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Abstract

In the context of X-ray crystallography, the molecu-
lar replacement (MR) method is frequently used to ob-
tain phase information for a crystallographic unit cell
packed with a macromolecule of unknown conforma-
tion. This is important because an X-ray diffraction ex-
periment on its own does not provide full structural
information. The shape and symmetry of the unit cell
is determined by the space group symmetry. The most
common space group for biological macromolecules is
P212121. The goal of MR searches is to place a homol-
ogous/similar molecule in the unit cell so as to max-
imize the correlation with X-ray diffraction data, and
then to use the model to add the unknown phase infor-
mation to the experimental data. MR software packages
typically perform rotation and translation searches sep-
arately. This works quite well for single-domain pro-
teins that can be treated as rigid bodies. However, for
multi-domain structures and complexes, computational
requirements can become prohibitive and the desired
peaks can become hidden in a noisy landscape.

The main contribution of our approach is that com-
putationally expensive MR searches in continuous con-
figuration space are replaced by a search on a relatively
small discrete set of candidate packing arrangements of
a multi-rigid-body model. First, candidate arrangements
are generated by collision detections on a coarse grid
in the configuration space. This list of feasible arrange-
ments is short because collision-free packing require-
ment together with unit cell symmetry and geometry
impose strong constraints. After computing Patterson
correlations of the collision-free arrangements, an even
shorter list can be obtained using the 10 candidates with
highest correlations. In numerical trials, we found that a
candidate from the feasible set is usually similar to the
arrangement of the target structure within the unit cell.
To further improve the accuracy, a rapidly-exploring
random tree (RRT) can be applied in the neighborhood
of this packing arrangement. Our approach is demon-
strated with multi-domain models in silico for 3D, with
ellipsoids representing both the domains of the model
and target structures. Our results show that an approxi-
mate phase can be found with mean absolute error less
than 5 degrees and search speed is effectively improved.
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Introduction
The field of structural biology is concerned with character-
izing the shape, composition, flexibility, and motion of bio-
logical macromolecules and the complexes that they form.
An ultimate goal of this field is to link these properties with
macromolecular structures, in the hope of better understand-
ing biological phenomena and designing new drugs.

Here we review some of the issues involved in translat-
ing experimental data into 3D structures in the context of
protein crystallography. Macromolecular X-ray crystallog-
raphy (MX) has been the most used method for determining
protein structures and associated complexes. It works very
well for simple proteins that can be described as single rigid-
bodies (called domains). This is because information about
the shape of ∼ 80,000 previously solved structures in the
Protein Data Bank (many of which are single-domain struc-
tures) can be used to augment new MX experimental infor-
mation to gain a complete picture.

However, a challenge to MX arises in interpreting X-ray
diffraction patterns for crystals composed of multi-domain
systems. This is because even when a multi-domain struc-
ture has been solved previously, its overall shape may very
widely from a new version of the structure with, for exam-
ple, a bound drug. In this case, a widely used computational
method called the molecular replacement method (MR),
which has been highly successful for single-domain pro-
teins, becomes combinatorially intractable due to the large
number of degrees of freedom in multi-domain systems.
We present a new method for phasing based on geomet-
ric packing that can serve as an alternative to MR. Decades
ago, the concept of building models of crystallographic unit
cells to phase crystallographic data was explored in the
context of small molecules (Hendrickson and Ward 1976;
Williams 1965; Damiani et al. 1967). But to our knowledge,
this approach has not been pursued and is virtually unknown
in the context of multi-domain macromolecular crystallog-
raphy, and “phasing by packing” therefore represents a very
different way of approaching the problem than MR.

The remainder of this paper is structured as follows. The
mathematical aspects of the MR method for single-domain
proteins is reviewed first. Then the multi-domain phase
problem is formulated. Finally, we present our initial find-
ings that diffraction patterns for multi-domain systems can
be phased using our new “phasing by packing” method.
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Essentials of Macromolecular X-Ray
Crystallography (MX)

A biological macromolecule is a large collection of atomic
nuclei that are stabilized through a combination of covalent
bonds, hydrogen bonds, and hydrophobicity. A traditional
goal in structural biology is to obtain the Cartesian coordi-
nates of all atoms in a rigid single-domain protein.

