
Parallelizing Plan Recognition

Christopher W. Geib and Christopher E. Swetenham
School of Informatics

University of Edinburgh
10 Crichton Street,

Edinburgh, EH8 9AB, Scotland
cgeib@inf.ed.ac.uk and cswetenham@gmail.com

Abstract

Modern multi-core computers provide an opportu-
nity to parallelize plan recognition algorithms to de-
crease runtime. Viewing the problem as one of pars-
ing and performing a complete breadth first search,
makes ELEXIR (Engine for LEXicalized Intent Recog-
nition)(Geib 2009; Geib & Goldman 2011) particularly
suitable for such parallelism. This paper documents the
extension of ELEXIR to utilize such modern comput-
ing platforms. We will discuss multiple possible algo-
rithms for distributing work between parallel threads and
the associated performance wins. We will show, that
the best of these algorithms will provide close to linear
speedup (up to a maximum number of processors), and
that features of the problem domain have an impact on
the speedup.

Introduction
The ubiquity of multi-core processors provides an op-
portunity for algorithms that are easy to parallelize to
realize significant runtime gains. However, the use of
the kind of bounded parallelization available in these
architectures has not been closely studied for most AI
applications. Even with the ubiquity of libraries and
packages supporting multithreading, most AI research
has not focused on efforts to parallelize specific AI al-
gorithms. That said, algorithms that are well suited to
this kind of bounded parallelism, could benefit from a
better understanding of the tradeoffs required to make
full use of easily obtainable modern computer architec-
tures.

This paper presents experimental results on the paral-
lelization of a particular algorithm for the AI problem
of plan recognition, namely the Engine for LEXical-
ized Intent Recognition (ELEXIR) system (Geib 2009;
Geib & Goldman 2011). It will show that this algo-
rithm can easily be parallelized to produce close to lin-
ear speedup if the correct method for work allocation
is chosen. The paper will also show that specific fea-
tures of the domain can have a significant impact on the
achieved speedup.

Copyright c© 2013, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

To this end, the rest of this paper will be organized
as follows. First we will provide an overview of the
ELEXIR system, and discuss the features of the algo-
rithm that make it particularly well suited to paralleliza-
tion. Next we will discuss four different algorithms for
allocating work between the different precessing threads
and their respective strengths and weaknesses. We will
then discuss the results of testing these allocation al-
gorithms in multiple domains and discuss the impact
of various domain level features that can impact even
the parallelized algorithm’s performance. Finally we
will draw conclusions that are applicable both to other
plan recognition systems, as well as AI systems more
broadly.

ELEXIR Background
Plan recognition is the process of inferring the plan
being executed by an agent based on observations of
the agent’s actions and a library of plans to be rec-
ognized. Following other work on grammatical meth-
ods(Sidner 1985; Vilain 1990; 1991) for plan recogni-
tion, ELEXIR(Geib 2009) views the problem as one of
parsing a sequence of observations, based on a formal
grammar that captures the possible plans that could be
observed. Space prevents a complete discussion of the
ELEXIR system. Here we will cover only the basics
of the algorithm and those details necessary to under-
stand its parallelization. We refer the interested readers
to(Geib 2009; Geib & Goldman 2011) for more details.

In ELEXIR, plans are represented using Combinatory
Categorial Grammars (CCG) (Steedman 2000), one of
the lexicalized grammars. Parsing in such grammars
abandons the application of multiple grammar rules in
favor of assigning a category to each observation and us-
ing combinators to combine categories to build a parse.

Plan Grammar Categories
To represent possible plans in CCG, each observable ac-
tion is associated with a set of syntactic categories, de-
fined recursively as:

Atomic categories : A finite set of basic action cate-
gories. C = {A, B, ...}.

10

Plan, Activity, and Intent Recognition: Papers from the AAAI 2013 Workshop

Complex categories : ∀Z ∈ C, and non empty set
{W, X, ...} ⊂ C then Z\{W, X, ...} ∈ C and Z/{W, X, ...} ∈
C.

