
Learning Strategies for
Opponent Modeling in Poker

Ömer Ekmekci
Department of Computer Engineering

Middle East Technical University
06800 Ankara, Turkey

oekmekci@ceng.metu.edu.tr

Volkan Şirin
Department of Computer Engineering

Middle East Technical University
06800 Ankara, Turkey

volkan.sirin@ceng.metu.edu.tr

Abstract

In poker, players tend to play sub-optimally due to the
uncertainty in the game. Payoffs can be maximized by
exploiting these sub-optimal tendencies. One way of re-
alizing this is to acquire the opponent strategy by recog-
nizing the key patterns in its style of play. Existing stud-
ies on opponent modeling in poker aim at predicting op-
ponent’s future actions or estimating opponent’s hand.
In this study, we propose a machine learning method
for acquiring the opponent’s behavior for the purpose of
predicting opponent’s future actions. We derived a num-
ber of features to be used in modeling opponent’s strat-
egy. Then, an ensemble learning method is proposed for
generalizing the model. The proposed approach is tested
on a set of test scenarios and shown to be effective.

Introduction
Poker is a game of imperfect information in which players
have only partial knowledge about the current state of the
game (Johanson 2007). It has many variants where a widely
popular one is Texas Hold’em which is considered to be
the most strategically complex poker variant (Billings et al.
1998). Features like having very large state spaces, contain-
ing stochastic outcomes, risk management, multiple compet-
itive agents, agent modeling, deception and handling unreli-
able information also constitute the fundamentals of AI and
multiagent systems (Billings et al. 1998).

One of the important features separating poker from the
other games is opponent modeling. In games of perfect in-
formation, not regarding whether your opponent plays opti-
mally or not, playing optimally will suffice. On the contrary,
this strategy will not work in poker. Against sub-optimal
opponents, maximizing player will gain much higher pay-
offs than an optimal player, since optimal players make de-
cisions without regarding the context, whereas maximizing
players exploit opponent’s weaknesses and adjust their play
accordingly. For example, against excessively bluffing oppo-
nents, it would not be correct to fold with hands having high
winning probability however against tight opponents fold-
ing may be a proper action. Thus exploiting the sub-optimal
tendencies of opponents or predicting how much they devi-
ate from the equilibrium strategy with what type of hands,

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

will dramatically increase the payoffs. In conclusion, oppo-
nent modeling is very essential for building a world-class
poker player.

Having stated that opponent modeling is imperative, two
questions arose for that matter which their solutions are
not quite straightforward. First problem is determining what
statistics of an opponent should be generated, i.e. extracting
features, for accurate prediction of hands and/or future ac-
tions. The other problem is how to use these predictions to
exploit the opponent for making better decisions. While in
this study we try to address a solution to the first question us-
ing machine learning techniques, the second question is an
equally complex problem for opponent modeling in poker.

In this paper, we propose an opponent modeling system
for Texas Hold’em poker. First, this paper explains research
done on opponent modeling. In the second part, rules of
Texas Hold’em poker are introduced. Then, the statistical
elements for opponent modeling in Texas Hold’em poker
game is presented. Important features are analyzed in de-
tail to be used in machine learning algorithms. Finally, we
render the main work of this study. We built up a machine
learning system for the opponent modeling problem. The
experiments are presented in detail and the results are dis-
cussed.

For the experiments, the hand histories of 8 players
(among 19 players) participating in AAAI Annual Com-
puter Poker Competition (ACPC) 2011 are chosen, which
are Calamari, Sartre, Hyperborean, Feste, Slumbot, ZBot,
2Bot and LittleRock (in the descending order of their per-
formances in the competition).

Related Work
Even though opponent modeling is a key feature to play
poker well (Billings et al. 2002) and research on computer
poker sped up about a decade ago, still research on opponent
modeling remains sparse.

(Billings et al. 1998) proposed an agent with opponent
modeling, named as Loki, for the limit variant of the Texas
Hold’em poker. For opponent modeling purposes, many fac-
tors influencing a player’s style of playing are introduced.
These factors constitute and alter (as new actions are ob-
served) probabilities of the possible hands assigned to the
opponent. Nevertheless, the opponent model developed is
somewhat a simplistic model that more sophisticated fea-

6

Computer Poker and Imperfect Information: Papers from the AAAI 2013 Workshop



tures of opponent behavior need to be considered to build a
more powerful model.