Let xi = (xi, yi, zi) denote the Cartesian coordinates of
the ith of n atoms in a single-domain protein structure, and
let ρi(x) be the electron density of that atom in a reference
frame centered on it. Due to thermal motions, the electron
density of each of these atomic nuclei can be treated as a
Gaussian distribution. The density of the whole structure is
then of the form

f(x) =
n∑
i=1

ρi(x− xi). (1)

The coordinates {xi} are typically given either in a reference
frame attached to a crystallographic unit cell, or to the center
of mass of the protein.

MX does not provide f(x) directly. Rather, it provides
partial information about f(x). The goal is then to compu-
tationally obtain f(x) and fit an atomic model to it, thereby
extracting the coordinates {xi}. A macromolecular crystal is
composed of unit cells that have a discrete symmetry group,
Γ, called the crystallographic space group. This symmetry
group divides R3 into unit cells, U ∼= Γ\R3 and also de-
scribes how copies of the density f(x) are located within the
unit cell. The whole group Γ can be generated by translating
unit cells and moving within the unit cell using generators
{γ1, ..., γm}. These form a subgroup of Γ, which is in turn a
subgroup of the group of rigid-body motions, SE(3), which
will be denoted here as G. The group Γ = P212121 is of
particular importance because roughly one third of all bio-
logical macromolecules that have been crystallized to date
have this symmetry.

The result of an MX experiment is a diffraction pattern.
This is the magnitude of the Fourier transform of the full
contents of the crystallographic unit cell. Mathematically,
this is written for a single-domain protein as

P̂ (g;k) =

∣∣∣∣∣∣F
m−1∑
j=0

f((γj ◦ g)−1 · x

∣∣∣∣∣∣ , (2)

where | · | denotes the modulus of a complex number, c =

a + ib = |c|eiφ. Our reason for using the notation P̂ (g;k)
will be explained shortly. Here g ∈ G is the unknown pose
of the protein that is sought, and ◦ is the group operation
for both G and Γ. In particular, it is well-known in robotics
that each rigid-body motion consists of a rotation-translation
pair g = (R, t), and the composition of any two rigid-body
motions g1 and g2 defines the operation ◦:
g1 ◦ g2 = (R1, t1) ◦ (R2, t2) = (R1R2, R1t2 + t1). (3)

Given that g = (R, t) ∈ G is a rotation-translation pair, its
action on R3 is defined by

g · x = Rx + t. (4)

Then the density of a collection of single-domain proteins
in the unit cell for j = 0, ...,m − 1 will be

∑m−1
i=0 f((γi ◦

g)−1 · x).
The difficulty in extracting f(x) from the MX data is

that this measurement folds in both information about f(x)
and the symmetry group Γ, and kills the phase information,
φ(k), without which f(x) cannot be recovered by inverse
Fourier transform. Moreover, there is an unknown g ∈ G
that describes how each symmetry-related copy of f(x) sits
in the unit cell. Single-domain MR is mostly about finding
the unknown g, and most commonly this is done by dividing
the search into rotational and translational parts.

The crystallographic space groups have been studied in
great detail in the crystallography literature. For example,
summaries can be found in (Bradley and Cracknell 1972;
Aroyo and et al 2010) as well as in various online resources.
Treatments of space group symmetry from the perspective
of pure mathematicians can be found in (Miller 1973).

Of the 230 space groups, only 65 are possible for biolog-
ical macromolecular crystals (i.e., the chiral/proper ones).
The reason for this is that biological macromolecules such as
proteins and nucleic acids are composed of constituent parts
that have handedness and directionality (e.g., amino acids
and nucleic acids respectively have C−N and 5′−3′ direc-
tionality). This is discussed in greater detail in (McPherson
2011; Rhodes 2010; Rupp 2009). Of these 65, some occur
much more frequently than others. And these are typically
nonsymmorphic space groups (i.e., those that possess screw
symmetry operations, and these symmetry groups cannot be
described as a simple semi-direct product). For example,
more than a third of all proteins crystallized to date have
P212121 symmetry, and the three most commonly occur-
ring symmetry groups represent approximately half of all
macromolecular crystals (Rupp 2009; Wukovitz and Yeates
1995).

