
Using Bayesian Networks to Model a Poker Player

Andrew Heiberg
University of California, San Diego

aheiberg@cs.ucsd.edu

Abstract

Opponents are characterized by a Bayesian network in-
tended to guide Monte-Carlo Tree Search through the
game tree of No-Limit Texas Hold’em Poker. By using a
probabilistic model of opponents, the network is able to
integrate all available sources of information, including
the infrequent revelations of hidden beliefs. These reve-
lations are biased, and as such are difficult to incorporate
into action prediction. The proposed network mitigates
this bias via the expectation maximization algorithm and
a probabilistic characterization of the hidden variables
that generate observations.

1 Introduction
The Monte-Carlo approach to navigating a stochastic,
partially observed environment such as poker is to re-
peatedly simulate random gameplay until confident es-
timates of the rewards can be established. Better esti-
mates can be achieved in fewer samples if the stochastic
nature of the environment being explored is accurately
characterized. For poker, this means treating opponents
as part of the environment. An accurate opponent model
can direct the search to more relevant parts of the tree
sooner and more frequently, yielding better estimates of
the expected values for different potential actions.

In the context of Monte-Carlo Tree Search (MCTS),
an opponent model consists of two distributions. The
first specifies how likely the opponent is to take a par-
ticular action given the current state. The task is to learn
P(an|a1...an−1,B), where ai is the ith action taken and
B represents the public cards available to all players.

The second distribution is an estimate of the rewards.
When MCTS reaches the edge of the search tree, it
simulates the rest of the hand until a terminal game
state is reached, at which point the rewards are back-
propagated through the visited nodes. If this simulated,
terminal state has only one unfolded player, calculating
the rewards is straightforword. If this is not the case, a
showdown is required to determine the winner, where
a showdown consists of each player revealing their hid-
den cards (hole cards) to determine the winner. The

Copyright c© 2013, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

problem, howewer, is that the true hole cards c are not
known. In order for rewards to be estimated, the distri-
bution P(c|a1...an,B) is needed.

1.1 Previous Work
In order to make our contribution clear, a review of how
MCTS has previously been applied to poker is needed.

Van den Broeck, Driessens, and Ramon (2009) was
the first to apply MCTS to the imperfect information
game of poker. The two aforementioned distributions
were learned using decision trees. Each action in the
dataset (logs of human play in an online casino) was
used to train the first distribution, and each showdown
was used to train the second. Ponsen, Gerritsen, and
Chaslot (2010) followed a similar paradigm, but sophis-
ticated the decision trees and was able to adapt general
expectations about opponent behavior to specific oppo-
nents.

Kleij (2010) appears to be the first attempt to inte-
grate hole card information into the action distribution
P(an|a1...an−1, P, c). A predictor of hole cards can be
obtained from this distribution via Bayes rule. Learning
this distribution, however, presents a problem, because
in the small fraction of hands (≈ 10%) that are labeled
(i.e. went to showdown), the hole cards are necessarily
biased. Consider: players who remain active for all four
betting rounds will generally fall into one of two cases:
1) they believe their cards to be winning and call all
bets, or 2) they have no faith in their hands and are fortu-
nate enough to check all the way to showdown. If learn-
ing were to take place solely on labeled data, the above
distribution would never predict a fold. When reversed
via Bayes rule, it would predict stronger or weaker hole
cards more often than middling hands, which in reality
should, by definition, constitute the majority. To miti-
gate this bias, Kleij (2010) labeled all unlabeled hands
with hole cards using a two-stage algorithm inspired by
expectation maximization (EM).

1.2 Summary
The opponent model in this paper consists of two
Bayesian networks. One is trained to predict beliefs
given actions, and the other to predict actions given be-
liefs.

