
Automated Design of Search with Composability

Ashish Sabharwal, Horst Samulowitz
IBM Watson Research Center

Yorktown Heights, NY 10598, USA
ashish.sabharwal@us.ibm.com

samulowitz@us.ibm.com

Tom Schrijvers
Universiteit Gent, Belgium

tom.schrijvers
@ugent.be

Peter J. Stuckey
National ICT Australia

University of Melbourne
Victoria, Australia

pjs@cs.mu.oz.au

Guido Tack
National ICT Australia

Monash University
Victoria, Australia

guido.tack@monash.edu

Introduction
Automated algorithm configuration aims at automatically
parameterizing an algorithm or meta-algorithm when given
a problem instance (or class) so that it performs most effec-
tively on that instance. The need for algorithm configuration
arises with computationally hard problems (e.g., problems
in NP) where different solving strategies tend to work best
on different classes of problem instances.

The approaches underlying algorithm configuration for
combinatorial searh and optimization can be broadly
grouped into Portfolios, Parameter Tuning, or a combina-
tion thereof. Portfolio based approaches automatically se-
lect an algorithm given a problem instance. Most impor-
tantly, the choice is amongst a set of pre-defined algorithms
or paramterizations of a single algorithm. Such approaches
are mostly based on common Machine Learning techniques
such as regression, random forests, collaborative filtering,
or k-nearest-neighbor, and exploit correlation in the corre-
sponding data (e.g., (Xu et al. 2008; 2012; Stern et al. 2010;
Kadioglu et al. 2011; Samulowitz et al. 2013)). Parameter
tuning aims at determining novel, potentially previously un-
seen parameter settings that optimize performance (cf. (Hut-
ter et al. 2009; Ansótegui, Sellmann, and Tierney 2009)).
Most algorithms have some numerical or categorical param-
eters (e.g., number of iterations; deploy preprocessing or
not) which can have a significant impact on performance.
Due to lack of structure (e.g., convexity), commonly em-
ployed tuning methods use heuristic black-box approaches
based on local search or genetic algorithms. Methods such
as SATenstein (KhudaBukhsh et al. 2009) use a combination
of portfolio and parameter tuning by automatically selecting
predefined components of search. They are still, however,
limited to a particular “structure” of the search itself, in this
case a fixed local search “template”. Algorithm design thus
boils down to deciding which of various available heuristics
to use in each line of the template algorithm.

Higher Level Search Design
Here we introduce the idea of automatically designing
search algorithms at a much higher level by resorting to a
search modeling language that provides one crucial prop-
erty: a mechanism to design novel heuristic search strate-
gies at will by composing existing ones. In essence, the
aim of the approach is it to automatically compose a com-
plete search built out of heuristic components such as var-
ious restart-, branching-, and value-selection strategies, by
exploring the space of a search modeling language that is
both human readable and allows automatic translation into
very competitive algorithmic implementations. Unlike ex-
isting methods such as SATenstein, the recursive structure
of the language does not limit the algorithm being designed
to fit a particular, fixed template.

To that end we propose to employ search combina-
tors (Schrijvers et al. 2013), a recently introduced modeling
language for heuristic search. Search combinators provide
a lightweight and solver-independent method1 that bridges
the gap between a conceptually simple modeling language
for search (high-level, functional, modular, and naturally
compositional) and an efficient implementation (low-level,
imperative, and highly non-modular). By allowing to de-
fine application-tailored search strategies from a small set
of primitives, search combinators effectively provide a rich
domain-specific language for modeling search. Many com-
monly used systematic search strategies in Constraint Pro-
gramming (CP) are already available or easily programmed
in a few lines. Most importantly, they can be freely com-
posed to easily design novel strategies.

Our goal is to develop an automated search design ap-
proach that can efficiently explore the space of search strate-
gies defined by (a subset of) search combinators. This is in a

1Obviously search combinators must be facilitated by the un-
derlying algorithm, but no fundamental changes are required.

