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Abstract

There are currently no strong methods for planning in a
stochastic domain, with low-level sensors that are limited and
possibly inaccurate. Existing architectures have flaws that
make their use in a real-world environment impractical. We
propose an architecture that utilizes POMDPs to create a hi-
erarchical planning system. This system is capable of de-
veloping macro-actions that can expedite planning on a large
scale, and can learn new plans quickly and efficiently, without
deliberate design by the programmer.

Introduction
For a robot to properly and fully operate autonomously
in a real-world environment, the robot must be capable
of planning for long-term goal completion, while also
responding quickly and immediately to situations that
put the robot in immediate damage. The agent should
be able to use information learned online to adapt to
changes in the world, and to learn how to operate in
environments other than the one in which it was trained.
For example, the agent may be placed in a domain where
its existing knowledge does not include any possible
solution to reach the goal. However, upon exploration, it
should be able to derive a correct plan to reach the goal state.

Behaving intelligently in an unfamiliar environment is
especially difficult if the agent only has access to low-level
sensors that provide partial, inaccurate, and limited infor-
mation about the environment. If the environment is directly
inferred from the error-prone input sensor data, the agent
will potentially develop an incorrect model of the world,
due to noise. Additionally, planning over all possible input
sensor readings leads to an intractable design, especially if
the sensor readings contain continuous information. How-
ever, if the agent is able to generalize low-level information,
a more stable model may be developed that is less prone to
noise and irrelevant data (Andre and Russell 2002).

This proposal discusses autonomous hierarchical planning
for agents with low-level sensors. Hierarchical planning al-
lows the agent to learn a global model of the world, to adapt
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this model based on low-level interactions, provide feedback
between lower- and upper-level thought processing, and im-
prove the planning and learning capabilities of the agent
compared to alternative architectures. Additionally, hierar-
chical planning enables the agent to derive macro-actions,
resulting in improved performance on repeated tasks.

Background
Architectures that learn to react to immediate circumstances
while simultaneously planning for long-term goals typically
utilize a two-layer architecture: low-level reacting is per-
formed actively, while high-level planning interjects actions
to “steer” the agent towards the intended goal. Sutton pro-
vides a general framework for this approach (Sutton 1991;
1990), where the reaction level is handled by traditional
reinforcement learning, and the high-level planning utilizes
any available planning algorithm.

As demonstrated in 1998 (Kaelbling, Littman, and Cassan-
dra 1998), a Partially Observable Markov Decision Process
(POMDP) is advantageous when planning in partially
observable and stochastic domains. POMDPs are robust
to errors in sensor data, since the probability distribution
will not be affected by slight differences in similar sensor
data. POMDPs also contain the capability to learn online,
despite the inaccuracy of sensor data (Shani, Brafman, and
Shimony 2005).

However, reinforcement learning at a low-level is not a
preferred method, largely due to a tendency to overfit
(Pyeatt and Howe 1999) (especially popular approaches
such as neural networks with back-propagation). Addition-
ally, transferring the learned information across domains is
nontrivial, and autonomous reinforcement learning domain
transfer is still under active research (Konidaris and Barto
2006).

Hierarchical Planning
By utilizing POMDPs at all levels, the agent will be able
to benefit from POMDPs at the low-level to avoid the
pitfalls of standard reinforcement learning. Planning in the
proposed system will be layered by complexity of tasks,
with a bottom level for immediate planning that consists of
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atomic actions, a toplevel that is responsible for attempting
to formulate a plan to reach the goal state, and multiple
mid-level POMDPs that can be dynamically created to
represent macro-actions for more complex actions.

This layered approach to planning is similar to the archi-
tecture proposed by Albus in 1990 . However, Albus’
architecture has a fixed number of levels whose plans are
decomposed from higher levels. These levels have specific
object interaction concerns and time periods to remember
and plan for, so there is no dynamic scaling for tasks that are
more or less complex. Finally, the architecture requires a
memory at each level to accurately plan, whereas POMDPs
do not require a memory, due to the Markov property.

Using a planner on the lowest level provides benefits
over standard reinforcement learning. While reinforce-
ment learning can respond immediately to a given input
based purely on the input, POMDPs contain more in-
formation about what state it believes it is in, and make
more informed judgements about what actions to take.
Therefore, the agent can maintain a suitable belief about its
state to act on, rather than reacting just on input information.

Issues with speed and tractability of POMDP
at the lowest level can be resolved using ap-
proximation methods (Zhang and Liu 1997;
Gordon, Roy, and Thrun 2011), which prioritize reac-
tion time at the expense of accuracy. Additionally, fast
reaction times can be obtained by using a Monte-Carlo
algorithm for planning (Silver and Veness 2010). Finally,
the POMDPs allow for compression (Poupart and Boutilier
2003) that will make the solution more tractable and focused
on relevant details.

Mid-levels can be utilized to expedite planning on
actions. Current research shows the possibility to de-
rive macro-actions and hierarchical planning based
on POMDPs (Theocharous and Mahadevan 2002;
Theocharous and Kaelbling 2003). These methods en-
able dynamic creation of levels that operate in parallel.
These mid-levels may be decomposed from higher levels
by splitting a complex macro-action into more fine-grained
atomic actions.

The top level is responsible for deriving the plan for the
agent to reach the goal state. The plan at the highest level
will guide the agent in the steps required to move from the
current state to the given goal state, and is the first layer to
be decomposed into subtasks at lower levels.

Conclusion
The proposed hierarchical architecture allows an agent to
plan and interact completely autonomously. The POMDP
framework allows the agent to operate in a stochastic and
partially observable world, with potentially inaccurate sen-
sors, but still function well. In addition to these benefits, the
multiple layers allow for the system to expedite learning and

reaction time, to improve performance, and to make highly
complex domains more tractable.
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