30

Computer Poker and Imperfect Information: Papers from the AAAI 2013 Workshop



When predicting beliefs, the only examples from
which to learn the network parameters are the hands
labeled with hole cards. To mitigate the previously
discussed bias associated with these examples (Section
1.1), the network is trained on both labeled and unlabed
data using expectation maximization. Predictions about
beliefs can then be made by computing the set of beliefs
that are most likely given the observed actions. This
process also uses pre-computed probabilities of transi-
tioning from one belief to another, further mitigating
bias by tethering the computation to the game’s statisti-
cal ground-truth.

As actions accumulate, the belief network refines the
distribution for the current belief of the opponent. Sam-
ples from this distribution can be entered as evidence
into the action network (also trained via EM) to gener-
ate action predictions.

2 Description
The Bayesian network for predicting buckets is depicted
in Figure 1. In total, three networks will be used, one
for each round of betting (the first round, or preflop,
is excluded, as there is not enough information from
which to mearningfully learn). The network for the final
betting round is shown.

Figure 1: The network for belief prediction, represent-
ing a game of two-player, Texas Hold’em poker that
has reached the final betting round (also known as the
river). Circles and ellipses are nodes, and different node
types are organized under the appropriate headings. Be-
lief nodes are darkened to illustrate that they are unob-
served.

The network predicting actions is identical for every
round, and can be seen in Figure 2.

Figure 2: The network for predicting actions from a
given bucket and previous actions.

The relationships between three types of nodes must
be specified: action, belief and board nodes.

2.1 Action Nodes
The action nodes capture the betting dynamics for each
round. Action nodes can take on nr + 3 + 1 values,
where nr is the number of discretized bet:pot ratios al-
lowed (in the No-Limit version of poker, players can
bet any amount they wish. In practice, however, bets
typically fall close to a few particular fractions of the
pot). The three additional actions are ‘check’, ‘call’,
and ‘fold’. Finally, one additional dummy value is in-
cluded for the betting sequences that terminate before
all four action can be taken (e.g both players ‘check’).
Training hands that exceed this four action limit are
thrown out during pre-processing, a weakness consid-
ering the network will always predict ‘call’ or ‘fold’ for
the second action of the second player. The current cap
of four is a tolerable simplification given that≈ 99.97%
of training hands do not exceed it.

2.2 Board Nodes
The board nodes represent the public cards as they are
revealed throughout the game. Not every board needs to
be considered individually: since no suit is more impor-
tant than any other, many boards are suit-symmetrical to
one another. For example, [2h,3h,5d,6d,Tc] is function-
ally equivalent to [2c,3c,5h,6h,Td]. For round-4, suit-
symmetry reduces the number of unique boards from
C(52, 5) ≈ 2, 600, 000 to ≈ 40, 000, saving both com-
putation and storage.

2.3 Belief Nodes
The belief nodes quantify the unobserved, internal
states of the agents that generate the observed action
sequences. This quantification is achieved by calculat-
ing the expected hand-strength squared value, E[S2],
of that player’s hole cards against the given board. For
a discussion of E[S2], see (Johanson, Zinkevich, and
Bowling 2007). This range is further discretized by
partitioning these values into 10,20,15, and 10 buck-
ets for the round-1, round-2, round-3, and round-4 be-
lief nodes, respectively. Percentile bucketing places the
weakest x1 percent of hands in bucket 1, the next weak-
est x2 percent of hands in bucket 2, etc. The x1...xn

percentiles are generated by an exponential function,

31



such that the stronger the bucket, the fewer individual
hands that comprise it.

3 Network Structure
For the remainder of the paper, discussion will be fo-
cused on belief prediction, which must be in place be-
fore action prediction can occur.

3.1 Action→ Belief Edges
An alternative network could be formed by connecting
past actions directly to the belief node to be predicted
(instead of connecting the rounds via belief nodes).
This approach was rejected due to the resulting explo-
sion in belief node CPT size and its inability to incor-
porate information about the board cards.