Viewing complex categories as functions, we will refer
to the categories on the right hand side of a slash as ar-
guments ({W, X, ...}) and the category on the left hand
side as a result (Z). The direction of the slash indicates
where in a stream of observations the category looks for
its arguments. That is, the argument(s) to a complex cat-
egory should be observed after the category for a right-
ward slash and will be called rightward arguments. The
arguments for a complex category with a leftward slash,
should be observed before it (leftward arguments), to
produce the result. Finally, multiple arguments in set
braces are unordered with respect to each other.

As an example consider the simple three step plan of
picking up a cell phone, dialing a number, and talking
on it. This plan could be represented by the following
grammar:

CCG: 1

dialCellPhone :=(CHAT/{T })\{G}.
talk :=T.

getCellPhone :=G.

Where G, T, and CHAT are basic categories, the actions
of talk and getCellPhone each have only a single possi-
ble category, namely T and G, and the the action dial-
CellPhone has a single complex category that captures
the structure of the plan for chatting to a friend.

It is also worth noting that lexicalized plan gram-
mars also require a design decision about which actions
should carry which parts of the structural information
for a plan. We will call an action that has a particular
category as its result an anchor for a plan to achieve that
category. For example in the phone calling grammar di-
alCellPhone is the anchor for the plan to CHAT. How-
ever, as we can see in CCG: 2 and CCG: 3 we could have
chosen talk or getCellPhone as the anchor by choosing
a slightly different set of categories.

CCG: 2

dialCellPhone :=D.
talk :=(CHAT\{D})\{G}.

getCellPhone :=G.

CCG: 3

dialCellPhone :=D.
talk :=T.

getCellPhone :=(CHAT/{T })/{D}.

(Geib 2009) notes that the anchors chosen for a partic-
ular grammar can have a significant impact on the run-
time of plan recognition. Some choices for the anchors
result in a smaller number of possible parses. We will
return to discuss this later.

Combinators
ELEXIR uses three combinators (Curry 1977) defined
over pairs of categories, to combine CCG categories:

rightward application:
X/α ∪ {Y}, Y ⇒ X/α

leftward application:
Y, X\α ∪ {Y} ⇒ X\α

rightward composition:
X/α ∪ {Y}, Y/β ⇒ X/α ∪ β

where X and Y are categories, and α and β are possi-
bly empty sets of categories. To see how a lexicon and
combinators parse observations into high level plans,
consider the derivation in Figure 1 that parses the ob-
servation sequence: getCellPhone, dialCellPhone, talk
using CCG: 1. As each observation is encountered, it

getCellPhone dialCellPhone talk
G (CHAT/{T})\{G} T

<
(CHAT/{T}

>
CHAT

Figure 1: Parsing Observations with CCG categories

is assigned a category as defined by the plan grammar.
Combinators (rightward and leftward application in this
case) then combine the categories. We will refer to each
such parse of the observation stream as an explanation.

Stated briefly, ELEXIR performs plan recognition by
generating the complete and covering set of explana-
tions for an observed stream of actions given a particu-
lar grammar. It then computes a probability distribution
over this complete set, and on the basis of this distri-
bution can compute the conditional probability of any
individual goal. While ELEXIR’s probability model
will not be relevant for our discussion and will not be
covered here, there are some additional details of the
parsing algorithm that make ELEXIR amenable to par-
allelization which we will discuss next.

Parallelizing ELEXIR: Theory
To enable incremental parsing of multiple interleaved
plans, ELEXIR does not use an existing parsing algo-
rithm. Instead it uses a very simple two step algorithm
based on combinator application linked to the in-order
processing of each observation and a restriction on the
form of complex categories.

Assume we are sequentially observing the actions of
an agent, and further suppose that the observed agent is
actually executing a particular plan whose structure is
captured in a category that we are considering assigning
to the current observation. In this case, it must be true
that all of the leftward arguments to the category have
already been performed. For example, in the cell-phone
usage case, we must have observed the action of getting
the cellphone before the dialing action, otherwise it is
nonsensical to hypothesize the agent is trying to chat
with a friend.

