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Abstract

Although planning for the tasks a household robot has
to perform appears to be easy, there exists the prob-
lem that the robot is usually uncertain about the state
of the household when starting to plan. For example,
when getting the order of tidying up the kitchen, the
robot does not know what objects it will have to put
away and whether there are actually any objects that
need to be put away. Furthermore, while sensing oper-
ations can provide more information about the environ-
ment, things can go wrong when executing an action.
In this paper, we try to identify conditions under which
classical planning can be used in a replanning loop in
order to solve the planning problem in nondeterminis-
tic partially observable open domains. In particular, we
will define completeness and soundness of replanning
with respect to nondeterministic planning and we will
identify a PSPACE-checkable condition that guarantees
soundness.

Introduction
Planning for the tasks a household robot has to perform ap-
pears to be relatively easy. However, there exists the prob-
lem that the robot is usually uncertain about the state of the
household when starting to plan. For example, when get-
ting the order of tidying up the kitchen, the robot does not
know what objects it will have to put away and whether there
are actually any objects that need to be put away. Further-
more, while sensing operations can provide more informa-
tion about the environment, things can go wrong when exe-
cuting an action.

This kind of situation calls for techniques to plan in non-
deterministic partially observable open domains. Open do-
mains, i.e. domains with an arbitrary, unbounded number
of possible objects is, however, undecidable (Erol, Nau, and
Subrahmanian 1995). Even if we restrict the number of ob-
jects to those that can be found in one particular household
(either by knowing about them or by discovering them), the
problem is still very difficult. Symbolic planning in nonde-
terministic, partially observable domains is 2-EXP-complete
(Rintanen 2004).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We propose to compile such a planning problem into a
classical planning problem preserving soundness and com-
pleteness under some reasonable conditions. The task is
solved by embedding a classical planner in an observation-
monitoring-execution loop commonly referred to as contin-
ual planning. We also focus on the problem of checking
whether a particular planning task satisfies these conditions
and identify some cases for which one can easily check the
conditions.

While others have addressed this problem before, we see
our contribution in spelling out precisely what it means that
a replanning approach is sound and complete with respect to
a nondeterministic planning domain, how one can guarantee
it, and how expensive it is to check these conditions.

As a proof of concept (which was actually the starting
point of our investigation), we describe how the solution was
incorporated in the Tidy-Up project.

Scenario

Figure 1: Overview of our experimental household environ-
ment. Our test scenario contains two rooms separated by a
door (red), tables (blue) and a shelf (yellow) in the back.

In the context of this paper we refer to a household sce-
nario involving multiple different skills within the field of
mobile manipulation. The task of tidying up serves as a
generic example to demonstrate the problems that a robot
faces in a real-world setting. Such a setting contains multi-
ple rooms that are separated by doors that might need to be
opened to navigate between rooms. An overview of our test
scenario can be seen in Figure 1. An unknown number of
objects are placed on tables and shelves in the rooms. The
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goal is to make sure that all objects are at the location where
they belong—their tidy-location. In addition, we require that
all spots, where objects were found, should be wiped clean.

We only assume that the robot has knowledge about the
static parts of the world, i.e. there is a map of the environ-
ment and the robot knows where doors and tables are lo-
cated. There is no prior knowledge about movable objects
not even the knowledge that an object exists. This means that
the robot will need to acquire that knowledge by searching
all possible locations.

As we are dealing with a real-world system any action, in-
cluding sensing actions, might have multiple nondeterminis-
tic effects. Sensing actions might also add additional objects
in the task.

Problem Formalization
In order to control the robot described in the scenario above
with the help of an automatic planning system, the adequate
planner would be one that is able to deal with:

1. open domains (with an unlimited number of objects),
2. with uncertain initial states,
3. nondeterministic (or probabilistic) effects of actions,
4. and sensing operations (in order to acquire knowledge

about the environment).
If we ignore the first point for the time being, such plan-

ning problems could be, for instance described using the
planning language NPPDL (Bertoli et al. 2003), an exten-
sion of PDDL that is able to deal with uncertainty, nondeter-
minism, partial observability and sensing. It should be noted
that this language does not support an explicit knowledge or
belief modality. Rather all preconditions, effect conditions,
and goal specifications are assumed to be implicitly in the
scope of a modal belief operator.