3.2 Belief→ Belief Edges
As it stands, however, the CPT size of the belief nodes
is still out of control. Consider: for round-4, the num-
ber of possible round-3 buckets and distinct five card
boards alone is 15 ∗ C(52, 5) ≈ 40, 000, 000. How-
ever, it is not the combination itself that is meaning-
ful, but rather what the combination implies about the
distribution over the next belief bucket. (For an exam-
ple as to why these distributions are not all the same,
consider the following: You are holding [Ah,Ac], and
someone makes a very large bet on [5c,6c,7h,6h]. This
should cause you more concern than the same action on
[2c,5d,7h,Ts]. In the first case, it is much more likely
for your opponent to have a hand beating your high pair,
such as a straight, a flush, or three of a kind, than it is
with the second board.)

If these distributions can be clustered into a suffi-
ciently compressed set, the CPT size of the belief nodes
will once again be tractable (see Section 5 for more de-
tail). Before clustering can proceed, however, the belief
transition probabilities need to be computed.

Computing Belief Transitions If a player is in bucket
k at board b with hole cards c, and b→ b′ as a new card
is revealed, the prior probability that the player is now
in bucket k′ is:

P(k′|k, b, b′) =
∑
c∈C

P(k′|c, k, b′, b)P(c|k, b′, b)

Applying Bayes rule to the second term:

P(k′|k, b, b′) =
∑
c∈C

P(k′|c, k, b′, b)P(k|c, b
′, b)P(c|b′, b)

P(k|b′, b)

The next step invokes d-separation, a graph theoreti-
cal condition that is equivalent to conditional indepen-
dence and can be used to simplify probabilistic expres-
sions (Geiger, Verma, and Pearl 1990). Simplifying via
Figure 3 yields:

P(k′|k, b, b′) =
∑
c∈C

P(k′|c, b′)P(k|c, b)P(c|b
′)

P(k|b)
(1)

Figure 3: The relationships of the board, hole cards, and
buckets between rounds

P(k|c, b) captures the membership of the hole card
and board combination in bucket k (counter-intuitively
not just 1 or 0, see (Kleij 2010) for the discussion of
soft-bucketing). These probabilities are pre-computed
for every possible c, b. This computation is made
tractable by exploiting suit-symmetry, mentioned in
Section 2.2. P(c|b′) is simply one over the number of
possible valid hole cards assignments given the cards
not already in b′, and P(k|b) is the prior probability of a
pair of hole cards being in bucket k (defined during the
processes of percentile bucketing).

Clustering Belief Transitions Many of these bucket-
to-bucket transition profiles will look very similar
(e.g. [2h,6c,6d,Ts] will behave almost identically to
[2h,6c,6d,Js]), meaning each group could be accurately
represented by a single distribution.

Such a clustering needs a distance metric between
distributions to be defined. The most appropriate choice
is the Earth Mover’s Distance (EMD), which treats each
distribution as piling of earth and the distance between
two as the minimum amount of work necessary to trans-
form one pile into another. This amounts to solving
an instance of minimum-cost flow problem, where the
costs of transferring probability mass between buckets
can be bespoke.

To set the edge costs for the current application, re-
member that all hole card pairs are ranked according to
their E[S2] value for the given board, and that the buck-
ets partitioning them are not of uniform size. Instead,
the bucket sizes decay at an exponential rate, meaning
the average distance between a hole card pair in bucket
i and a hole card pair in bucket i + k is larger than the
average distance between buckets j and j + k, if j > i.
Figure 4 illustrates.

Figure 4: Distance between buckets

The cost of moving probability between buckets,

32



should therefore reflect the distance between their cen-
ters.

4 Inference
Given the trained belief network and some observed ac-
tions, we would like to make predictions about the as-
sociated belief sequences.