11

To facilitate this check, ELEXIR requires that all left-
ward arguments be on the “outside” (further to the right
when reading the category from left to right) of any
rightward arguments the complex category may have.
For example, this rules out reversing the order of the
arguments to dialCellPhone in our example CCG: 1.
CCG: 4

dialCellPhone :=(CHAT/{T })\{G}. acceptable
dialCellPhone :=(CHAT\{G})/{T }. unacceptable

We call such grammers leftward applicable. This does
not make a difference to the plans captured in the CCG,
as the arguments are still in their correct causal order
for the plan to succeed. However, this constraint on the
grammar mandates that leftward arguments must be ad-
dressed first. In fact, accounting for a categories left-
ward arguments is the first step of ELEXIR’s two stage
parsing algorithm.

The restriction to leftward applicable grammars al-
lows ELEXIR’s parsing algorithm to easily verify that
an instance of each of the leftward arguments for a cat-
egory has previously been executed, by the agent, at the
time the category is considered for addition to the ex-
planation. If a category being considered for addition
has a leftward argument that is not already present in
the explanation (and therefore can’t be applied to the
category), ELEXIR will not extend the explanation by
assigning that category to the current observation, since
it cannot lead to a legitimate complete explanation.

Thus, for each category that could be assigned to the
current observation, the first step of the parsing algo-
rithm is to verify and remove, by leftward application,
all of its leftward arguments. This is done before the
category is added to the explanation. This means that
the explanation is left with only categories with right-
ward arguments. Further, since none of the combinators
used by ELEXIRproduce leftward arguments, for the re-
mainder of its processing the algorithm only needs to
consider rightward combinators. This feature enables
the second step of the ELEXIR parsing algorithm.

After each of the possible applicable categories for
an observation have been added to a fresh copy of the
explanation, ELEXIR attempts to apply the rightward
combinators to every pairing of the new category with
an existing category in the explanation. If the combi-
nator is applicable, the algorithm creates two copies of
the explanation, one in which the combinator is applied,
and one in which it is not. As a result, each rightward
combinator can only ever applied once to any pair of
categories. This two step algorithm both restricts obser-
vations to only take on categories that could result in a
valid plan, and guarantees that all possible categories are
tried and combinators are applied. At the same time, it
does not force unnecessarily eager composition of cat-
egories that should be held back for combination with
as yet unseen category. Effectively this is creating a
canonical ordering for the generation of explanations.
This is what makes the ELEXIR algorithm particularly
amenable to parallelization.

ELEXIR uses this two step parsing algorithm to
search the space of all possible explanations for the ob-
served actions. Given the algorithm, any two explana-
tions must differ either in the category assigned to an ob-
served action, or to the rightward combinators that are
applied. As a result, given this algorithm for parsing the
explanations, it is not possible for two explanations that
have been distinguished either by the addition of differ-
ent categories or the application of different combina-
tors to result in the same explanation for the observa-
tions.1 This means each addition of a category to an ex-
planation or the use of a rightward combinator splits the
search space into complete and non-overlapping sub-
searches. Such sub-searches do not depend on their sib-
ling searches and can therefore be parallelized.

To summarize then, given the requirement of leftward
applicable plan grammars, the two step parsing algo-
rithm used by ELEXIR splits the search for explanations
into non-overlapping sub-searches. Each such search
can be treated as separate unit of work that can be done
in parallel, with the complete set of explanations being
collected at the end.

