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Abstract

Extensive online collections of content exist, such as mu-
sic, books, movies, and various others. Search in these col-
lections is typically implemented in two ways, typing at-
tributes of interest into a search box, or progressively navi-
gating through series of menus with item categories to a list
of desired items. In this paper, we focus on the latter ap-
proach. In particular, we propose a strategy that guides the
user to the items of interest in the minimal number of in-
teractions. Therefore, we refer to our technique as minimal
interaction search. At each step of the search, we show the
user k item categories and ask them to choose the one that
matches their preferences, or state that none does. We for-
malize this problem as multi-way search and propose an al-
gorithm DoubleGreedy that solves the problem efficiently.
The item categories in each question can be computed in
O(k) time, and any item in the database is found in the worst
case in OPTk log(n− 1)e/(e− 1) questions, where n is the
total number of items and OPTk is the maximum number of
questions asked by the optimal strategy (that uses the smallest
number of questions possible in the worst case). We evaluate
our method on two datasets of movies and books, and show
that the target item can be found very fast.

1 Introduction
Extensive online collections of content exist, such as music,
books, movies, and various others. Items in these collec-
tions are described by many attributes, some of which are
carefully curated, such as the genre of a movie, and others
that are freely generated by users, such as reviews. Search in
this setting has been traditionally approached in two ways.
In one approach, users type attributes of interest into a search
box and the search engine returns a ranked list of items that
are relevant to the user’s query. In the other, users navigate
through menus with item categories and progressively refine
their selection to a list of desired items (Figure 1). Most con-
tent recommendation websites, like Netflix and Yelp, com-
bine both of these approaches. In this paper, we focus on
improving the latter approach.

Typically, the number of item categories is huge, and
therefore they are presented to the user in a series of menus,
from general to very specific ones. For instance, Netflix ini-
tially asks the user to choose a movie genre, such TV Shows
or Dramas. When the user chooses Dramas, Netflix offers
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more specific choices, such as Independent Dramas and Ro-
mantic Dramas. Note that this policy for exploring the space
of items can be represented by a tree, where the nodes are
lists of item categories shown to the user and the branches
are the choices of the user. In the rest of the paper, we refer
to such a tree as a search tree.

The search tree is typically built manually and suffers
from several drawbacks. First, if the branching factor of
the tree is too large, the user may get overloaded with the
amount of choices. For instance, Yelp users can choose from
more than 100 types of cuisines. Only 9 fit on the screen of
a smart phone (Figure 1b). Second, if the tree is too shal-
low, the list of recommended items satisfies only some of
the user’s criteria and includes many unwanted items. For
instance, Netflix’s search tree has only two levels. As a re-
sult, it is relatively easy to find movies that belong to 2 cat-
egories, such as Dramas and Period Pieces, but hard to find
movies that belong to 3, for instance Dramas, Period Pieces,
and Action & Adventure. Finally, note that the set of items
tend to change dynamically over time, for instance whenever
new content is available. Therefore, the search tree must be
periodically updated.

In this paper, we propose a policy that guides the user to
the items of interest in the minimal number of interactions.
At each step of the search, we show the user k item cate-
gories and ask them to select the one that matches their pref-
erences. Our approach has several notable features. First,
we explicitly minimize the number of interactions with the
user. In other words, we optimize the structure of the search
tree such that the target item can be found fast. Second,
the branching factor of our tree is bounded by k, where k
is a domain-specific parameter. Therefore, the user is never
given more than k choices. This constraint is motivated by
real-world problems. More specifically, people increasingly
search on mobile devices and the screen of these devices is
small. Therefore, it is hard to display more than a limited
number of choices. In addition, a large number of choices
perplexes people and may lead to confusion. Therefore, it is
only natural to consider this constraint.

We make three contributions. First, we formalize multi-
way search with item categories as an interactive question-
answering game. At each step of this game, the user is
shown k categories of items and asked to select the one that
matches their preference. Our goal is to minimize the num-
ber of such queries to find the item of interest, in the worst
case.
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(a) Netflix. (b) Yelp. (c) Likeness.
Figure 1: Examples of interactive search applications on a
cell phone.