The number of proteins in a unit cell, the space group, Γ,
and aspect ratios of the unit cell can be taken as known in-
puts in MR computations, since they are all provided by ex-
perimental observation. And from homology modeling, it is
often possible to have reliable estimates of the shape of each
domain in a multi-domain protein. What remains unknown
are the relative positions and orientations of theses domains
and the overall position and orientation of the symmetry-
related copies of the proteins within the unit cell.

Once these are known, a model of the unit cell can be
constructed and used as an initial phasing model that can be
combined with the X-ray diffraction data. This is, in essence,
the molecular replacement approach that is now more than
half a century old (Rossmann and Blow 1962; Rossmann
2001). Many powerful software packages for molecular re-
placement include those described in (Navaza 1994; Bailey
1993). Typically these perform rotation searches first, fol-
lowed by translation searches.

Recently full 6 degree-of-freedom (DOF) rigid-body
searches and 6N DOF multi-rigid body searches have been
investigated (Jamrog, Zhang, and Phillips Jr 2003; Jeong,
Lattman, and Chirikjian 2006) where N is the number of
domains in each molecule or complex. These methods have
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the appeal that the false peaks and “noise” that results when
searching the rotation and translation functions separately
can be reduced.

The Multi-Domain Molecular Replacement
Method (MMR)

The molecular replacement (MR) method, originally devel-
oped in the 1960s (Rossmann and Blow 1962; Crowther and
Blow 1967; Crowther 1972; Lattman and Love 1970) is a
computational method for phasing X-ray diffraction data for
biomolecular structures. It has been integrated into crystallo-
graphic structure determination codes (Navaza 1994; Vagin
and Teplyakov 1997). Though MR has been wildly success-
ful for single-domain proteins, significant issues arise when
using MR for multi-domain proteins and complexes.

Currently two major computational paradigms exist for
phasing of X-ray diffraction patterns of multi-domain pro-
teins: (1) use existing software packages to obtain candi-
date peaks in the rotation function for individual domains
separately, then solve for the translation function (Lattman
1985); (2) attempt to morph multi-domain candidate models
that contain their full “6N” degrees of freedom and itera-
tively refine those models (Jamrog, Zhang, and Phillips Jr
2003). Both methods suffer from different aspects of the
“curse of dimensionality,” which we seek to circumvent us-
ing a combination of our initial results reported in (Jeong,
Lattman, and Chirikjian 2006) and new approaches based on
advanced mathematical concepts that are new to the crystal-
lography community.

Consider a multi-domain protein or complex consisting
of N rigid bodies. If fi(x) denotes the density of the ith
body, then the density of the whole complex will be of the
form f(x) =

∑N
i=1 fi(g

−1
i · x) where gi = (Ri, ti) is a

rigid-body motion consisting of a rotation-translation pair
and g−1

i ·x = RTi (x− ti). These motions are the unknowns
in our problem.

If m identical copies of this complex are arranged sym-
metrically in a unit cell by symmetry operators γj =
(Qj ,aj) ∈ Γ (which is the group consisting of n discrete
rigid-body motions that are known a priori from the crystal
symmetry and geometry), an X-ray diffraction experiment
provides the magnitude (without phase) of the Fourier trans-
form of

∑m−1
j=0 f(γ−1

j ·x). In contrast, the model density for
a single domain and its symmetry mates is

∑m−1
j=0 fi(h

−1
i ◦

γ−1
j · x) where hi is the candidate position and orienta-

tion. In traditional MR, the Fourier transform of the Patter-
son functions, P̂ (g1, ..., gN ;k) = F [P (g1, ..., gN ;x)] and
p̂i(hi;k) = F [pi(hi;x)], that correspond to these densities

and their correlation are respectively

P̂ (g1, ..., gN ;k) =

∣∣∣∣∣∣
m−1∑
j=0

F [f(γ−1
j · x)]

∣∣∣∣∣∣ , (5)

p̂i(hi;k) =

∣∣∣∣∣∣
m−1∑
j=0

F [fi(h
−1
i ◦ γ

−1
j · x)]