Poki, a new improved version of the Loki, is proposed by
Davidson et. al., which uses Neural Networks to assign each
game state a probability triple (Davidson et al. 2000). Many
features such as number of active players, relative betting
position, size of the pot, and characteristics of the commu-
nity board cards are used to represent the game state. They
reported a typical prediction accuracy around %80.

There are numerous important game theory based studies
for opponent modeling. One promising research is done by
(Billings et al. 2006), proposing a new agent named VexBot
which is based on adaptive game-tree algorithms: Miximax
and Miximix. These algorithms compute the expected value
of each possible action which needs opponent statistics. For
this purpose, an opponent model is built by computing the
rank histogram of opponents hand for different betting se-
quences. Hands are categorized as one of a broader hand
groups according to their strength. Since this approach is
strictly based on opponent specific criteria, modeling the op-
ponent accurately is obligatory. Unfortunately, they did not
give a performance metric for their opponent modeling mod-
ule, which is part of a larger system. A newer work proposed
an efficient real-time algorithm for opponent modeling and
exploitation based on game theory (Ganzfried and Sandholm
2011). Rather than relying on opponent specific hand history
or expert prior distributions, their algorithm builds an oppo-
nent model by observing how much the opponent deviates
from the equilibrium point by means of action frequencies.
One other powerful side is that the algorithm can exploit an
opponent after several interactions. Nevertheless, we agree
with the author that the algorithm has a crucial weakness that
it makes the agent highly exploitable against strong oppo-
nents. In contrast, off-game modeling of the opponent, with
hand histories or other opponent specific data, does not have
this weakness.

Finally, Bayesian approaches are used for opponent mod-
eling in poker. An earlier study on this subject (Korb,
Nicholson, and Jitnah 1999), focused of Five-Card Stud
poker and tried to classify the opponent’s hand into some
predefined classes using the information available for the
purpose of estimating the probability of winning the game.
Whereas a more recent study (Southey et al. 2005), focus-
ing on two hold’em variants, generated a posterior distribu-
tion over opponent’s strategy space which defines the pos-
sible actions for that opponent. Then having built the oppo-
nent model, different algorithms for computing a response
are compared. Another important study (Ponsen et al. 2008),
proposed an opponent model, predicting both outcomes and
actions of players for No-Limit variant of Texas Hold’em.
This model relies heavily on opponent specific data which
shapes the corrective function for modeling the behavior of
opponent by altering the prior distribution.

Texas Hold’em
In this study heads-up and limit variant of Texas Hold’em
poker is focused, in which there are only two players. Each
player has 2 cards named as hole cards. There are four
phases of a game: pre-flop, flop, turn and river. Last three

of these called the post-flop phases. Three possible actions
are allowed in the game: fold, call and raise. Fold means
the player withdraws from the game and forfeits previously
committed money. Call (or check) means the player commits
the same amount of the money with his opponent and the
phase ends. Raise (or bet) means the player commits more
money than his opponent. Up to four raises are allowed in
each round.

In the pre-flop phase, first player (small blind) contributes
1 unit of money and the other player, which is also the
dealer, contributes 2 units of money automatically. Then,
each player is dealt two hidden (hole) cards. Then a betting
round begins until a player folds or calls. In the flop phase,
three community cards are dealt to the table. Every player
can see and use community cards. Another similar betting
round begins in this phase, except the blind bets. In each of
the turn and river phases, one more community card is dealt
and a new betting round is conducted.

Opponent Modeling
There are two crucial aspects of opponent modeling in poker
observed in the literature. One is categorizing opponent’s
hand into one of predefined broader hand groups or gener-
ating a probability distribution for the possible hands which
can presumably be altered as game proceeds, while the other
one is predicting opponent’s actions based on the informa-
tion available in the game. In this particular study, we will
focus on how to generate a machine learning system for pre-
dicting the opponent’s action for a given situation.