Second, we propose an efficient algorithm for solving
this problem. Our method finds the target item in at most
OPTk

e
e−1 log(n − 1) queries, where n is the number of

items and OPTk is the maximum number of queries in
the optimal solution. Each query is computed in O(km2)
time, where m is the number of item categories and k is
the number of item categories in the query. We also pro-
pose a version of the algorithm whose computation time
grows only linearly with m. We refer to our algorithm
as DoubleGreedy because we greedily seek queries that
shrink the hypothesis space the most, and the search for the
best query is also done greedily.

Third, we conduct an extensive experimental study. Our
method is evaluated on two large datasets of movies and
books, and we show how it scales with the number of items
categories k in the query.

2 Minimal interaction search
In this section, we discuss our framework for minimal inter-
action search. We assume that each item belongs to multiple
categories. The user has a specific target item in mind and
uses a device with multiple choice capability, like a tablet,
to find it. The system gives the user multiple choices and the
user makes the choice that reveals their preferences. This
process is repeated until the user has identified the target
item that satisfies all their choices. The goal of the system is
to bring the user to the target item in as few interactions as
possible. The formalization of this process requires making
several design choices.

First, we need to define what are the choices. In this pa-
per, we assume that they are individual item categories. For
instance, movie genres like Dramas and Period Pieces. Note
that an item category can be a combination of existing cate-
gories, such as Action & Adventure. Alternatively, the user
can be shown representative items (Karbasi, Ioannidis, and
Massoulié 2012). While this approach is of interest in the-
ory, in practice people are more comfortable with choosing
a specific category.

Second, we need to decide how to present the choices and
what is the response of the user. In this work, we show k
item categories and ask the uses to choose the one that de-
scribes the target item on their mind. After the user makes
a choice, the system shows another k categories. This ap-
proach has two nuances. First, suppose that more than one
category describes the target item. In this case, we assume

the user can choose any of the applicable categories. We do
not want to burden the user to be more precise and choose
the most applicable category, given some notion of distance.
Second, suppose that no category applies to the target item.
This is possible because the user is given only k choices
and these may not cover the entire space of target items.
Therefore, we provide a (k+1)-th choice, a special category
Other, which comprises all items that are not represented by
any of the k choices. Note that this (k + 1)-th choice may
not in general be captured by any single category.

Finally, we need to decide what performance measure is
optimized. A natural choice is to minimize the amount of
interaction with the user. Making any more choices than are
necessary would likely only annoy the user. However, there
is a nuance. In any particular instance, the system might
get lucky and user’s first choice determines the target item.
We would like to study cases other than such fortuitous out-
comes. So we decide to study the worst-case behavior of the
system, with respect to all items.

2.1 Multi-way search problem
We formalize minimal interaction search as a k-ary search
problem over a hypothesis space H = {1, . . . , n} of n
candidate items. The items belong to m item categories.
We let Si be the set of items in the category i and S =
{S1, . . . , Sm} be the set of all categories. The item i be-
longs to the category j if and only if i ∈ Sj . All items are
unique. In other words, no two items belong to the exactly
same categories. If this is not true, we can modify our ap-
proach such that the target item comprises multiple items,
all belonging to the same categories.

A natural way of thinking of our problem is as interac-
tion between the system as a questioner and the user as an
answerer. The questioner asks the answerer questions. The
question at time t:

At =
{
At1, . . . , A

t
k

}
⊆ S

∣∣At∣∣ = k (1)

is a set of item categories of size k. The user has a target
item o in mind. The user’s response at time t is:

rt =

{
i o ∈ Ati
k + 1 rt = k + 1.

(2)

If the target item belongs to one of the suggested categories
Ati, the user chooses this category. Otherwise, the user
chooses the (k + 1)-th category Other. If the target item
belongs to multiple categories, the user chooses one of these
at random.