Parallelizing ELEXIR: Practice
Given a method to break up the search for explana-
tions into disjoint sub-searches, parallelization of the
algorithm still requires answers to the question: How
will the work be scheduled for performance? Effec-
tively scheduling work for execution across multiple
threads means keeping all the available threads busy
with work while satisfying the dependencies between
units of work. The unit of work scheduling may also not
directly correspond to a single subtask of the underlying
problem. We could decide to batch several subtasks to-
gether to form a single work unit for scheduling. This
means the choosing the size of work units requires mak-
ing a tradeoff between the overhead of scheduling and
the effectiveness of the work distribution. For exam-
ple, in the limit, scheduling all the subtasks as one unit
of work will give no multithreading at all. We will see
that, the methods we investigated differ in the overhead
of scheduling each unit of work, and in how effectively
they keep threads busy.

To parallelize ELEXIR we first modified the al-
gorithm to ensure the search could safely proceed
across multiple threads. In our C++ implementation
of ELEXIR, we replaced the standard memory allocator
with, the jemalloc allocator(Evans 2006), which is de-
signed for multi-threaded applications, has much better
contention and cache behavior, and showed much better
speedups with larger numbers of threads in exploratory
test experiments.

1This does not mean that the system can only find a single
explanation for a plan given a set of observations, but that each
such plan will differ either in which observed actions are part
of the plan, the categories assigned to the constituent observa-
tions, or the subplans composed to produce it. These are all
significantly different explanations and need to be considered
by the system.

12

We then implemented four different scheduling poli-
cies to allocate the work to be performed across avail-
able hardware threads, and compared these against the
baseline runtime of the original single-threaded algo-
rithm. All except the baseline implementation, were
built to be configurable in the number of worker threads.

Some of our policies have the main thread distribute
work to the worker threads, in which case the set of ex-
planations after each observation are collected and re-
distributed to threads on the next observation. The oth-
ers have the worker threads pull work when they are oth-
erwise idle. This means these schedulers do not need
to have all the worker threads complete their work and
fall idle after each observation, but can instead keep all
threads working until all the observations have been pro-
cessed. We will highlight these distinctions for each of
the implemented policies below:

1. The baseline implementation is the original imple-
mentation, albeit with the thread-safety guarantees in
place.

2. The naive scheduler (Herlihy & Shavit 2012) imple-
mentation is a proof of concept for multithreading
the algorithm; it spawns a new thread for each unit
of work to be scheduled, and the thread is destroyed
when the unit of work is completed. For each obser-
vation, one unit of work is produced for each thread,
and the set of explanations is shared equally between
units of work.

3. The blocking scheduler (Herlihy & Shavit 2012)
gives each worker thread a queue, and the main thread
distributes work to these queues on each observa-
tion. Threads can block on an empty work queue in-
stead of repeatedly having to check the queue. As
in the naive scheduler, explanations are redistributed
equally among threads on each new observation.

4. The global queue (Herlihy & Shavit 2012) scheduler
uses a single multiple-producer, multiple-consumer
work queue shared between all the threads and
guarded by mutex at both ends. Worker threads push
new work into this queue as they produce new expla-
nations, and fetch work from this queue when they
fall idle. This policy has a second configurable pa-
rameter: the batch size, which specifies the maxi-
mum number of explanations to be added to a unit
of work to be scheduled. The larger the batch size,
the fewer units of work we need to schedule when
processing, but the more potential there is for missed
parallelism due to underutilization. By measuring the
runtime with different batch sizes, We determined a
batch size of 32 to be adequate, although larger val-
ues may preferable for large problems.

5. The work-stealing (Blumofe & Leiserson 1999)
scheduler gives each worker thread a queue. When
worker threads produce new explanations, they
schedule new work units into their own queue, and
threads which run out of work can steal work from
other threads’ queues. We implemented a lockless

work-stealing queue due to (Chase & Lev 2005).

Real-World Domains
We tested the performance of the schedulers described
above on three domains. First, a simplified robotic
kitchen cleaning domain involving picking up objects
and putting them away (XPER). This domain is based
on the European Union-FP7 XPERIENCE robotics
project(Xpe 2011). Second, a logistics domain (LOGIS-
TICS), involving the transporting of packages between
cities using trucks and airplanes. This domain is based
on a domain in the First International Planning Com-
petition(Long & Fox 2003). Third and finally, a cyber
security based domain (CYBER) based on recognizing
the actions of hostile cyber attackers in a cloud based
network computing environment.