As mentioned in the preceding section, there are four
phases and three potential actions that a player can take in
the game. In each phase, there may be zero or more deci-
sion points, i.e. just the moment before the opponent makes
its move. For example; if players folded in flop then since
the game ends, there will be no turn or river phase hence no
decision points. We approached this decision problem as a
classification problem, where the labels correspond to one
of the actions and the feature vector is composed of several
features being extracted and containing information from the
current state of the game. Next, the most crucial elements for
opponent modeling namely, features, are explained.

Feature Analysis and Selection
Features are the core elements of an opponent modeler de-
signed by machine learning approaches. They are the ba-
sic building blocks for determining how a poker player
plays. In order to develop a modeler for accurately predict-
ing opponents’ future actions, statistics and certain measures
which are used as features, should be collected and ana-
lyzed very carefully. A modeler with redundant features may
lead to high computational complexity and low performance
whereas missing features may lead to inaccurate predictions.
Moreover, since playing styles of players vary vastly, the
subset of features which models a player accurately, may
not apply to another player.

There are several factors that affect a decision of a player.
The obvious elements are the hole cards and community
cards. There are C(52, 2) = 1326 possibilities for hole cards

7



Table 1: Candidate features
Id Explanation
1 Hand strength
2 PPot
3 NPot
4 Whether the player is dealer or not.
5 Last action of the opponent (null, call or raise)
6 Last action of the opponent

in context (null, check, call, bet or raise)
7 Stack (money) committed by the player in this phase
8 Stack committed by the opponent in this phase
9 Number of raises by the the player in this phase

10 Number of raises by the opponent in this phase
11 Hand rank
12 Winning probability
13 Hand outs
14 Number of raises by the player in previous phases
15 Number of raises by the opponent in previous phases
16 Highest valued card on the board
17 Number of queens on the board
18 Number of kings on the board
19 Number of aces on the board

and there are C(52, 5) = 2598960 board configurations. Ex-
posing card sets to a machine learner as a feature is subject
to fail because of this very high dimensionality. Therefore,
researchers usually convert card information to a couple of
measures using various algorithms called hand evaluation
algorithms (Billings 2006). Hand evaluation algorithms aim
to assess the strength of the hand of the agent. There are dif-
ferent approaches to evaluate the hand in the pre-flop phase
and the post-flop phases.

For the pre-flop phase, the winning probabilities of each
hand can be approximated by using a simple technique that
is called roll-out simulation (Billings 2006). The simulation
consists of playing several million trials. In each of these
trials, after hidden cards are dealt, all other cards are dealt
without any betting and the winning pair is determined. Each
trial in which a pair wins the game, increases the value
of that particular hand. It is an oversimplification of the
game, however it provides an accurate description of rela-
tive strengths of the hands at the beginning of the game.

For the post-flop phases, there are two algorithms for
hand assessment, hand strength and hand potential (Billings
2006). The hand strength, HS, is the probability of a given
hand is better than the possible hands of active opponent. To
calculate HS, all of the possible opponent hands are enumer-
ated and checked whether our agent’s hand is better, tied or
worse. Summing up all of the results and dividing the num-
ber of possible opponent hands give the hand strength. Hand
potential calculations are for calculating the winning proba-
bility of a hand when all the board cards are dealt. The first
time the board cards are dealt, there are two more cards to be
revealed for each round. For the hand potential calculation,
we look at the potential impact of these cards. The positive
potential, PPot, is the probability of increase of a hand’s rank
after the board cards are dealt. The negative potential, NPot,
is the count of hands which will make a leading hand end up
behind. PPot and NPot are calculated by enumerating all the

possible cards for the opponent like the enumeration in hand
strength, in addition by enumerating all the possible board
cards to be revealed.