Let Ut be the version space, the set of all items that are
consistent with the user’s answers up to time t. At the be-
ginning, U0 = H. Then clearly:

Ut =

{
Ut−1 ∩Atrt rt ≤ k
Ut−1 ∩

⋃k
i=1A

t
i rt = k + 1,

(3)

where
⋃k
i=1A

t
i is the category of items that do not belong to

any of the categories Ati.
The maximum number of questions asked by an algorithm

is:

max
o∈H

t|Ut = {o} . (4)
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Algorithm 1 Multi-way search with k categories.
Inputs: hypothesis spaceH, m item categories S, number

of item categories in the question k

U0 ← H
t← 1
while (|Ut−1| > 1)

compute a question with k item categories:
A∗ ← arg maxA fUt−1(A)

if (the answerer chooses the category rt ≤ k)
Ut ← Ut−1 ∩A∗rt

else

Ut ← Ut−1 ∩
⋃k
i=1A

∗
i

t← t+ 1

Output: target item o ∈ Ut

We refer to both the optimal algorithm, the one that min-
imizes the maximum number of asked questions, and the
maximum number of questions that it asks as OPTk.

For simplicity of exposition, we drop subindexing by time
t when the time is clear from the context, or our result ap-
plies to all t. As an example, we refer to an item category
in the question as Ai and not Ati. We implicitly assume that
|A| = k.

3 Algorithm
We propose an efficient algorithm for generalized multi-way
search with k item categories. The algorithm iteratively asks
questions and shrinks the version space until its cardinality
is 1. Recall that each question consists of k categories A =

{A1, . . . , Ak}, and a special category
⋃k
i=1Ai that covers

items that do not belong to any of the categories Ai. The
pseudocode of our algorithm is in Algorithm 1.

The question at time t is chosen such that it maximizes
the minimum eliminated space given the version spaceUt−1,
where the minimum eliminated space is defined as:

fU (A) = min


∣∣Ā1 ∩ U

∣∣ ,
. . .∣∣Āk ∩ U ∣∣ ,

|(A1 ∪ · · · ∪Ak) ∩ U |

 . (5)

In other words, we maximize the number of eliminated pos-
sibilities irrespective of the behavior of the answerer. Ide-
ally, the maximum of fU (A), k

k+1 |U |, is achieved when the
size of item categories is 1

k+1 |U | and the categories do not
overlap. For instance, for k = 1, the optimal solution is
a set that covers one half of U . For k = 2, the optimum
corresponds to two sets that do not overlap and cover one
third of U each. In practice, such a partitioning is unlikely
to exist, even in the degenerate case U = H. Nevertheless,
a sufficiently good partitioning may still exist.

The main problem in implementing our algorithm effi-
ciently is that the optimal question:

A∗ = arg max
A

fU (A) (6)

Algorithm 2 Greedy search for nearly-optimal questions.
Inputs: version space U , m item categories S, number of

item categories in the question k, upper bounds L on the
size of sets in Ag

Ag ← {}
for all L ∈ L

choose an active set SL ← {S ∈ S : |S ∩ U | ≤ L}
AL ← greedily cover U with k sets from SL
if (f(AL) > f(Ag))
Ag ← AL

Output: k question categories Ag

is hard to compute. The first part of fU (A), mini
∣∣Āi ∩ U ∣∣,

is maximized by smaller sets. The second part,
|(A1 ∪ · · · ∪Ak) ∩ U |, is maximized by larger sets. In gen-
eral, the maximization of fU (A) is an NP-hard problem and
it may be necessary to evaluate the function in all subsets of
S of size k,

(
m
k

)
many, to find its maximum. This is clearly

infeasible for large values of k.
So we maximize fU (A) approximately. Our approach is

motivated by the following observation. When the size L
of the largest set in A∗ is known, the first part of fU (A∗),
mini

∣∣Ā∗i ∩ U ∣∣, is bounded from below by |U | − L, and
the maximization of fU (A) is equivalent to maximizing
|(A1 ∪ · · · ∪Ak) ∩ U | subject to |Ai ∩ U | ≤ L. This is a
special form of the maximum coverage problem (Johnson
1974), and therefore a (1 − 1/e)-approximation to its op-
timal solution can be computed greedily, by choosing item
categories that cover most uncovered items. Since L is un-
known, we solve several maximum coverage problems, one
for each L ∈ L, and then simply choose the best solution.
The pseudocode of our method is in Algorithm 2. In Sec-
tion 4, we analyze the quality and computation time of ap-
proximations obtained by different choices of L.