∣∣∣∣∣∣ , (6)

c(hi) =

∫
x∈C

P (g1, ..., gN ;x)pi(hi;x)dx (7)

where the Fourier transform F converts a function of spa-
tial position, x, into a function of spatial frequency, k.
The real-space Pattersons themselves are obtained by apply-
ing the inverse Fourier transform. Of the quantities in (5)-
(7), P̂ (g1, ..., gN ;k) comes from the experiment (this is the
multi-domain version of (2)), and p̂i(hi;k) and c(hi) are
computed. Here C is the unit cell and in MR searches the
hope is that peaks in the function c(·) correspond to hi = gi.
The difficulty is that, unlike the single domain case, in the
multi-domain case P depends on many gj’s that all interact
with each other. Therefore, peaks in this rotational correla-
tion function do not necessarily correspond to good overall
matches.

Phasing by Packing
Instead of running traditional MR searches on domain ori-
entation or full conformation, we propose to construct pack-
ing models for the multi-domain systems of interest. This
will generate candidate sets of motions {h1, ..., hN} that can
then be used to construct a model of P (h1, ..., hN ;x) rather
than pi(hi;x). If P (h1, ..., hN ;x) and P (g1, ..., gN ;x)
match well to each other, then that is a much stronger in-
dication that hi = gi than having high correlations between
pi(hi;x) and P (g1, ..., gN ;x).

But in order for our proposed approach to work, the frac-
tion of the total 6N -dimensional search space that we search
must be very small. Otherwise it will be computationally ex-
pensive. In other words, we must rapidly determine “where
not to look.” Preliminary results along these lines are very
encouraging. We hypothesize that the combination of crys-
tal packing constraints and limitations on the range of mo-
tion between domains imposed by known motion constraints
(in the case of multi-domain proteins consisting of cova-
lently bonded rigid domains) severely restricts the allowable
motions. This leads us to believe that it will be possible to
rapidly eliminate vast portions of high-dimensional configu-
ration space based on their incompatibility with constraints,
and that the enumeration of packing geometries can be per-
formed in a computationally tractable manner.

In this paper, ellipsoids are used to represent different
domains of protein structures. The reason is that the ellip-
soid or the combination of ellipsoids can be used to describe
a large variety of shapes and also be expressed in simple
closed-form equations. To illustrate our approach, we con-
struct a multi-ellipsoid-shaped “rabbit” with one “face” and
two “ears” as a packing model for a 3-domain structure in
P212121 crystal symmetry. The rabbit has 10 DOF—roll
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(α1), pitch (β1) and yaw (γ1) of the face, rolls (α2, α3) and
pitches (β2, β3) of the two axis-symmetric ears and trans-
lation in x-, y- and z- directions (Px, Py , and Pz). (see Fig.
1). The most important constraint of the motion is that the
rabbits cannot collide with (or insert into) each other. With
∼ 60% volume ratio between the packing model and the
unit cell (see the dimensions in Table 1), there is not much
free space to move for the packing model. So the rabbits
have to be “smartly” close packed in space to avoid colli-
sion, as most protein molecules are in real crystals. Fig. 2
shows examples of packing configurations with and without
collisions using our packing model in P212121 symmetry,
and the yellow part in (a) shows collision areas. Also, some
constraints on the motion between domains are imposed (see
the ranges of motion for each DOF in Table 1).

The main procedures of finding phase information using
packing models can be described as follows. In the first step,
we discretize the configuration space by a coarse grid (in 10-
degree increments in this paper), and detect collisions for the
packing configurations on this grid. In our packing model,
we only need to check the collisions of the surface points
on the center copy with other surrounding copies. With a
closed-form equation, evaluating the collisions between el-
lipsoids is much less computationally expensive compared
to calculating c(hi) in traditional MR searches (see (7)). Af-
ter the collision detection, we reduce the whole configura-
tion space to a much shorter list.

In the next step, we use a Fourier-based cost function
(FCF), where

FCF(h1, ..., hN ) (8)

=

[∫
k∈Ω

(
P̂ (g1, ..., gN ;k)− P̂ (h1, ..., hN ;k)

)2

dk

] 1
2

,

to sort these collision-free configurations from low to high.
Minimizing FCF(h1, ..., hN ) is similar to finding peaks in
c(hi) except that we use a multi-domain model rather than
a single-domain one. After the sorting, we keep 10 config-
urations with lowest FCF as a candidate list. These can-
didates indicate high correlations with the target structure.
The FCF has the rugged surface of the configuration space,
so to further improve the accuracy, a stochastic sampling
method—rapidly-exploring random tree (RRT) algorithm
(LaValle 2006) is used to minimize the FCF around the “best
candidate”. The best candidate can be first chosen as the one
with the lowest FCF in the set. If its FCF cannot be reduced
below a threshold value C after running the RRT, we switch
the best candidate to the one with the next lowest FCF.