One could use the planner MBP (Bertoli et al. 2001),
CAltAlt or POND (Bryce, Kambhampati, and Smith 2006)
in order to solve planning problems specified in NPDDL.
However, given the size of the search space in our domain,
such planners will not be able to generate plans in a rea-
sonable time as is evident from the performance data as
reported, e.g., in the paper by Bryce, Kambhampati, and
Smith (2006).

It seems as a bit of an overkill that a household robot
should be able reason about multiple possible situations. A
household robot certainly is not supposed to solve Who-
dunit puzzles or diagnose the failure of the washing ma-
chine. Well, at least the cheap models of a household robot
are not expected to do that.

Furthermore, it also seems a bit over-cautious to plan for
all contingencies in advance, given that the household do-
main (as many others) is quite forgiving concerning wrong
choices or guesses. Also humans plan in most cases without
considering all possibilities.

So, as many other have proposed and done, we use a con-
tinual planning approach, where we plan for one way to
solve the planning problem at hand, and replan if anything
does not work out according to plan. In this case, it is possi-
ble to make use of a traditional, classical planner, in our case,

Temporal Fast Downward/Modules (TFD/M) (Dornhege et
al. 2009; Eyerich, Mattmüller, and Röger 2009). Such an ap-
proach leads to two important questions:

1. How to compile a particular feature in the original plan-
ning task description away?

2. Under what conditions can we expect that the approach
guarantees that we can reach the goal?

Simplifications and Guarantees
It is clear that we lose optimality, completeness, and perhaps
soundness. However, often enough, we might be able to still
guarantee that the goal can be reached. Further, we might
be able to quantify the computational resources necessary to
decide whether this is the case.

Expanding Universes Instead of Open Universes
The first issue we want to address is the mismatch between
the domain closure assumption in most planning systems
and the fact that it seems rather unrealistic to assume that
all (relevant) objects are known from the beginning.

Semantically, one would assume an infinite (open) do-
main, where for all types of objects, we have a countable set
of such objects, whereby for most of them we do not know
anything about them, e.g., such as where they are located.
Such infinite domains lead to the problem that the planning
problem may become undecidable and that the technique of
transforming a first-order specification of the planning do-
main into a propositional logic theory does not work any
longer.

One way out could be to introduce new objects only when
they are detected by the robot when observing its environ-
ment. After such an introduction of a new object, one can use
replanning to deal with the changed domain. This approach
can deal with all the objects we encounter in a household or
similar environment and we are supposed to deal with. How-
ever, necessary tools (e.g. a hammer) that the robots needs
have to be amongst the known objects in advance.

This is indeed the strategy we chose, but it comes, of
course, with a price. It leads necessarily to incompleteness
since it might be the case that we need a unbounded num-
ber of yet unknown tools to achieve our goal. So our planner
might conclude that the goal is not reachable although with
the right number of tools it would have been. And there is no
way around it because first-order STRIPS-planning with the
possibility to introduce new objects is already undecidable
(Erol, Nau, and Subrahmanian 1995).

Limited Uncertainty Through Kleene’s Strong
Three-Valued Logic
Uncertainty about the current state is semantically usually
represented by a belief set, a set of states that are believed
to be possible. In NPDDL, uncertainty is introduced by the
specification of the initial situation and by nondeterminism
in action effects. So, for example, it can be that in a particular
situation, “it is believed that cup is broken or the bottle is
full”. If the robot now observes that the cup is not broken, it
will conclude that the bottle must be full.
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This kind of puzzle-mode reasoning is, of course, nec-
essary when we want to solve Whodunits or want to diag-
nose the failure of a machine. However, we do not expect
our household robot to be Colombo or a mechanic. So, a
simpler way to represent uncertainty might be enough.

Most of the time, we are just uncertain about the values of
a fluent and do not consider the connections between differ-
ent fluents. So, one could extend the value domain (may it be
Booleans or many-valued fluents) by a value unknown. The
evaluation of logical formulae can then be based on Kleene’s
strong three-valued logic (Kleene 1950). This logic does just
what you would expect when combining known with un-
known truth values. Alternatively, one could view this three-
valued logic as a dense representation of what Petrick has
called Cartesian situations (Petrick 2011).