We refer to our entire algorithm as DoubleGreedy.
This is because we first iteratively seek greedily optimal par-
titions (Algorithm 1) and then use a greedy procedure to pick
each such partition in the maximum coverage step (Algo-
rithm 2).

4 Analysis
Our main result is summarized in Theorem 1.

Theorem 1. Algorithm DoubleGreedy solves the multi-
way search problem with k categories. The maximum num-
ber of asked questions is OPTk

e
e−1 log(n − 1) and each

question is computed in O(km2) time.

In this section, we prove this theorem. The proof consists
of three steps. First, we argue that Algorithm 1 solves the
multi-way search problem in no more than OPTk log(n−1)
questions. Second, we propose a question oracle that com-
putes a (1 − 1/e) approximation to fU (A∗), the minimum
eliminated space by the optimal solution A∗, in O(km2)
time. Third, we combine the two claims and prove Theo-
rem 1. The log(n − 1) and e

e−1 factors in the theorem are
due to greedily selecting questions and approximating the
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best question greedily, respectively. Finally, we propose a
question oracle whose running time increases only linearly
with the number of item categoriesm. This oracle is suitable
for large-scale problems.

Proposition 1 claims that Algorithm 1 solves the
multi-way search problem with k categories in at most
OPTk log(n − 1) questions. Our result generalizes the
worst-case analysis of generalized binary search (Dasgupta,
Lee, and Long 2003) to k choices. The challenge in gen-
eralizing this result is in finding a suitable notion of good
questions, those that divide the version space close to two
halves. The minimum eliminated space fU (A) (Equation 5)
is such a notion.
Proposition 1. Algorithm 1 finds any target item in at most
OPTk log(n− 1) questions.
Proof: Our proof has two parts. First, we show that in each
version space U there exists a question A∗ that eliminates a
large portion of that space. Second, we use this fact to bound
the maximum number of questions asked by our algorithm.

Let o denote a target item, T be the number of questions
asked by OPTk, and Ut be the version space of OPTk at
time t. Note that the version spaces Ut are nested as:

H = U0 ⊇ U1 ⊇ · · · ⊇ UT−1 ⊇ UT = {o} (7)

and there are T + 1 of them. So by the pigeonhole principle,
there must exist time t such that:

|Ut − Ut+1| ≥
1

T
(|H| − 1) ≥ 1

OPTk
(|H| − 1). (8)

In other words, there exists a question-answer pair that
shrinks the hypothesis space H by at least 1

OPTk
(|H| − 1).

In fact, there must exist a question that shrinksH by at least
1

OPTk
(|H| − 1) regardless of the answer. This claim can be

proved by contradiction. Suppose that fH(A)< 1
OPTk

(|H|−
1) for all questionsA. Then there exists a sequence of OPTk
answers such that two items in the hypothesis space H can-
not be distinguished in OPTk questions. This result is in
contradiction with the assumption that OPTk can find any
target item in OPTk questions. So there must exist a ques-
tion that shrinks H by at least 1

OPTk
(|H| − 1) regardless of

the answer, and indeed A∗ = arg maxA fU (A) is such a
question.

This claim generalizes to any subspace U ⊆ H with the
target item o. Hence, the question A∗ always eliminate at
least 1

OPTk
(|U | − 1) space, and the size of the version space

after t questions is bounded from above as:(
1− 1

OPTk

)t
(|H| − 1) + 1

≤ exp

[
− 1

OPTk

]t
(|H| − 1) + 1. (9)

The upper bound falls below 2 when t ≥ OPTk log(|H|−1).
So any target item can be found in at most OPTk log(|H| −
1) steps.