For each domain a problem with a runtime between
a second and a minute for the baseline algorithm was
generated by hand. This problem was then presented
to each of the algorithms running on a multi-processor
machine using 1 to 12 cores. We will present data on
the speedup of each algorithm on the problem, defined
as the single threaded runtime divided by the runtime
with a larger number of threads. Ideally we would like
to achieve linear speedup (speedup equal to the number
of threads). In the following graphs, we compute the
speedup against the baseline runtime of the original al-
gorithm. In later figures, where the baseline implemen-
tation is not included, we instead compute the speedup
by comparing the runtime for a single thread and the
runtime for the current number of threads.

1 2 3 4 5 6 7 8 9 10 11 12
of Threads

0

1

2

3

4

5

6

7

8

S
pe

ed
up

baseline
naive
blocking
stealing
global

Figure 2: Speedup for CYBER domain vs. # of threads.

Figures 2, 3, 4 show the average speedup for each
scheduler as we vary the number of threads available.
Each data point was generated from the average of 20
runs. Comparing the results for different schedulers, on
all three problem domains, the work-stealing scheduler
remains the clear winner; the next best scheduler varies
depending on the domains but the work-stealing sched-
uler dominates the others. The work-stealing scheduler

13

1 2 3 4 5 6 7 8 9 10 11 12
of Threads

0

2

4

6

8

10

S
pe

ed
up

baseline
naive
blocking
stealing
global

Figure 3: Speedup for XPER domain vs. # of threads.

1 2 3 4 5 6 7 8 9 10 11 12
of Threads

0

2

4

6

8

10

12

S
pe

ed
up

baseline
naive
blocking
stealing
global

Figure 4: Speedup for LOGISTICS domain vs. # of
threads.

does this by ensuring threads which are starved for work
can rapidly find more, and the lockless work-stealing
deque implementation has very low overhead. Given
this convincing success, the remainder of our experi-
ments focus on the work-stealing scheduler.

In Figure 5, we compare the speedups achieved on
all three domains, using the work-stealing scheduler.
The algorithm performs significantly worse on the CY-
BER domain than the XPER and LOGISTICS domains.
Looking at the respective runtimes provides us with a
clue as to why. The CYBER domain problem runs much
faster than the others. For comparaison, with a single
thread the CYBER domain problem runs in around 1
second, the LOGISTICS domain problem in around 25
seconds, and the XPER domain problem in around 60
seconds. This suggests, that the CYBER domain may
simply have less to work to parallelize. Since the chief
determiner of the runtime for the single threaded case
is the number of explanations to be considered, we de-

1 2 3 4 5 6 7 8 9 10 11 12
of Threads

0

2

4

6

8

10

S
pe

ed
up

CYBER
XPER
LOGISTICS

Figure 5: Speedup of work-stealing across all domains.

cided to explore if the structure of the plans in the do-
main could impact the speedup.

Synthetic Domains
To study how the structure of the plans within the do-
mains affects the amount of work to be done and there-
fore the possible speedup, we created six synthetic do-
mains, systematically varying the plan grammar, while
maintaining the same input sequence of observations.
We explored two different ways in which the plan gram-
mer could be varied. First by changing the causal order-
ing of the actions within the plans, second by varying the
anchor actions selected for the plans. We discuss each in
turn. (Geib & Goldman 2009) showed that partial order-

Figure 6: Causal structures for plans.

ness in the plan grammar could result in large numbers
of alternative explanations when using gramatical meth-
ods for plan recognition. We therefore explored two par-
tially ordered plan structures (see Figure 6), which we
will refer to as order FIRST where there is a single first
element of the plan that all other actions must follow,
and order LAST where there is a single last element that
all actions must precede.