Of course, such a representation cannot represent that
“it is believed that the cup is broken or the bottle is full”,
or more generally, any disjunctive knowledge. So, if we
use such a representation to approximate a given belief set,
we will lose completeness. For example, we would over-
approximate the above statement about the cup and the bot-
tle by “it is unknown whether the cup is broken” and “it is
unknown whether the bottle is full”. So finding out that the
cup is not broken does not help the robot at all.

In fact, this representation implies that the only way to
find out about the truth value of a fluent is to know it ei-
ther from the beginning, to learn about it by sensing its truth
value, or by setting the truth value as an effect of an action.
Since we do not expect our household robot to be a scientist,
we assume that all fluents are observable once the robot is
spatially close enough to the location where the fluents can
be sensed. So, we do not assume that the robot knows and
reasons about hidden variables.

Furthermore, while we assume that the actions of the
robot can have nondeterministic effects, we also assume that
the robot can only change fluent values of fluents relevant in
a spatial area that can also be observed by the robot after
the action. In other words, by monitoring the outcomes of
the actions, the robot can determine the true effects of its
actions after each action.

With these two assumptions, which are admittedly quite
strong, the representational move of using Kleene’s strong
three-valued logic instead of general belief sets does not sac-
rifice completeness, but of course, optimality. However, we
also have now only uncertainty due to the initial state and the
degree of uncertainty (as measured by the number of fluents
that have the value unknown) shrinks monotonically.

It also means that we have reduced the search space from
double exponential (belief sets = set of sets of state) to ex-
ponential (the set of states).

Continual Replanning Instead of Conditional
Planning
While we have reduced the search space of our problem con-
siderably, there is still the problem that after sensing the
value of a fluent (be it after an action execution or after
a sensing action), we may have to branch according to the
sensed value. In fact, what we have done is to simplify the

nondeterministic planning problem under partial observabil-
ity to a nondeterministic planning problem under full ob-
servability, where the nondeterminism is created by the pos-
sible outcomes of an action followed by a monitoring action
or by pure sensing actions. In terms of computational com-
plexity, this is a reduction from 2-EXP (Rintanen 2004) to
EXP (Littman 1997). This is, in fact, what is behind Pet-
rick’s knowledge-based approach to planning (Petrick and
Bacchus 2002; Gaschler et al. 2013).

The classical way to deal with this problem is to gener-
ate plans that can branch and perhaps loop. Alternatively
and equivalently, a policy (a mapping from states to actions)
is created. In this context, one distinguishes weak plans,
strong plans, and strong cyclic plans. Weak plans are just
sequences of action whereby one has chosen nondetermin-
istic outcomes arbitrarily. Strong plans are winning strate-
gies against the nondeterministic environment. Strong cyclic
plans are strategies that guarantee that we never leave the set
of states from which the goal is reachable.

For our household robot, strong and strong cyclic plan-
ning definitely sounds like overkill. While it would, of
course, be nice to create a plan taking into account the state
of all doors and the positions of all cups, it does not seem
to be worth the effort. In fact, the household domain as a
lot of other domains seem to be very forgiving concerning
non-optimal or even wrong choices. So, the straight-forward
approach would be to develop a plan for the most likely out-
comes (which have to be marked as such), monitor the suc-
cess of the plan (which we do anyway in order to reduce un-
certainty) and replan if things do not advance as predicted.

It has been shown using a classical planner such as FF
(Hoffmann and Nebel 2001) in a replanning loop can eas-
ily outperform probabilistic planners on many probabilistic
planning problems. The reason was that in most cases con-
sidered, the planning domains were probabilistic uninterest-
ing (Yoon, Fern, and Givan 2007) meaning that the proba-
bilities had in fact very little impact.

The household domain (as many other domains) probably
have a similar property of being nondeterministically unin-
teresting, whereby the nondeterminism as mentioned above
comes from the outcomes of sensing actions. So, we pro-
pose, as many others before us to replace conditional plan-
ning by classical planning with replanning. The main ques-
tion is, under which conditions this is an approach where we
do not lose soundness and completeness.

Before we can answer this question, we have to define
what soundness and completeness in a replanning context
compared to nondeterministic planning really means. Here
we have to take into account all stages of what can happen
in a replanning context.

Completeness would mean that if there is strong cyclic
plan, then the classical planner is able to generate a success-
ful straight-line plan for each state that could be reached in
the strong cyclic plan. This is trivial to achieve provided the
classical planner is complete.