4.1 Question oracle LS
Unfortunately, the optimal questionA∗ = arg maxA fU (A)
is hard to compute (Section 3). In the following proposition,

we show that if the cardinality of the largest set in A∗ is
known, a (1 − 1/e)-approximation to fU (A∗) can be com-
puted greedily. In this case, the maximization of fU (A) can
be formulated and solved as the maximum coverage prob-
lem.
Proposition 2. Let L = maxi |A∗i ∩ U | be the cardinality
of the largest set in the best questionA∗ andAL be a greedy
solution to the maximum coverage problem with sets:

SL = {S ∈ S : |S ∩ U | ≤ L} .
Then:

fU (AL) ≥ (1− 1/e)fU (A∗).

Proof: Note that the greedy solution AL to the maximum
coverage problem (Johnson 1974) satisfies:∣∣∣∣∣

k⋃
i=1

(ALi ∩ U)

∣∣∣∣∣ ≥ (1− 1/e)

∣∣∣∣∣
k⋃
i=1

(A∗i ∩ U)

∣∣∣∣∣ (10)

because it is a (1−1/e)-approximation. Moreover, since the
largest set in AL cannot be larger than that in A∗, we know
that:

max
i

∣∣ALi ∩ U ∣∣ ≤ max
i
|A∗i ∩ U | . (11)

Therefore, the cardinality of all complements ĀLi is bounded
from below as:

min
i

∣∣ĀLi ∩ U ∣∣ = |U | −max
i

∣∣ALi ∩ U ∣∣
≥ |U | −max

i
|A∗i ∩ U |

= min
i

∣∣Ā∗i ∩ U ∣∣
≥ (1− 1/e) min

i

∣∣Ā∗i ∩ U ∣∣ . (12)

Finally, the two claims can be combined as:

min

{
min
i

∣∣ĀLi ∩ U ∣∣ ,
∣∣∣∣∣
k⋃
i=1

(ALi ∩ U)

∣∣∣∣∣
}

(13)

≥ (1− 1/e) min

{
min
i

∣∣Ā∗i ∩ U ∣∣ ,
∣∣∣∣∣
k⋃
i=1

(A∗i ∩ U)

∣∣∣∣∣
}
,

which yields the final inequality fU (AL) ≥ (1 −
1/e)fU (A∗).

Unfortunately, the size of the largest set in the optimal so-
lution A∗ is unknown. Therefore, we suggest solving the
maximum coverage problem for several candidate values of
L and then choose the best result (Algorithm 2). Algorithm 2
finds a (1− 1/e)-approximation to fU (A∗) when the candi-
date values comprise all set sizes in S.
Proposition 3. Let the upper bounds in Algorithm 2 be:

LS = {|S ∩ U | : S ∈ S} .
Then Algorithm 2 returns a question Ag such that:

fU (Ag) ≥ (1− 1/e)fU (A∗)

in O(km2) time.
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Proof: First, note that the returned question Ag satisfies
fU (Ag) ≥ fU (AL) for all L ∈ LS . Since LS com-
prises all possible set sizes, the size of the largest set in
the optimal question A∗ must be in LS . By Proposition 2,
fU (Ag) ≥ (1− 1/e)fU (A∗).

Second, Algorithm 2 solves m maximum coverage prob-
lems, each of which is solved approximately inO(km) time.
Hence, the time complexity of the algorithm is O(km2).

Finally, we are ready to prove Theorem 1, which is our main
result.
Proof: Let LS (Proposition 3) be the upper bounds in Al-
gorithm 2. Then fU (Ag) ≥ (1 − 1/e)fU (A∗) for all U
because Algorithm 2 computes a (1 − 1/e)-approximation
to fU (A∗).

The first claim of Theorem 1 can be proved by substituting
Ag forA∗ in Proposition 1. The questionsAg are not as dis-
criminative asA∗. However, they are no more than (1−1/e)
worse, and thus we can guarantee that 1

OPTk

e−1
e (|U | − 1)

items in the version space U get eliminated after each ques-
tion. Therefore, the maximum number of asked questions
increases to OPTk

e
e−1 log(n− 1).