(Geib & Goldman 2009) also showed the effects of
partial ordering can be influenced by the choice of an-
chors in a lexicalized plan grammar. Therefore, for our
synthetic domains, we assumed complete tree structured
plans of depth two with a uniform branching factor of
three resulting in nine step plans. We then numbered

14

the actions of the plan from left to right and on the ba-
sis of these indicies systematically varied the anchor of
the plans from the far left to the far right. Given the
branching factor of three for each subplan, this resulted
in three possible values for the anchor which we will
call: anchor LEFT, anchor MID, and anchor RIGHT,
corresponding to the anchor being assigned to the left-
most action in the subplan the rightmost action of the
subplan or the middle action in the subplan. As an ex-
ample of only a sub part of the plan, the following is
a set of CCG grammars for a three step, order FIRST
plan, like that shown in Figure 6.
CCG: 5

FIRST-LEFT:
act1 := GC/{C2,C3}.
act2 := C2.
act3 := C3.

FIRST-MID:
act1 := C1.
act2 := (GC\{C1})\{C3}

or (GC\{C1})/{C3}.
act3 := C3.

FIRST-RIGHT:
act1 := C1.
act2 := C2.
act3 := (GC\{C1})\{C2}

or (GC\{C1})/{C2}.

As in the above grammars, in the future, we will denote
each synthetic test domain grammar by its ordering fea-
ture and its anchor feature.

To quantify how much work is done by the algorithm
for each grammar, during recognition we recorded the
number of explanations that were generated both during
the intermediate stages of processing as well as the final
number of explanations generated for all of the domains.
The results are presented in Table 1.

Domain Intermediate Final
FIRST-LEFT 1115231 330496
FIRST-MID 209 16
FIRST-RIGHT 5438 1296
LAST-LEFT 208326 48384
LAST-MID 1106489 416016
LAST-RIGHT 35 1
CYBER 74487 26632
XPER 710549 1149149
LOGISTICS 1628890 995520

Table 1: Explanations generated by each domain

To confirm our hypothesis that the number of expla-
nations generated is a reasonable metric of the amount
of time taken, Figure 7 is a scatter plot, showing the run-
time of the work-stealing algorithm in seconds against
the sum of the intermediate and final number of expla-
nations for all of the domains. Note that FIRST-MID
and LAST-RIGHT are basically on top of one another

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Explanations ×106

0

1

2

3

4

5

6

7

R
un

tim
e

Figure 7: Runtime vs. total explanations, for all do-
mains.

down almost on the origin. From this, we can see that
the growth in runtime is roughly proportional to the to-
tal number of explanations generated for each problem,
giving us strong reason to believe the total number of
explanations is a reasonable metric for the amount of
work done.

1 6 12
of Threads

0

2

4

6

8

10

S
pe

ed
up

FIRST-LEFT
FIRST-MID
FIRST-RIGHT
LAST-LEFT
LAST-MID
LAST-RIGHT

Figure 8: Speedup of the synthetic domain prob-
lems with increasing # of threads. The data points
for the FIRST-LEFT and LAST-MID, as well as
the FIRST-MID and LAST-RIGHT series overlap ex-
tremely closely.

Next, Figure 8 plots the speedup for the work steal-
ing algorithm on the same observation stream for each
of the synthetic domains. As expected it shows a clear
difference in speedup depending on the structure of the
plans and the grammar used to describe it. Comparing
Figure 8 to Table 1 also shows a clear correlation. The
LAST-RIGHT and FIRST-MID domains which gener-
ate only a handful of explanations have limited speedup,
while the FIRST-LEFT and LAST-MID which generate
tens of thousands of explanations and exhibit close to
linear speedup. This gives us strong reason to believe
that the differences in the speed up are a result of the
differences in the number of explanations are generated.