107

Late-Breaking Developments in the Field of Artificial Intelligence 
Papers Presented at the Twenty-Seventh AAAI Conference on Artificial Intelligence



similar vain as, but different from, the recent push on prob-
abilistic programming2 in AI where inference is performed
automatically over joint probability distributions defined not
by a structurally restricted graphical model but by a method
in a higher level programming language.

Background: Search Combinators
Briefly, search combinators in their current form (see Schri-
jvers et al. (2013) for details) are tailored towards system-
atic CP search. It uses a base search parameterized by
a set of variables and variable/value selection heuristics:
base search(Vars,VarSel,ValSel), with predefined
methods like firstfail or impact for variable selection. Ad-
ditional primitives are available to limit search and to ac-
cess or manipulate search state. The expressive power of the
language comes from combinators, which combine search
heuristics (which can be basic or themselves constructed
using combinators) into more complex heuristics. Sup-
ported combinators include and, or, ifthenelse, and port-
folio. E.g., the following composite heuristic uses the and
combinator to first label all xs variables using first-fail strat-
egy, followed by the ys variables:

(1) and([base search(xs,firstfail,min),
base search(ys, smallest,max)])

Similarly, the following snippet implements the com-
monly used geometric restart strategy:

(2) geo restart(fails, s) ≡ let(maxfails, fails,
restart(true,portfolio([limit(failures < maxfails, s),
and([assign(maxfails,maxfails ∗ 1.5),prune])]))

The search initializes the search variable maxfails to fails ,
and then calls search s with maxfails as the limit. If the
search is exhaustive, both the portfolio and the restart com-
binators are finished. If the search is not exhaustive, the
limit is multiplied by 1.5, and the search starts over. More
sophisticated strategies such as limited discrepancy search
(LDS) with an upper limit of l discrepancies for an underly-
ing search s can be expressed as follows, with for and limit
themselves being composites:

(3) lds(l, s) ≡ for(n, 0, l, limit(discrepancies ≤ n, s))

Brief Overview of the Approach
To illustrate the approach, we make some simplifying as-
sumptions: restrict configuration to a set of predefined
search templates (e.g., lds(s)), allow only a small combina-
tor depth,3 and provide the design tool with information such
as variable groupings X,Y, Z, ... (common in CP). Now we
could start with a basic search over the variable groups as
shown in (1). As search strategies are fully compositional,
we could also extend the initial base search by applying
strategies (2) and (3) on top of it:
and([geo restart(100,base search(xs,firstfail,min)),
lds(5,base search(ys, smallest,max))])

2www.probabilistic-programming.org
3Schrijvers et al. (2013) showed that even highly domain spe-

cific searches can be modeled with depth under 10.

Note that composability makes even predefined templates
like lds here vastly richer than SATenstein’s fixed template.

Composability, of course, also comes at the price of a
vast design space. By exploiting the semantic structure of
the search modeling language, we can however reduce this
space in an effective and meaningful way. For instance,
the composed search strategies considered must be valid
both syntactically as well as semantically in terms of meet-
ing the requirements of the search task (e.g., guaranteeting
a complete search or an optimal solution). As a starting
point, we choose a few predefined templates whose proper-
ties (e.g., whether they provide partial assignments, incom-
plete search, or complete search) are known. When apply-
ing a compositional operator such as and or ifthenelse to
combine these templates in various ways, we must ensure
the desired properties continue to hold. To automate the al-
gorithm design process when using search composition, we
need to address three main aspects:

1. define a design space of syntactically valid searches,

2. algorithmically define correctness (e.g., completeness) of
generated searches, and

3. develop an efficient method to search in this design space.