The second claim follows from Proposition 3.

4.2 Loglinear oracle Lα
Algorithm 2 computes a (1−1/e)-approximation to fU (A∗)
in O(km2) time (Proposition 3). Since m is often large, this
oracle may be computationally expensive in practice. In this
section, we propose an oracle than be computed in O(m)
time.

The main idea is to choose the upper bounds L (Algo-
rithm 2) such that |L| = o(m), so the computation time
decreases to o(km2). In the following proposition, we show
that when the upper bounds L are spaced on the log scale
between 1 and |U |, Algorithm 2 computes a α(1 − 1/e)-
approximation to fU (A∗) in O(km log1/α(n)) time. The
parameter α trades off the quality of the approximation for
its computation time.
Proposition 4. Let the upper bounds in Algorithm 2 be:

Lα =
{
|U | (1− αi) : i ∈ N ∧ αi ≥ |U |−1

}
,

where α ∈ (0, 1) is a tunable parameter. Then Algorithm 2
returns a question Ag such that:

fU (Ag) ≥ α(1− 1/e)fU (A∗)
in O(km log1/α(n)) time.

Proof: Let L = maxi |A∗i ∩ U | be the cardinality of the
largest set in the optimal question A∗ and j ∈ N be an inte-
ger such that:

Lj−1 = |U | (1− αj−1) ≤ L ≤ |U | (1− αj) = Lj . (14)

Then along the lines of Proposition 2:∣∣∣∣∣
k⋃
i=1

(ALj ∩ U)

∣∣∣∣∣ ≥ (1− 1/e)

∣∣∣∣∣
k⋃
i=1

(A∗i ∩ U)

∣∣∣∣∣ . (15)

Based on Equation 14, it follows:

|U | − Lj = α(|U | − Lj−1) ≥ α(|U | − L) (16)

Movie tags
55.43% Drama 31.81% Comedy
25.91% Independent film 23.58% Murder
21.16% Romance 21.15% Thriller
19.99% Beautiful woman 18.38% Action
16.88% Based on novel 16.52% Crime

Book tags
66.12% Fiction 37.35% Non-fiction
31.09% Novel 17.95% Mystery
17.24% History 16.54% Series
16.41% Literature 14.79% Fantasy
14.65% 20th century 13.13% Children’s

Figure 2: 10 largest item categories in the movie and book
datasets.

and therefore we can prove:

min
i

∣∣∣ĀLj

i ∩ U
∣∣∣ ≥ |U | − Lj ≥ αmin

i

∣∣Ā∗i ∩ U ∣∣ . (17)

The two claims can be combined as:

min

{
min
i

∣∣∣ĀLj

i ∩ U
∣∣∣ , ∣∣∣∣∣

k⋃
i=1

(A
Lj

i ∩ U)

∣∣∣∣∣
}

(18)

≥ α(1− 1/e) min

{
min
i

∣∣Ā∗i ∩ U ∣∣ ,
∣∣∣∣∣
k⋃
i=1

(A∗i ∩ U)

∣∣∣∣∣
}

and yield fU (ALj ) ≥ α(1 − 1/e)fU (A∗). Our main claim
follows from the fact that fU (Ag) ≥ fU (ALj ) for all Lj .

The size of the set Lα is bounded from above by
log1/α(|U |) since αi is less than |U |−1 for i > log1/α(|U |).
Therefore, Algorithm 2 solvesO(log1/α(n)) maximum cov-
erage problems, each of which is solved approximately in
O(km) time. Hence, the time complexity of the algorithm
is O(km log1/α(n)).

Proposition 4 shows that α(1 − 1/e)-approximate ques-
tions can be computed in O(km log1/α(n)) time, linear in
the number of item categories m. This result is pretty prac-
tical. Suppose that n = 105, m = 103, and α = 0.9. Then
the oracle in Proposition 4 computes almost as good ques-
tions as the one in Proposition 3 in 10 percent of time. When
α = 0.95, the new oracle is 5 times faster.