There are several measures that can assess the hand from
other perspectives. Two of these measures are hand rank and
hand outs. Hand rank refers to the relative ranking of a par-
ticular five card hand by the rules of the game at showdown
i.e. the player with highest rank wins the game. Hand outs
refers the number of possible cards that may be opened to
the table and improve the rank of the hand. Finally, the win-
ning probability (at showdown), can be computed based on
hand strength and hand potential as in (Felix and Reis 2008):

P (win) = HS × (1−NPot) + (1−HS)× PPot (1)

Not only the card measures but also the table context con-
siderably affects the decision of a player, few examples are
committed portion of stack, number of raises. Complete set
of features that are used for our analysis are given in Ta-
ble 1. It is important to note that a number of features are
not applicable for river and pre-flop phases. For example,
hand potential is not meaningful for the river phase because
all the board cards are already dealt. Number of features
may seem to be small, but note that first three features em-
body lots of information about the present and future of the
game. Moreover, players’ style may vary according to cur-
rent phase being conducted. However, since feature subset
varies in diverse phases, this factor is processed differently
which is explained later.

Before the classification step, an optimal subset of can-
didate features has to be selected that leads to the greatest
performance according to a predefined optimality criteria.
For this purpose, a feature selection algorithm must be em-
ployed. In our problem, feature selection is the process of
selecting a particular subset of features for each player and
game phase.

As explained in (Liu and Yu 2005), a feature selection
algorithm consists of four parts: Subset Generation, Subset
Evaluation, Stopping Criterion and Result Validation. Back-
ward elimination and forward selection are the basic subset
generation algorithms which find the optimal feature set it-
eratively.

Backward elimination technique performs the iterations
starting with full feature set. In each iteration all possible
N-1 subsets of the N-sized feature set are generated. Then
the least useful feature whose absence improves the perfor-
mance most is removed. Whereas, forward selection proce-
dure starts with empty set and adds new features progres-
sively to the current set. As explained in (Guyon and Elis-
seeff 2003), backward elimination has a certain advantage
over forward selection method. A feature may be more use-
ful in the presence of another certain feature so if the algo-
rithm started with a small feature set, a good combination
might be missed. Hence, backward elimination can give bet-
ter results. However, it can also be computationally more
expensive because it works on larger sets than the forward
selection algorithm.

In our experiments, sequential backward elimination and
forward election techniques are performed and results are

8



Table 2: Steps during backward elimination for the data of
LittleRock flop phase, F represents the whole feature set

Feature Set Validation Accuracy
F 88.2%

F - {16} 88.6%
F - {1, 16} 88.8%

F - {1, 7, 16} 88.8%
F - {1, 5, 7, 16} 88.8%
F - {1, 5, 6, 7, 16} 88.8%

F - {1, 5, 6, 7, 9, 16} 88.8%
F - {1, 5, 6, 7, 9, 10, 16} 88.8%

F - {1, 5, 6, 7, 9, 10, 11, 16} 88.8%

Table 3: Steps during forward selection for the data of Lit-
tleRock flop phase.

Feature Set Validation Accuracy
{14} 61.5%
{6, 14} 77.5%
{6, 12, 14} 83.2%
{1, 6, 12, 14} 86.4%
{1, 6, 12, 14, 16} 87.3%
{1, 6, 12, 14, 15, 16} 87.9%
{1, 2, 6, 12, 14, 15, 16} 88.1%
{1, 2, 6, 12, 13, 14, 15, 16} 88.3%
{1, 2, 6, 9, 12, 13, 14, 15, 16} 88.4%
{1, 2, 3, 6, 9, 12, 13, 14, 15, 16} 88.5%
{1, 2, 3, 4, 6, 9, 12, 13, 14, 15, 16} 88.5%

compared. As for the evaluation criteria for each subset,
cross-validation accuracy is used. Moreover, the algorithms
are terminated when addition or subtraction of a feature can-
not generate better performance than the previous iteration.
Table 2 shows the steps during reduction for the player Lit-
tleRock in flop phase of the game. First two exclusions in-
crease the performance significantly but the later ones are in-
significant. After ninth step, a better subset cannot be found
and hence the algorithm terminates. Feature sets, produced
by two methods, are similar but not exactly the same. Fea-
tures with id 1, 6, 9 and 16 are excluded by backward reduc-
tion but included in forward selection. In comparison, back-
ward elimination gives slightly better performance through-
out the entire data set.

Table 3 shows the steps for the player LittleRock in
flop phase using forward selection. Expansion stops after
eleventh step since a subset with 12 features cannot be found
better than the current 11-sized subset.

