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Introduction

Machine learning tasks typically assume that the exam-
ples of a given dataset are independent and identically dis-
tributed (i.i.d.). Yet, there are many domains and applica-
tions where this assumption does not strictly hold. Further,
there may be additional information available that ties to-
gether the examples of a dataset, which we could exploit to
learn more accurate models. For example, there are cluster-
ing tasks in the domain of semi-supervised learning where,
for example, we have available side information that tells
us that certain pairs of examples belong to the same clus-
ter. To incorporate such information, constrained versions
of k-means clustering (Wagstaff et al. 2001), Gaussian mix-
ture models (Lu and Leen 2004; Shental et al. 2003) and
a variety of other models and algorithms, have been pro-
posed in the literature; see, e.g., the surveys (Davidson 2009;
Han, Kamber, and Pei 2011).

We propose here to abstract such problems in more gen-
eral terms, as a task of learning from datasets that are subject
to equivalence constraints. We formalize the notion of learn-
ing a Bayesian network subject to equivalence constraints,
introducing a notion of a constrained dataset, which implies
a corresponding constrained log likelihood. The constrained
log likelihood provides a simple and principled way to learn,
for example, the parameters of a Bayesian network from a
constrained dataset. The constrained log likelihood, how-
ever, is intractable in general, although we identify a special
case where we can design practical algorithms for optimiz-
ing the constrained log likelihood. In particular, we propose,
as an example, a constrained generalization of expectation
maximization (EM), for a class of models that subsumes
those for constrained clustering tasks as a special case.

Constrained Datasets

We introduce a particular type of dataset, called a con-
strained dataset, which is a traditional dataset that is fur-
ther annotated with equivalence constraints. Suppose we are
given an incomplete dataset, where we do now know the
particular values of a hidden variable across examples in a
dataset. Suppose, however, that no matter what that value is,
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Figure 1: On the left, is a meta-network for a Bayesian net-
work A — B with four examples, where A is hidden and B
is observed. On the right is a meta-network with equivalence
constraints: constraint S' on A; and A,, and constraint S?
on Aj and Ay, are represented as observed variables.

we do know that it must be the same across certain examples
in a dataset. For example, consider the incomplete dataset:

example | A B C

1 al bl C2
2 ?7 b ?
3 az ? C1
4 ? b2 C1

While we do not know the specific value of variable A in ex-
amples 2 and 4, suppose that we happened to know that the
value of A in these examples must be the same. For exam-
ple, this value of A could represent the presence or absence
of a disease in a patient that has visited two different doctors,
who performed two independent sets of tests. While we do
not know whether the disease is present or absent in the pa-
tient, we do know that it is either present in both cases, or
absent in both cases. We view background knowledge such
as this, as an equivalence constraint on a dataset. Ideally, we
would like to take advantage of such information, in order
to learn more accurate models. Our goal now is to formalize
such learning tasks, which leads us to the notion of a con-
strained log likelihood.

Constrained Log Likelihoods

To formalize the notion of learning from a constrained
dataset, we appeal to the notion of a meta-network, which
is typically used to motivate (Bayesian) learning of param-
eters in Bayesian networks (Darwiche 2009); see Figure 1



(left) for an example. Suppose we are given a dataset D that
is subject to equivalence constraints &. We can represent
these equivalence constraints explicitly in a meta-network,
as observed variables; see Figure 1 (right) for an example.
As a meta-network induces a log likelihood, the constrained
meta-network induces a constrained log likelihood (CLL):

CLL(#|D,S)=1logP(D|S8,0)

where P denotes the (meta-)distribution induced by the
constrained meta-network. To learn the parameters of a
Bayesian network, subject to equivalence constraints, we
can thus seek to obtain those estimates maximizing the
above constrained log likelihood. Note that the constrained
log likelihood reduces to the traditional log likelihood when
there are no equivalence constraints.

In general, computing the constrained log likelihood is in-
tractable. However, under a certain assumption on the equiv-
alence constraints, the constrained log likelihood is no more
difficult to compute than the traditional log likelihood. In
particular, if only a single network variable is subject to
equivalence constraints, the constrained log likelihood as-
sumes a simple closed-form:

CLL(0 | D,S)
= LL(0 | D) +1og P(S | D,0) — log P(S | 0)

where LL(0 | D) is the traditional log likelihood. We see
here that optimizing the constrained log likelihood balances
between optimizing the traditional log likelihood and an ad-
ditional term over equivalence constraints. Under our given
assumption, these additional terms can be computed effi-
ciently, as a by-product of computing the log likelihood,
which we must compute anyways. We omit these details,
however, in this abstract.

An Application in Semi-Supervised Learning

Now having formalized the notion of learning from a con-
strained dataset, we could appeal to off-the-shelf systems
for optimizing the corresponding constrained log likelihood.
Here, we consider an EM algorithm (Dempster, Laird, and
Rubin 1977; Lauritzen 1995), but one that is adapted to
learn the parameters of a Bayesian network from constrained
datasets. In particular, we derived a constrained EM (CEM)
algorithm for the simplified case where a single root vari-
able is subject to equivalence constraints. Such an algorithm
is sufficient for semi-supervised clustering tasks that have
seen increasing interest in recent years.

We applied our CEM algorithm to learn both naive Bayes
models and Gaussian mixture models (GMMs), from con-
strained datasets. In preliminary experiments on datasets
from the UCI ML repository, we found algorithms that take
advantage of side-information can exhibit much better clus-
tering performance than vanilla EM, with smooth increase
in performance as we provide more side-information. Fur-
ther, our constrained EM algorithm is competitive with,
and sometimes outperforming, more specialized algorithm
specifically designed for this domain (Shental et al. 2003);
for an example, see Figure 2.
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Figure 2: In GMMs, we observe an increase in F-measure value
(y-axis) as the amount of side-information is increased (x-axis).

On Generalizations

In initial experiments, we considered an EM algorithm
adapted for the special case where a single root variable is
subject to equivalence constraints. Similar assumptions are
typically assumed in models used by more specialized algo-
rithms for constrained clustering. However, generalizing to
non-root variables, for example, is non-trivial in these cases.

In contrast, in our framework, it is not too difficult to per-
form this generalization. The constrained log likelihood is
still as easy to evaluate in this case, and we further have an
analogous EM algorithm to optimize it. There are less trivial
generalizations that are correspondingly efficient, for con-
straints on multiple variables, further under the assumption
that the number of constrained variables is bounded.

In general, with arbitrary equivalence constraints, the con-
strained log likelihood is intractable. However, our formula-
tion further naturally admits a certain approximation to the
constrained log likelihood, that leads to another EM-based
algorithm that is as efficient as the one we considered in
our preliminary experimental results. We plan to investigate
such generalizations and approximations in future work.
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