5 Experiments
We evaluate our method for generating questions (Algo-
rithm 2) and show that it yields good partitioning of the hy-
pothesis space H. In addition, we show that as the number
of item categories k increases, algorithm DoubleGreedy
can find the target item in fewer questions.

5.1 Datasets
Our approach is evaluated on two datasets. The first dataset
are 91k movies from the Internet Movie Database (IMDb)
(imd 2012). The movies belong to 26 genres and their plots
are described by 87k keywords. We define 326 item cate-
gories S, 26 genres and 300 most frequent keywords (Fig-
ure 2). We remove movies that belong to less than 5 cate-
gories and those that belong to the same categories as an-
other movie. We end up with a dataset of 38k unique items.
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Figure 3: Comparison of five methods for partitioning the
hypothesis space into k item categories. We report the min-
imum eliminated space fU (A) and computation time. The
optimum is depicted by the black line.

The average number of categories per movie is 14.5 and the
maximum is 106.

The second dataset are 186k books from the online library
of books LibraryThing (lib 2012). The books are described
by 211k keywords. We define 300 item categories S, one
for each of the 300 most frequent keywords (Figure 2). We
remove books that belong to less than 5 categories and those
that belong to the same categories as another book. We end
up with a dataset of 83k unique books. The average number
of item categories per book is 10 and the maximum is 26.

5.2 Question oracles
In the first experiment, we compare our question oracles, LS
(Section 4.1) and Lα (Section 4.2), to two baselines on up
to 8 item categories in the question. The methods are eval-
uated by the amount of eliminated space fU (A) and their
computation time. We assume that α = 0.9.

The first baseline is simulated annealing (SA) (Kirk-
patrick, Gelatt, and Vecchi 1983). Simulated annealing is
a standard approach to combinatorial optimization, such as
maximizing fU (A). Essentially, it is a random walk that
transitions into a new state proportionally to the difference
between the energy of the new and old states. Our energy
function is defined as H(A) = − 1

|U |fU (A) and the transi-
tion between the states At and At+1 is accepted with prob-
ability:

P (At+1|At) = exp[(H(At)−H(At+1))/σt], (19)

where σt is the temperature at time t. The temperature
σt cools off according to the schedule σt = αt, where
α = exp[log(10−3)/T ] and T is the number of annealing
steps. Hence, σt decreases at an exponential rate from 1 to
10−3 in T steps. The new state At+1 is obtained by chang-
ing u categories in At with probability 2−u. We tuned all
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Figure 4: The median and worst-case cardinality of the ver-
sion space Ut after algorithm DoubleGreedy asks t ques-
tions.

parameters of the annealing such that it performs the best.
The second baseline chooses k item categories that are clos-
est in size to 1

k+1 |U |. This method is very fast, and per-
forms well when the categories in U are mutually exclusive
and their sizes are close to 1

k+1 |U |.
Our results are reported in Figure 3. The results are av-

eraged over 30 subsets U of movies and books, which cor-
respond to 30 largest item categories in each domains. We
observe two major trends.

First, our oracles consistently eliminate more space
fU (A) than all baselines. The eliminated space increases
with the number of item categories k and is about 85% of
the theoretical maximum k

k+1 |U |. This maximum is likely
unattainable in our domains.

Second, our oracles are very fast. In particular, the or-
acle Lα generates all questions in less than 0.1 seconds.
This computation time is comparable to SA with T = 102,
which yields about 10% worse questions, and up to 10 times
smaller than SA with T = 103, which is still inferior to our
method. The oracle Lα generates only slightly worse ques-
tions than LS and is up to four times faster. This result is
consistent with our analysis in Section 4.2. We note that the
equal size heuristic is fast but the quality of its output drops
dramatically as k increases. The reason is that the item cate-
gories in the question start overlapping. As a result, the term⋃k
i=1Ai is small, and so is the minimum eliminated space

fU (A).