Even though backward elimination method leads to better
results than the forward selection algorithm, it is computa-
tionally expensive since it processes each N-1 subset of N-
sized feature set at each step. It would be even much more
time consuming to perform this analysis if the number of
opponents to be modeled increases. Therefore, an algorithm
that can provide the relative importance of the features is
needed. If such information were available, instead of try-
ing each subset, the least important one could have been
dropped. Relief-F is a popular feature selection algorithm
for obtaining that information.

Relief-F is an algorithm introduced in (Kononenko 1994),

Table 4: Steps during reduction of feature set guided with
Relief-F

Feature Set Validation Accuracy
F 88.2%

F - {7} 82.0%
F - {7, 9} 82.4%

F - {7, 9, 17} 82.7%
F - {7, 9, 17, 18} 82.7%

F - {7, 9, 11, 17, 18} 82.6%
F - {7, 9, 11, 17, 18, 19} 82.5%

F - {2, 7, 9, 11, 17, 18, 19} 77.6%
F - {2, 7, 9, 11, 13, 17, 18, 19} 77.4%

F - {2, 7, 8, 9, 11, 13, 17, 18, 19} 76.3%
{1, 4, 5, 6, 10, 12, 14, 15, 16} 76.2%
{1, 4, 5, 6, 10, 12, 14, 15} 76.2%
{1, 5, 6, 10, 12, 14, 15} 75.9%
{1, 5, 6, 10, 12, 14} 75.0%
{1, 5, 6, 12, 14} 70.0%
{1, 5, 6, 14} 69.3%
{5, 6, 14} 68.3%
{5, 14} 52.0%
{14} 49.5%

Table 5: Selected feature sets for different players
Player Feature Set
2Bot {2, 3, 4, 9, 10, 11, 12, 13, 14, 15 }

LittleRock {2, 3, 4, 8, 12, 13, 14, 15, 17, 18, 19}
Slumbot {1, 2, 3, 4, 8, 11, 12, 14, 15}

ZBot {1, 3, 5, 8, 12, 13, 14, 15, 16, 18}
Feste {1, 3, 4, 8, 11, 12, 13, 14, 15}

Hyperborean {2, 3, 6, 10, 12, 13, 14, 16}
Sartre {2, 6, 8, 12, 13, 14, 15}

Calamari {1, 2, 3, 4, 6, 9, 12, 13, 14, 15, 16}

which is a multiclass extension to the original Relief algo-
rithm by (Kira and Rendell 1992). It is used for estimating
the quality of individual features with respect to the classifi-
cation.

After performed Relief-F and getting weights, the features
are sorted in ascending order. Then, at each iteration, the
feature with the lowest weight is dropped. Finally, the fea-
ture set with maximum validation accuracy is selected. As
seen in Table 4, dropping the features suggested by Relief-F
did not improve performance for the entire data set. Hence,
feature subsets generated by backward reduction algorithm
used integrated in the following machine learning systems
rather than Relief-F algorithm.

In Table 5, selected feature sets for each player produced
by the backward selection algorithm is presented. They are
similar but not exactly the same which is expected since the
style of each player varies as stated in the earlier sections.

Learning an Opponent Model
Then next step after feature selection procedure is classifica-
tion. For mapping the features to decisions, i.e. discovering
the complex relations between them, we employed three ma-
chine learning algorithms: Neural Networks (Bishop 1995),
Support Vector Machines (Cortes and Vapnik 1995) and K

9



Table 6: Test accuracies of classifiers of all players for all phases
Pre-Flop Flop Turn River

NN SVM KNN NN SVM KNN NN SVM KNN NN SVM KNN
Sartre 90% 90% 100% 89% 96% 97% 94% 96% 96% 90% 94% 95%

Hyperborean 87% 88% 96% 84% 85% 84% 81% 83% 82% 82% 83% 83%
Feste 89% 90% 96% 87% 87% 89% 82% 82% 84% 81% 84% 86%
ZBot 79% 80% 93% 76% 81% 80% 79% 80% 79% 82% 83% 82%

Slumbot 88% 88% 95% 80% 80% 79% 79% 81% 78% 77% 77% 76%
LittleRock 87% 86% 98% 87% 87% 89% 81% 83% 83% 81% 83% 86%