This shows, that when more explanations are posi-
ble according to the grammar, more work is required,

15

therfore more threads can be kept busy, and a greater
speedup is achievable. However, the converse is also
true. Fewer explanations in a domain, means that less
work needs to be done, and for small enough problems
there will be no significant gain in the runtime for a par-
allel implementation. Therefore, to help in real world
deployment, we need to be able to identify when a par-
allel implementation is worth the cost.

To identify this, Figure 9 is a second scatter plot
graphing speedup achieved with 12 threads against the
base runtime with 1 thread for each of the problem do-
mains. Its shows that for runs that take longer than
around 5 seconds, we achieve 10-fold speedup, very
close to the ideal, 12-fold speedup, making parallelism
worth while. For shorter runs, there is much less benefit
to the multithreaded implementation.

Our analysis also suggests that for real world domains
with plan grammars with predominately LAST-RIGHT
or FIRST-MID structure (where both the causal struc-
ture of the plan and the CCG grammar’s anchors act to
reduce the number of explanations) parallelism will be
less helpful.

0 5 10 15 20 25 30 35
Single-Threaded Runtime

0

2

4

6

8

10

12

S
pe

ed
up

Figure 9: Speedup vs runtime, for all domains.

Conclusion
This paper has shown that parallelization using a work-
stealing scheduling regime can be usefully applied to
significantly speed up the processing of the ELEXIR
plan recognition system. The multithreaded implemen-
tation discussed in this paper allows us to use the ubiq-
uitous modern multi-core machines to explore domains
which would previously have been computationally in-
tractable. Further, it demonstrates that using the causal
structure of the plan and correctly choosing the anchors
for a CCG representation of plans can have a signif-
icant impact on the effectiveness of parallelization by
preemptively taming of the complexity that results from
partially ordered plans. Finally it suggests that paral-
lelization should not be universally applied. For some
domains and problems, the costs of parallelization may
equal the gains, and it suggests some practical rules of
thumb for when this may happen when using ELEXIR.

Acknowledgements
The work in this paper was supported by the EU
Cognitive Systems project Xperience (EC-FP7-270273)
funded by the European Commission.

References
Blumofe, R. D., and Leiserson, C. E. 1999. Scheduling
multithreaded computations by work stealing. J. ACM
46(5):720–748.
Chase, D., and Lev, Y. 2005. Dynamic circular work-
stealing deque. In Proceedings of the seventeenth an-
nual ACM symposium on Parallelism in algorithms and
architectures, SPAA ’05, 21–28. New York, NY, USA:
ACM.
Curry, H. 1977. Foundations of Mathematical Logic.
Dover Publications Inc.
Evans, J. 2006. A scalable concurrent malloc(3) imple-
mentation for freebsd.
Geib, C. W., and Goldman, R. P. 2009. A probabilistic
plan recognition algorithm based on plan tree grammars.
Artificial Intelligence 173(11):1101–1132.
Geib, C., and Goldman, R. 2011. Recognizing plans
with loops represented in a lexicalized grammar. In Pro-
ceedings of the 25th AAAI Conference on Artificial In-
telligence (AAAI-11), 958–963.
Geib, C. 2009. Delaying commitment in probabilis-
tic plan recognition using combinatory categorial gram-
mars. In Proceedings IJCAI, 1702–1707.
Herlihy, M., and Shavit, N. 2012. The Art of Multipro-
cessor Programming, Revised First Edition. Elsevier.
Long, D., and Fox, M. 2003. The 3rd international
planning competition: Results and analysis. Journal of
Artificial Intelligence Research 20:1–59.
Sidner, C. L. 1985. Plan parsing for intended response
recognition in discourse. Computational Intelligence
1(1):1–10.
Steedman, M. 2000. The Syntactic Process. MIT Press.
Vilain, M. B. 1990. Getting serious about parsing plans:
A grammatical analysis of plan recognition. In Proceed-
ings AAAI, 190–197.
Vilain, M. 1991. Deduction as parsing. In Proceedings
AAAI, 464–470.
2011. Xperience project website.
http://www.xperience.org/. Accessed: 30/01/2013.

16