5.3 Generalized search
In Section 5.2, we showed that questions with more item cat-
egories k eliminate more items in the hypothesis spaceH. In
this section, we demonstrate that this results in faster discov-
ery of target items. In particular, we study the median and
worst-case behavior of algorithm DoubleGreedy while
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varying k. This experiment is conducted on 1000 randomly
chosen target items, both in the movie and book datasets. We
simulate the answerer and the answerer does not lie. If the
target item belongs to multiple item categories in the ques-
tion Ag , we randomly choose one of these as the answer.
Our results are summarized in Figure 4.

All trends in Figure 4 support our hypothesis that more
item categories k lead to faster discovery. For example, for
k = 1, which is essentially binary search, the median movie
is found in 17 questions. As the number of item categories
k increases to 3 and 7, the median movie is identified in 9
and 7 questions, respectively. So the total number of asked
questions decreases by 47% and 59%. Similar trends can be
observed in the worst case. For instance, many movies and
books belong to only a few categories, and cannot be found
by binary search in less than 50 questions. As the number of
item categories k increases to 7, even these items are found
within 15 questions.

6 Related work

There are several aspects of previous work related to ours.
First is the multi search problem. The basic problem of
binary search involves a single category with say n val-
ues and has a text book solution that involves log n 2-way
comparison queries that repeatedly divide the space of pos-
sibilities into 2 equal ranges. The area of combinatorial
search (Aigner 1988) studies such problems and their ex-
tensions, including to case where some of the queries might
return incorrect answers. The most natural generation of this
to multiple categories each of which can take many values.
Database research on this problem involves designing differ-
ent indexing structures for such problems, and involves par-
titioning the underlying space with cuts that divide the set of
points as evenly as possible into a small k subranges. In this
line of research, each “query” is typically is a comparison or
range query. This line of research differs from our problem
here where each category is binary, the focus is on dividing
the space of all category combinations and each “query” re-
veals presence of absence of a category in the ultimate target
item.

A search problem that is similar to ours was studied be-
fore in learning theory and is known as generalized bi-
nary search (GBS) (Dasgupta 2005; Nowak 2011). In
GBS, the objective is to learn a policy that minimizes the
number of questions to find a target hypothesis in the hy-
pothesis space. This problem was analyzed both in the
worst and average cases (Dasgupta, Lee, and Long 2003;
Dasgupta 2005), and it is known that GBS asks log(n) times
more questions than the optimal solution. Our problem dif-
fers from GBS in two aspects. First, we ask questions with
k item categories but only get feedback for one of them. In
particular, since the categories are not mutually exclusive,
we cannot conclude that the target item does not belong to
any of the other k − 1 categories. In other words, we search
with partial feedback. Second, the number of questions in
our problem is

(
m
k

)
, which is exponential in k. If each item

category was a question, then GBS operates onm questions,
which is mk−1 times less than in our problem. Finally, note
that GBS is a special case of our algorithm when k = 1.

7 Conclusions
In this paper, we initiate the study of minimal interaction
search. In this problem, the answerer is given k options,
represented by k item categories, and asked to select the one
that matches the target item, or state that none does. We for-
malize the problem as generalized k-way search and propose
an algorithm DoubleGreedy that solves it efficiently. In
addition, we analyze the solution and show that we can find
the target item in at most OPTk e

e−1 log(n) questions in the
worst case. Finally, we evaluate our solution on two datasets
of movies and books, and show that interactive search can be
sped up significantly when the user is given more options.

Our worst-case analysis can be relatively easily extended
to the average case. In particular, let’s assume that there
exists some a priori known probability distribution π over
item categories, and we want to find a sequence of ques-
tions that minimizes the expected number of asked ques-
tions with respect to π. Then we can apply the result of
Golovin and Krause (Golovin and Krause 2011), and show
that the greedy partitioning of the hypothesis space is still a
logarithmic factor approximation to the optimum. Similarly,
we can generalize our maximum coverage oracles to prob-
abilistically weighted items. Overall, we still get the same
approximation factor to the optimum as in the worst case.
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