2Bot 92% 92% 95% 85% 84% 86% 78% 78% 78% 77% 78% 78%
Calamari 88% 89% 99% 95% 87% 97% 93% 85% 94% 93% 84% 94%

Nearest Neighbors (Wettschereck, Aha, and Mohri 1997).
For each of the mentioned player in the very first section,

data gathered contains around 30 thousand games. In each
game, there are at most four phases. Each of the decision
points in the game are treated as a sample. As a result, typical
size of the data for a player is around 30 thousand samples
for pre-flop phase, 20 thousands for flop, 10 thousands for
turn and 5 thousands for river. The data is divided into two
distinct parts: training and test, which test set contains 20%
of the samples in the whole data.

After feature selection, experiments start with the train-
ing phase which includes cross-validation for parameter op-
timization where K-fold Cross-Validation is used (Kohavi
1995). Next, the best parameter set should be determined.
Using Grid Search (Hsu, Chang, and Lin 2003), for each
parameter, we define a set of values to test. In grid search
procedure, we exhaustively compute the validation accuracy
for all possible parameter sets and take the one giving max-
imum score. After finishing selecting the parameters for the
three classifiers, their performances are determined using the
test set.

First, for neural networks, 3-layer structure is used. The
network has 3 output nodes representing the unnormalized
probabilities of fold, call and raise actions. The decision is
the action with the highest value and the activation func-
tion for the nodes is the sigmoid function. The weights are
learned using the method of gradient descent with momen-
tum where the error function is sum of squares. Hence in pa-
rameter optimization epoch, number of hidden nodes, learn-
ing rate (η), momentum (α) are used.

Number of hidden layer nodes is searched around the
number of selected features. We observed that neural net-
work performance is generally stable around this num-
ber. Best cross-validation performances obtained when η is
around 0.1 and epoch number is around 4000, where η is
validated for values in the range [0.1,0.5] and epoch number
for various values between 100 and 10000. Moreover, we
also observed that introducing momentum to the neural net-
work training process does not improve performance and in
general it is not sensitive to the varying parameters for this
data. Results for all the players can be seen from Table 6.

Second, for SVM, we investigated the effect of varying
the C parameter. For most of the players validation accura-
cies are stable after C ≥ 4 (up to 64 increasing with multi-
ples of 2), and best is obtained when C is around 8. Linear
and radial basis function has been used as kernel. For the

RBF kernel, in addition to C, γ parameter is optimized in
the interval [0.25, 4] in which the best performance is ob-
served for γ = 2. In the experiments, SVM produced about
4-5% better results with RBF kernel than with linear ker-
nel. Table 6 shows testing accuracies for different players
for SVM with RBF kernel only.

Finally, before applying KNN algorithm, data is normal-
ized. If the range of a feature is significantly larger than the
others, this feature can dominate the distance calculation.
For that reason, all features are mapped to [0, 1] range so that
each of them contributes equally to the Euclidean distance
metric. We investigated the effect of varying the k parameter
with 10-fold cross validation. Generally, validation accuracy
increased monotonically from k = 2 to about k = 8 which
after no significant change is observed up to k = 20, and
best validation accuracy is obtained about k = 12. Table 6
shows the test results for all the players.

First, the results are really promising, machine learning
approaches proved themselves to be very successful. Sec-
ond, in pre-flop and flop phases, in which more data is avail-
able, classifiers have better performance than the others.
Moreover, KNN performed slightly better than the others
where neural network gave an average accuracy of around
85% ± 3% , SVM 86% ± 3% and KNN 91% ± 6% for all
phases. Finally, an interesting pattern stands out in Table 6.
According to total bankroll results in the competition, Cala-
mari ranked as first and Sartre as second, the most successful
bots in the competition turn out to be most predictable by our
classifiers.