4.1 Derivation
To make this precise, the following notation is intro-
duced:
• B is the set of boards encountered at each round:
{b2, b3, b4}
• Ai is the set of sets: {A1, A2, ..., Ai}
• Ai is the set of four individual actions taken on round

i: {a1i, a2i, a3i, a4i}
• ki is the belief-bucket pair (k1i, k2i) of player1 and

player2 on round i

If we wish to predict the buckets for round i after all
actions have been taken, we wish to compute:

P(ki, ..., k1|B,Ai)

Expanding via the chain rule, and canceling by d-
separation:

P(ki, ..., k1|B,A) = P(k1|A1)

i∏
j=2

P(kj |kj−1, bj , Aj)

(2)
Each term in this equation is available for lookup in

the CPTs. The more complicated case is when no ac-
tions have been taken for the round we are interested
in:

P(ki, ..., k1|B,Ai−1)

= P(k1|A1)

i−1∏
j=2

P(kj |kj−1, bj , Aj)

P(ki|ki−1, bi)

(3)
To compute P(ki|ki−1, bi) would require marginal-

izing over all (nr + 4)4 possibilities of Ai (this is not
quite right, see Section 5, but the general point remains).
Since MCTS will be making this inference thousands
and thousands of times, speed is of the essence. For this
reason, it is prudent to replace the P(ki|ki−1, bi) learned
by the network and instead use the a priori version pre-
computed in Section 3.2.

With all relevant terms reduced to lookups, it is pos-
sible to identify the belief sequence most likely to be as-
sociated with the observed actions. Therefore, after all
actions have been taken, the likelihood of each round-4
belief pair can be expressed as:

P(k4|B,A) =
∑

k3,k2,k1

P(k4, k3, k2, k1|B,A) (4)

4.2 Tractability
Obtaining a distribution over k4, however, means com-
puting (2) for the 102 ∗ 202 ∗ 152 ∗ 102 ≈ 109 different
belief assignments. Considering this computation needs
to be as fast as possible for MCTS to take a sufficient
number of samples, doing the full inference is out of the
question.

One solution is to compute the probability of a
belief assignment round by round, maintaining a re-
duced set of the m most likely hypotheses at each
step. More specifically, for a given hand, start by
computing P(k1|A1) for each possible k1, and keep
only the m most likely assignments. Next, com-
pute P(k2|k1, b2, A2)P(k1|A1) using only the m as-
signments to k1 retained from the previous step.
Once again, throw away all but the m most likely
k2, k1 assignments. Continuing this process will yield
P(k4, k3, k2, k1|B,A) defined over a greatly reduced
set of k3, k2, k1 assignments. In this manner, (2) must
only be computed 102+m∗202+m∗152+m∗102 <
825 ∗m times.

5 Training
Past hand histories are first fitted to the described node
abstractions. It should be mentioned here that the
belief-transition clustering process has changed the net-
work. Rather than belief nodes having the previous be-
lief node and current board as parents (as depicted in
Figure 1), they now have a single parent, whose value is
the cluster number assigned to the distribution implied
by their combination (see Section 3.2).

To learn predict round-4 actions, the networks in Fig-
ures 1 and 2 are trained via EM on both labeled and
unlabeled data.

To learn a network capable of predicting showdown
buckets, only the network in Figure 1 is trained via
a simple maximum-likelihood computation exclusively
on labeled data.

5.1 Data
The data itself has been drawn from past tournaments
of the Annual Computer Poker Competition. Since the
network’s action prediction accuracy is so intimately
tied with its bucket prediction accuracy, knowing the
true labels for all hands is crucial for analysis. As
human-generated data lacks complete hole card label-
ing, computer-generated data must be used.

5.2 CPT Size vs Training Data
In Section 3.2, it was mentioned that “sufficient
compression” of the belief-transitions was necessary
to achieve a managable CPT size. There are ≈
10, 000, 000 example games which reach the final
round. We would like the CPT size for the belief nodes
to be significantly smaller than this. In other words, if R
is the number of different action sequences that can be
taken in each round, and the number of belief-transition
clusters is C, we would like: R ∗ C � 107.

33



It would appear that R = (nr+4)4, but this is not so.
Many sequences, such as “bet, call, fold, dummy” and
“dummy, raise 1/2 pot, fold, fold” are simply nonsensi-
cal. The true value of R is 2 ∗ (nr + 4)3 + 4 ∗ (nr +
4)2 + 4 ∗ (nr + 4) + 1.