Numerical Results
In the experiment, the same packing model is used to con-
struct target structures. We pretend that the phase informa-
tion of the target structure is unknown, and the only infor-
mation we have is the magnitude of the Fourier transform
of the electron density function P̂ (g1, ..., gN ;k). Our goal
is to find the closest model configuration {h1, ..., hN} with
respect to the target structure {g1, ..., gN}. To evaluate the
packing results, three errors—Eh, MAE1, and MAE2, are

Figure 1: Illustration of 10 Degrees of Freedom in the Pack-
ing Model.

Figure 2: The Examples of Packing Configurations (a) with
Collisions and (b) without Collisions.

defined as,

Eh =
3∑

i=1

||gi − hi||W , (9)

MAE1 = mean{|∆α1|, |∆β1|, |∆γ1|, |∆α2|, |∆β2|, |∆α3|, |∆β3|},

MAE2 = mean{|Px|, |Py|, |Pz|}.

where Eh is the error in metric of motion {h1, ..., hN}
relative to (g1, ..., gN ) and W is the weight matrix(

J 0
0T M

)
with J =

∫
V
xxT ρ(x)dV and M =∫

V
ρ(x)dV (Chirikjian and Zhou 1998). Here, W1 =

diag[1544.2, 868.6, 868.6, 120.63] for the face and W2 =
W3 = diag[19.6, 19.6, 113.1, 15.71] for the two ears.
MAE1, and MAE2 are defined as the mean absolute errors
for rotations and translations, respectively.

To demonstrate the proposed approach, target structures
are generated in two ways: 1) strictly on the grid; 2) ran-
domly sampled in the space. We note that all the target struc-
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Figure 5: An Example of Packing Results with the Target Structure Randomly Sampled in the Space.

Figure 3: An Example of Packing Results with the Target
Structure on the Grid.

tures should be collision free due to the physical constraints
in the real world. In case 1 (see the example in Fig. 3), the
best candidate in the set is identical to the target structure,
with three zero errors and zero FCF. When the target struc-
ture is randomly generated in space, as in case 2 (see the
example in Fig. 5), we can see that the set of candidates
show similar conformations as the target structure and the
best candidate in the set (Cand.1) has only 4.07 degrees of
MAE1 and 0.1277 of MAE2. After running the RRT stochas-
tic search for 20 steps, MAE1 and MAE2 are further reduced
to 3.65 degrees and 0.079, respectively and Eh is also de-
creased by 30%. Fig. 4 shows the trends of errors before
and after applying the RRT. The plot is generated by the re-

Table 1: The Dimensions and Ranges of Motion of the Pack-
ing Model.

Dimensions size of the unit cell 20 × 20 × 20
semi-axis lengths of the face 8; 6; 6
semi-axis lengths of the ears 2.5; 2.5; 6

Face range of roll (deg) 0 ∼ 90
range of pitch (deg) 0 ∼ 90
range of yaw (deg) 0 ∼ 90

Ears range of roll (deg) -30 ∼ 30
range of pitch (deg) -30 ∼ 30

Translation x-axis 0 ∼ 4
y-axis 0 ∼ 4
z-axis 0 ∼ 3

sults of 10 trials.

Conclusions
Macromolecular crystallography has been the traditional
workhorse for determining structural models in the field
of biophysics. Within macromolecular crystallography, the
molecular replacement method has been a highly success-
ful method for providing phasing models to combine with
experimental information to obtain 3D models. In this pa-
per we demonstrate that an alternative to molecular replace-
ment, called “phasing by packing” is promising for multi-
rigid-domain structures. Numerical results illustrate the po-
tential of this method in the context of P212121 space-group
symmetry.
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Figure 4: The Trend of Errors Before and After Applying
the RRT.
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