The first aspect, validity, can be addressed by an ap-
propriately defined context free grammar (CFG) explicitly
capturing what is and isn’t syntactically valid in the lan-
guage of search combinators. Terminals of this CFG cor-
respond to the arguments of the base heuristics such as first-
fail or min, while non-terminals capture recursive compo-
sitions such as base search(Vars,VarSel,ValSel) or
and([s1, s2, . . . , sn]) where Vars, VarSel, ValSel and
si are non-terminals. Note that the CFG needs to be ex-
tended by additional arguments to take properties like vari-
able scoping and desired restrictions like expansion depth
(e.g., 10) into account.

The second aspect can be handled by associating with
every combinator specific properties such as completeness,
and propagating, using suitably defined conditions on each
combinator, the desired properties (e.g., completeness at the
root node) down the parse tree of the CFG. For instance, any
occurrence of the prune search operator must be enclosed
inside a combinator like portfolio in order to be still able to
guarantee completeness.

To address the third aspect, we propose to use a search
strategy that explicitly takes the search combinator language
structure into account, namely, Monte Carlo Tree Search,
in particular UCT (Kocsis and Szepesvári 2006). This al-
lows us to perform a top-down exploration of the CFG from
Item 1 above. The children of each internal node corre-
spond to selecting a non-terminal in the CFG and expand-
ing it with one substitution. The branching factor is reduced
using the additional requirements imposed by Item 2 above.
The search of UCT is guided by the performance of the com-
posed search at the “leaves” of the design search tree.

Concluding Remarks
We proposed a new perspective on the automated design of
combinatorial search algorithms through an approach that

108



operates at a much higher semantic level than previous algo-
rithm configurators do. Instead of blindly tuning numerical
or categorical parameters based on black-box optimization
or resorting to a handful of predefined strategies, we pro-
pose to automatically search over compositions of search
strategies using a light-weight language, while exploiting
the semantic knowledge of the modeling language itself to
guide the configuration process. Although somewhat rem-
iniscent of the old AI vision that machines will be able to
program themselves to solve novel tasks, we believe that the
idea restricted to this simple but powerful search language
has a chance of success in practice and are in the process of
flushing out details of a basic search configurator on top of
Gecode (Schulte and others 2009) which already fully sup-
ports search combinators.

References
Ansótegui, C.; Sellmann, M.; and Tierney, K. 2009. A
gender-based genetic algorithm for the automatic configura-
tion of algorithms. In International Conference on Princi-
ples and Practice of Constraint Programming, LNCS, 142–
157.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stutzle,
T. 2009. ParamILS: an automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267–306.
Kadioglu, S.; Malitsky, Y.; Sabharwal, A.; Samulowitz, H.;
and Sellmann, M. 2011. Algorithm selection and schedul-
ing. In 17th CP, volume 6876 of LNCS, 454–469.
KhudaBukhsh, A. R.; Xu, L.; Hoos, H. H.; and Leyton-
Brown, K. 2009. Satenstein: Automatically building local
search sat solvers from components. In IJCAI 2009, Pro-
ceedings of the 21st International Joint Conference on Arti-
ficial Intelligence, 2009, 517–524.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In 17th ECML, volume 4212 of LNCS, 282–
293.
Samulowitz, H.; Reddy, C.; Sabharwal, A.; and Sellmann,
M. 2013. Snappy: A simple algorithm portfolio - (tool
paper). In International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT’13), LNCS.
Schrijvers, T.; Tack, G.; Wuille, P.; Samulowitz, H.; and
Stuckey, P. J. 2013. Search combinators. Constraints Jour-
nal, to appear.
Schulte, C., et al. 2009. Gecode, the generic constraint
development environment. http://www.gecode.org/.
Stern, D.; Samulowitz, H.; Herbrich, R.; Graepel, T.; Pulina,
L.; and Tacchella, A. 2010. Collaborative expert portfolio
management. In AAAI 2010, Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence, 2010, 210–216.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: Portfolio-based algorithm selection for SAT. JAIR
32(1):565–606.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2012.
Evaluating component solver contributions to portfolio-
based algorithm selectors. In International Conference on
Theory and Applications of Satisfiability Testing (SAT’12).

109