Learning Different Styles and Generalizing
The Model

Until now, the learning system is trained and tested with the
same data. What would happen if we tested the suggested
learning system with a different scenario? In fact, this is a
very common situation with human players. They observe
some players and later they try to benefit from their previ-
ous observation with other players. When the models, gen-
erated with neural networks trained with the data of a par-
ticular player, are tested with anotother player’s data, per-
formances generally drop. For example; when the test data
of Sartre is presented to a model for Calamari, the perfor-
mance becomes 83%, however it was 90% when tested with
its own model, or performance for Calamari drops from 93%
to 81% when it is presented to model of Sartre rather than

10



Table 7: Ensemble accuracy compared with experts
Testing Against

Hyperborean Calamari Sartre LittleRock Slumbot 2Bot Avg.
Hyperborean 81% 90% 80% 79% 71% 75% 79%

Calamari 80% 93% 83% 81% 73% 75% 81%
Sartre 73% 81% 90% 75% 71% 71% 77%

LittleRock 80% 90% 86% 82% 75% 75% 81%
Ensemble 82% 92% 89% 82% 76% 77% 83%

Figure 1: Stacked Generalization for Opponent Modeling

itself. This can be a problem for an artificial agent when it
confronts a particular opponent for the first time having no
history with that opponent. Even though some data is avail-
able about that opponent the feature selection procedure can
be time-consuming, hence not feasible. To overcome these
problems, we proposed an ensemble system that general-
ized the system eliminating feature analysis and predict even
more accurately the decision of opponents.

Ensemble Learning
Ensemble learning refers to the idea of combining multiple
classifiers into a more powerful system with a better pre-
diction performance than the individual classifiers (Rokach
2010). Alpaydin covers seven methods of ensemble learn-
ing: voting, error-correcting output codes, bagging, boost-
ing, mixtures of experts, stacked generalization and cascad-
ing in his book (Alpaydin 2010).

In our case, several experts are developed, each trained
on a particular player. We propose an ensemble scheme of
stacked generalization which best fits to the problem. To
overcome this problem, we set up the system which is il-
lustrated in Figure 1. Having performed some randomized
selections for experts from all of the players and cross-
validate, we select the following: Calamari, Sartre, Hyper-
borean and LittleRock. In this system, the output of each
expert learner is fed to the meta classifier as a feature, which
are all neural networks having 3 output nodes. Then they are
concatenated to make a feature vector with 12 entries, fed
to the meta-classifier, which is also a neural network with 3
output nodes.

For this experiment, data is split into 3 parts. First part is
used to train experts. For these experts, as presented before,
features are selected individually for the purpose of best rep-
resenting their ”expertise” and models are trained with their
corresponding data. Second part is used to train the meta

classifier. Data of four different players are fed into each
expert and their predictions are obtained. After that, their
outcomes are concatenated and fed into the meta-classifier
as input. Then, a regular supervised training is performed
to the meta-classifier. Finally, third part is used to test the
ensemble system. Table 7 shows the results for this system.

In Table 7, we see that when testing against a certain
player, the expert of that player gives the best performance.
This can be seen from the first four diagonal entries. Ensem-
ble usually comes the second after the expert when predict-
ing a particular player. We see that ensemble has managed
to model different players with fairly stable performance.
The average performance of the ensemble is greater than the
individual experts. In Table 7, it is observed that the stacked
generalization model is able to predict the actions of the new
opponents better than the experts i.e. the models generated
with the traditional machine learning classifiers.

Conclusion and Future Work

In this study, a new opponent modeling system for predicting
the behaviour of opponents in poker by using machine learn-
ing techniques is proposed. We observe that machine learn-
ing approaches are found to be very succesful for inferring
the strategy of opponents. This is achieved by careful se-
lection of features and parameters for each of the individual
players. By using the selected feature set, we carried out a
number of experiments to demonstrate the effectiveness, and
found that KNN algorithm has the best performance. For the
purposes of generalizing the model and alleviating the com-
putational burden of feature selection, an ensemble model
is introduced. Rather than performing feature selection for
all of the newly confronted players, it will be performed for
only the experts. In a stacked generalization scheme, the ob-
tained results are promising. However, experiments for en-
semble learning can be performed using different classifiers,
where only neural network is presented in this study.