Soundness would mean that the classical planner gener-
ates only straight-line plans that are traces of one possible
execution of a strong cyclic plan. In particular, this implies
that if there is no strong cyclic plan, then the replanning

55



agent should not generate a straight-line plan. Moreover,
the planner shall never generate a plan that leads to states
that are not reachable by a strong cyclic plan. These are, of
course, quite severe restrictions that do not seem to be easily
satisfiable. In particular, in order to meet them, one has to
solve essentially the nondeterministic planning problem!

However, it is possible to specify sufficient conditions on
the topology of the search space under which they are satis-
fied. The main point is that we never want to “paint ourselves
into a corner,” or phrasing it differently ending up in a dead
end of the search space. Here we define a dead end as a state
from where no weak plan leads us to the goal. Now, in order
to avoid such dead ends, one way would be to assume that
they are not reachable by a weak plan from the initial state.
In fact, this assumption does the trick.

Note that our condition is a little bit weaker than the con-
dition posed by Kaelbling and Lozano-Pérez (2011), who
required to have reversibility in their domain, meaning that
one has strong connectivity in the search space. Instead, we
only assume that we are guaranteed to reach the goal. The
difference is that under our assumption, one can for example
throw away trash irreversibly, which is not possible under
the reversibility restriction.

However, the big question is whether this condition can
be easily checked. As it turns out, it is easier than nondeter-
ministic planning and only as complex as classical planning.

Theorem 1 Checking whether there exists a dead end
reachable by a weak plan from a given initial state in the
search space of a propositional nondeterministic planning
task is PSPACE-complete.

Proof. Membership in PSPACE is demonstrated by the fol-
lowing nondeterministic algorithm for a given initial state s
and set of goal states G :

1. Guess a state d.

2. Verify that d is reachable from s by weak plan, which is a
problem that is in PSPACE

3. Verify that no state g ∈ G is reachable from d, which is
a problem complementary to the classical planning prob-
lem, hence also in PSPACE.

PSPACE-hardness follows from a simple reduction of the
problem at hand to classical propositional planning. 2

Since PSPACE is closed under complements, it is also
PSPACE-complete to check whether a given set of states is
dead-end free.

Interestingly, although having the same complexity as
classical planning, it is far from obvious how to implement
such a check efficiently, the main problem being the ques-
tion how to identify dead ends.

One interesting question is of whether it would be possi-
ble to avoid such dead ends, if they are known in advance.
So the problem is to check for a given state, whether the se-
lection of an action can lead to the identified dead ends if
all nondeterministic choices are worst-case. However, this
is just the question of whether there exists a strong plan for
the environment forcing us into the dead-end state. In other

words, the decision problem is as hard as nondeterministic
planning, i.e., EXP-hard.

So, sticking to our assumption that our domains are dead-
end free, it is possible to guarantee that a replanning ap-
proach will eventually reach a goal. The reasoning behind it
is that by the fact that uncertainty is reduced monotonically,
the number of nondeterministic choice points due to sensing
actions reduces from one replanning episode to the next. For
this reason, eventually, we will have a completely informed
state in which a classical plan is sufficient to reach the goal,
or we have reached a goal state before this—provided the
probability of the desired nondeterministic effect is different
from zero.

Proof of Concept

(a)

(b) (c)

(d) (e)

Figure 2: Example scenes from the PR2 robot operating in
the Tidyup-Robot domain. Our test scenario (a) contains two
rooms separated by a door, tables and a shelf in the back.
Tidying up requires to find objects, pick them up (b) and
bring them to the tidy location (c). Navigation might require
to open doors (d). Finally, tables, where the objects were
found, should be wiped clean (e). A video is available at:
http://www.youtube.com/watch?v=pTSz2RBZ2wA

Using the techniques described in this paper, we imple-
mented the example scenario on the PR2 mobile manipula-
tion robot as part of the Tidyup-Robot project (see Figure 2).
We use the Robot Operating System (ROS) to provide robot
skills (Quigley et al. 2009). Our TFD/M planner (Dornhege
et al. 2009) is employed as a classical planner embedded in
a continual planning loop. The planner supports integrated
task and motion planning via the concept of semantic at-
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tachments. One can compute action costs, truth values of flu-
ents, or numerical effects by cost modules, condition checker
modules, and effect applicator modules respectively.

