE method that uses
cross-validation to set κ resulted in at least as good values of
the objective function as the best performing (over all fixed
values of κ and numbers of mixing components) instances
of the conventional CE method, over the entire range of up
to 10000 function evaluations. In many cases there was a
(very) statistically significant gain in performance compared
to the best alternative. As an illustration, in Fig. 1 we present
results for the Shekel10 (4-dimensional) objective function
for the experiments where qθ was a mixture of Gaussians.

3 Extensions
We have argued that for general PSO algorithms, the ML
technique of setting hyperparameters via subsampling the
data set can substantially improve performance, and demon-
strated this explicitly for the CE method. However for the
particular PSO algorithm of MCO, the connection with
ML goes far deeper; in the associated paper (Wolpert, Ra-
jnarayan, and Bieniawski 2013), we show that MCO and
ML are in fact formally identical. This identity is extremely
powerful. By exploiting it we can translate all of the tech-
niques that have demonstrated great power in the domain of
ML to apply directly to stochastic optimization.

Preliminary experiments have confirmed that exploit-
ing ML this way substantially improves MCO perfor-
mance (Wolpert, Rajnarayan, and Bieniawski 2013). In par-
ticular, we found that in addition to the use of subsampling
to set hyperparameters, the ML techniques of adding a reg-
ularizer to the objective function, bagging (Breiman 1996b),
and stacking (Breiman 1996a; Sill et al. 2009; Clarke 2003;
Wolpert 1992) all improve optimization performance, some-
times dramatically. Future work involves exploiting this for-
mal identity further, by investigating the use of other ML
techniques to improve stochastic optimization.

147



References
Breiman, L. 1996a. Stacked regression. Machine Learning
24(1):49–64.
Breiman, L. 1996b. Bagging predictors. Machine Learning
24(2):123–140.
Clarke, B. 2003. Bayes model averaging and stacking when
model approximation error cannot be ignored. Journal of
Machine Learning Research 683–712.
de Bonet, J. S.; Isbell, Jr., C. L.; and Viola, P. 1997.
MIMIC: Finding optima by estimating probability densities.
In Mozer, M. C.; Jordan, M. I.; and Petsche, T., eds., Ad-
vances in Neural Information Processing Systems, volume 9,
424. The MIT Press.
Ermoliev, Y. M., and Norkin, V. I. 1998. Monte carlo op-
timization and path dependent nonstationary laws of large
numbers. Technical Report IR-98-009, International Insti-
tute for Applied Systems Analysis.
Kroese, D. P.; Porotsky, S.; and Rubinstein, R. Y. 2006a. The
cross-entropy method for continuous multi-extremal opti-
mization. Methodology and Computing in Applied Proba-
bility 8(3):383–407.
Kroese, D. P.; Porotsky, S.; and Rubinstein, R. Y.
2006b. The cross-entropy method for continuous the cross-
entropy method for continuous multi-extremal optimiza-
tion. Methodology and Computing in Applied Probability
8(3):383–407.
Li, H.; Kwong, S.; and Hong, Y. 2011. The convergence
analysis and specification of the population-based incremen-
tal learning algorithm. Neurocomputing.
Lozano, J.; Larraaga, P.; Inza, I.; and Bengoetxa, E. Towards
a New Evolutionary Computation. Advances in Estimation
of Distribution Algorithms. Springer Verlag.
Mitchell, M. 1996. An Introduction to Genetic Algorithms.
Cambridge, MA: MIT Press.
Rajnarayan, D., and Wolpert, D. 2008. Bias-variance tech-
niques for monte carlo optimization: Cross-validation for
the ce method. arXiv preprint arXiv:0810.0877.
Robert, C. P., and Casella, G. 2004. Monte Carlo Statistical
Methods. New York: Springer-Verlag.
Rubenstein, R. 2005. The stochastic minimum cross-
entropy method for combinatorial optimization and rare-
event estimation. unpublished.
Rubinstein, R., and Kroese, D. 2004. The Cross-Entropy
Method. Springer.
Rubinstein, R. Y. 2001. Combinatorial optimization via
cross-entropy. In Gass, S., and Harris, C., eds., Encyclo-
pedia of Operations Research and Management Sciences.
Kluwer.
Sebag, M., and Ducoulombier, A. 1998. Extending
population-based incremental learning to continuous search
spaces. Lecture Notes in Computer Science 1498:418–??
Sill, J.; Takacs, G.; L., M.; and D., L. 2009. Feature-
weighted linear stacking. unpublished: arXiv:0911.0460.

Wolpert, D. H.; Rajnarayan, D.; and Bieniawski, S. 2013.
Probability collectives in optimization. In Handbook of
Stastistics. Cambridge University Press.
Wolpert, D. H.; Strauss, C. E. M.; and Rajnarayan, D. 2006.
Advances in distributed optimization using probability col-
lectives. Advances in Complex Systems 9(4):383–436.
Wolpert, D. H. 1992. Stacked generalization. Neural net-
works 5(2):241–259.

148