After successfully building the models for opponents, the
next major step is to determine how to use these results for
a betting strategy. It is important to note that the opponent
models can also be used as a betting model for mimicing the
modeled opponent. The predictions can be interpreted as the
actions to be taken i.e. decisions of the agent. Moreover, the
predictions of opponent modelers can be synthesized with
game-theoretic approaches for betting mechanisms. For this
puspose fuzzy classifiers can also be beneficial in order to
get the prediction probabilities of actions to be used in bet-
ting algorithms.

11



References
Alpaydin, E. 2010. Introduction to Machine Learning. The
MIT Press.
Billings, D.; Papp, D.; Schaeffer, J.; and Szafron, D. 1998.
Opponent modeling in poker. In Proceedings of the National
Conference on Artifical Intelligence, 493–499. John Wiley
& Sons LTD.
Billings, D.; Davidson, A.; Schaeffer, J.; and Szafron, D.
2002. The challenge of poker. Artificial Intelligence
134(1):201–240.
Billings, D.; Davidson, A.; Schauenberg, T.; Burch, N.;
Bowling, M.; Holte, R.; Schaeffer, J.; and Szafron, D. 2006.
Game-tree search with adaptation in stochastic imperfect-
information games. Computers and Games 21–34.
Billings, D. 2006. Algorithms and assessment in computer
poker. Ph.D. Dissertation, University of Alberta.
Bishop, C. M. 1995. Neural Networks for Pattern Recogni-
tion. New York, NY, USA: Oxford University Press, Inc.
Cortes, C., and Vapnik, V. 1995. Support-vector networks.
Machine Learning 20(3):273–297.
Davidson, A.; Billings, D.; Schaeffer, J.; and Szafron, D.
2000. Improved opponent modeling in poker. In Interna-
tional Conference on Artificial Intelligence, ICAI’00, 1467–
1473.
Felix, D., and Reis, L. 2008. An experimental approach to
online opponent modeling in texas hold’em poker. Advances
in Artificial Intelligence-SBIA 2008 83–92.
Ganzfried, S., and Sandholm, T. 2011. Game theory-based
opponent modeling in large imperfect-information games.
In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS).
Guyon, I., and Elisseeff, A. 2003. An introduction to vari-
able and feature selection. The Journal of Machine Learning
Research 3:1157–1182.
Hsu, C.; Chang, C.; and Lin, C. 2003. A Practical Guide
to Support Vector Classification. Techincal Report, Depart-
ment of Computer Science, National Taiwan University.
Johanson, M. 2007. Robust strategies and counter-
strategies: Building a champion level computer poker player.
In Masters Abstracts International, volume 46.
Kira, K., and Rendell, L. 1992. A practical approach to
feature selection. In Proceedings of the Ninth International
Workshop on Machine learning, 249–256. Morgan Kauf-
mann Publishers Inc.
Kohavi, R. 1995. A study of cross-validation and boot-
strap for accuracy estimation and model selection. In In-
ternational Joint Conference on Artificial Intelligence, vol-
ume 14, 1137–1145.
Kononenko, I. 1994. Estimating attributes: analysis and
extensions of relief. In Machine Learning: ECML-94, 171–
182. Springer.
Korb, K.; Nicholson, A.; and Jitnah, N. 1999. Bayesian
poker. In Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence, 343–350. Morgan Kaufmann
Publishers Inc.

Liu, H., and Yu, L. 2005. Toward integrating fea-
ture selection algorithms for classification and clustering.
IEEE Transactions on Knowledge and Data Engineering
17(4):491–502.
Ponsen, M.; Ramon, J.; Croonenborghs, T.; Driessens, K.;
and Tuyls, K. 2008. Bayes-relational learning of opponent
models from incomplete information in no-limit poker. In
Twenty-third Conference of the Association for the Advance-
ment of Artificial Intelligence (AAAI-08).
Rokach, L. 2010. Ensemble-based classifiers. Artificial
Intelligence Review 33(1):1–39.
Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch,
N.; Billings, D.; and Rayner, C. 2005. Bayes bluff: Op-
ponent modelling in poker. In In Proceedings of the 21st
Annual Conference on Uncertainty in Artificial Intelligence.
Wettschereck, D.; Aha, D.; and Mohri, T. 1997. A review
and empirical evaluation of feature weighting methods for
a class of lazy learning algorithms. Artificial Intelligence
Review 11(1):273–314.

12