For navigation we use a search-based motion planner
with full 3d collision checking that uses the ARA* algo-
rithm (Likhachev, Gordon, and Thrun 2004). The navigation
costs are integrated as a cost module into the planning pro-
cess. For manipulation tasks, we employ two modules for
put-down actions: A condition checker that determines if an
object can be put down on a table and an effect applicator
that provides the numerical state update writing the result-
ing pose to the state. The implementation is based on a dis-
cretization of possible positions on the table. Wiping tables
is based on a coverage approach (Hess, Tipaldi, and Burgard
2012).

An explicit sensing action based on ROS’ default ob-
ject recognition is used as a precondition to all manipula-
tion actions. Upon each observation recognized objects are
matched on type and distance to previously known objects
and new objects are added to the state. In addition we re-
quire that all locations are sensed at least once, otherwise,
given the expanding universe model, initially all known ob-
jects, which are none, will be tidied up and thus the problem
will be declared solved. Note that this is the same procedure
that humans employ when tasked with tidying a room: The
actual locations that need cleaning are identified before stat-
ing that everything is done. The actual goal we are solving
is thus: “Can you please make sure that the rooms are tidied
up?”

Related Work
A number of planners have been developed that deal with
nondeterminism, partial observability, and sensing. For in-
stance the planning system MBP, which is based on BDDs
(Bertoli et al. 2001) and the planning systems POND and
CAltAlt (Bryce, Kambhampati, and Smith 2006; Bryce
2006), a lazy approach to representing belief sets (Hoff-
mann and Brafman 2005), and a compilation approach to
solve nondeterministic planning problems using classical
planning (Kuter et al. 2008).

As mentioned above, we do not believe that these ap-
proaches can scale up to household domains with a large
number of objects. Here we believe, planning approaches
that do not try to solve the entire problem offline are more
adequate. One approach is, for example, to interleave plan-
ning for nondeterministic partially observable domains with
planning as proposed by Bertoli et al. (2004). Most such ap-
proaches, however, simplify the planning problem consid-
erably. While often there is a simple plan-execute-monitor
loop, there are also other approaches more tightly integrating
planning and execution (Ambros-Ingerson and Steel 1988;
Brenner and Nebel 2009; Knoblock 1995). Nobody has
tried to precisely determine under which conditions such ap-
proaches are feasible and how expensive the verification of
such a condition would be, though.

Work, that is in particular related to our paper is any-
thing that uses automatic symbolic planning to control a
robot. In particular, in recent years, robot-control by auto-
matic planning is considered again as a realistic means to

achieve autonomy. The reason for that is that automatic plan-
ning has become much more efficient, as demonstrated by
recent events such as the International Planning Competi-
tions.

Notably, Kaelbling and Lozano-Pérez (2011) have devel-
oped a robot planning system that integrates task and motion
planning. This system uses a hierarchical regression plan-
ner and uses the refined prefix of the computed plan to start
execution. As mentioned above, they also use a replanning
approach which accounts for wrong choices in the plan-
ning process (and implicitly for execution failures). As also
mentioned, they require the stronger property that a domain
should be reversible. Another interesting approach related
to our work is the work by Gaschler et al. (2013), which
demonstrates how Petrick’s belief-space planner can be used
in a real robot environment.

Conclusions and Future Work
We have formulated the generic planning problem for a
mobile manipulation robot in the real-world as an open
partially-observable nondeterministic planning problem. As
we are aiming for efficient solutions to this problem, we sim-
plified the generic problem to a classical planning problem
running within a continual planning loop. We stated what
soundness and completeness means in this case and have
given explicit conditions under which we retain those prop-
erties. In addition we have shown that the computational
complexity to determine if our assumption of no dead-ends
holds for a problem is PSPACE-complete. Finally a proof-
of-concept implementation has shown the feasibility of the
simplifications in a real-world scenario.

In the future we plan to rigorously formalize the notions
introduced in this paper and formally prove those claims. We
also look for more easily verifiable conditions that guaran-
tee soundness and seek to identify safeguard strategies that
avoid getting trapped. Experimentally proving the applica-
bility of our approach will require to compare the perfor-
mance of our implementation with POND planners.
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