Therefore, if nr = 6, R = 2, 441, meaning we would
like to form less than 107/2, 441 = 4, 097 clusters.

6 Evaluation
The accuracy of the hole card distribution:
P (c|a1...an, P ) must be evaluated.

6.1 Evaluating the hole card distribution
When MCTS simulates a game to showdown, a distri-
bution over each player’s hole cards is necessary to es-
timate the rewards for back-propagation. The param-
eters of the network in Figure 1, if trained exclusively
on showdown hands, can be set by a simple maximum
likelihood computation. The inference P (k|a1...an,B)
can then made on a subset of these hands set aside for
testing.

Bucket Accuracy The measure of accuracy used is
obtained by sampling this belief-bucket distribution s
times and computing the average distance between the
predicted buckets k̂i and the true bucket k∗.

D =

s∑
i=1

dist(k̂i, k
∗)

s
The first choice for the distance function might be

k̂ − k∗, but such a distance is ignorant of percentile
bucketing. As can been seen in Figure 4, predicting
k̂ = 2 when the k∗ = 1 is therefore more inaccurate
than predicting k̂ = 7 when k∗ = 6. Again, the dis-
tance between bucket centers is used.

Showdown Accuracy While the above may be a
good measure of general bucket accuracy on an arbi-
trary round, another method is needed for predicting
the outcome of a round-4 showdown, in which all that
matters is the relative ordering of the predicted buckets.
Each player’s inferred bucket distribution is sampled s
times. The estimated probability of player1 winning the
hand (W ) is then:

P(W ) =

s∑
j=1

M(k̂1,j , k̂2,j)

s

M(k̂1, k̂2) =


1 if k̂1 > k̂2
0 if k̂1 < k̂2
.5 if k̂1 = k̂2

The probability of predicting the correct winner for
each test example e is then computed using the true
bucket labels k∗. Each probability is weighted by the
amount of money exchanged a at the hand’s conclusion.

Getting big-money hands wrong translates into back-
propagating a larger error through the MCTS algorithm,
so the measure of showdown accuracy A should be cor-
respondingly weighted.

A =

n∑
e=1

F (P(We), k
∗
1,e, k

∗
2,e) ∗ ae

n

F (p, k∗1 , k
∗
2) =

{
p if k∗1 > k∗2

1− p if k∗1 < k∗2
.5 if k∗1 = k∗2

7 Progress and Future Work
All the terms necessary for computing the inference in
(4.1) are available for lookup. The only uncompleted
task impeding the training and testing of the networks
is the clustering of belief-transitions. Even with par-
allelized code, computing the full distance matrix for
the round-3 → round-4 transitions is estimated to take
≈ 600 days, so a new approach is obviously needed.

Also missing is a measure of accuracy for action pre-
diction.

Once both networks are trained and tested, the final
step will be to form a fully functional player by inte-
grating the networks with MCTS.

References
Geiger, D.; Verma, T.; and Pearl, J. 1990. Identi-
fying independence in bayesian networks. Networks
20(5):507–534.
Johanson, M.; Zinkevich, M.; and Bowling, M. 2007.
Computing robust counter-strategies. Advances in neu-
ral information processing systems 20:721–728.
Kleij, A. 2010. Monte carlo tree search and opponent
modeling through player clustering in no-limit texas
hold’em poker. M. Sc. University of Groningen, Nether-
lands.
Ponsen, M.; Gerritsen, G.; and Chaslot, G. 2010. In-
tegrating opponent models with monte-carlo tree search
in poker. In Proc. Conf. Assoc. Adv. Artif. Intell.: Inter.
Decis. Theory Game Theory Workshop, Atlanta, Geor-
gia, 37–42.
Van den Broeck, G.; Driessens, K.; and Ramon, J.
2009. Monte-carlo tree search in poker using expected
reward distributions. In Advances in Machine Learning.
Springer. 367–381.

34




