
Representation Search through Generate and Test

Ashique Rupam Mahmood, Richard S. Sutton
Department of Computing Science

Reinforcement Learning and Artificial Intelligence Laboratory
University of Alberta, Edmonton, Alberta, Canada

{ashique,rsutton}@ualberta.ca

Abstract

Learning representations from data is one of the funda-
mental problems of artificial intelligence and machine
learning. Many different approaches exist for learning
representations, but what constitutes a good representa-
tion is not yet well understood. In this work, we view the
problem of representation learning as one of learning
features (e.g., hidden units of neural networks) such that
performance of the underlying base system continually
improves. We study an important case where learning is
done fully online (i.e., on an example-by-example ba-
sis) from an unending stream of data. In the presence
of an unending stream of data, the computational cost
of the learning element should not grow with time and
cannot be much more than that of the performance ele-
ment. Few methods can be used effectively in this case.
We show that a search approach to representation learn-
ing can naturally fit with this setting. In this approach
good representations are searched by generating differ-
ent features and then testing them for utility. We de-
velop new representation-search methods and show that
the generate-and-test approach can be utilized in a sim-
ple and effective way for learning representations. Our
methods are fully online and add only a small fraction
to the overall computation. They constitute an impor-
tant step toward effective and inexpensive solutions to
representation learning problems.

Introduction

Data representations are fundamental to artificial intelli-
gence and machine learning. Learning systems require data
to learn, and performance of a learning system depends
heavily on how the data is represented to it. Typically human
experts hand design a large part of the data representation
using domain knowledge. It is more desirable that the repre-
sentational elements such as features themselves are learned
from data. This would reduce the amount of human labor
required, and learning systems would scale more easily to
larger problems. However, what constitutes a good repre-
sentation is not well understood. This makes learning repre-
sentations from data a challenging problem.

Different approaches have been proposed to solve the
problem of representation learning. Supervised learning

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

through error backpropagation, one of the most popular
methods for representation learning, learns the represen-
tation by reducing the supervised error signal toward the
gradient-descent direction. Although this method is proved
successful in several applications, it often learns slowly and
poorly in many problems. Other methods for representation
learning have also been proposed. Many researchers hold
that good representations can be learned by fulfilling some
unsupervised criteria such as sparsity (Olshausen & Field
1997), statistical independence (Comon 1994) or reproduc-
tion of the data (Hinton & Salakhutdinov 2006, Bengio et.al.
2007, LeCun & Bengio 2007). Some methods use several
levels of abstractions to capture features that are invariant to
low level transformations (Hinton 2007). Despite the exis-
tence of different approaches, it is yet unclear what is the
right approach to representation learning.

We view the problem of representation learning as one of
learning features such that the underlying base system per-
forms better. Here, by features we refer to representational
elements, such as hidden units in neural networks, kernels
in support vector machines or elements of function approx-
imation in reinforcement learning, that are combined semi-
linearly to form the final output of the base system. The base
system learns the appropriate combination of the features in
order to perform well on a given task, such as classifica-
tion, regression or policy optimization. The problem we fo-
cus here is how the features themselves can be learned from
data so that the performance of the base system improves.

Here we study how representations can be learned online
from an unending stream of data. In many AI systems such
as life-long learning robots, data arises abundantly as a se-
ries of examples through their sensors, and learning occurs
continually. As more data is seen, a pre-learned represen-
tation may become less useful to such continually learning
systems. Online learning of representations can be effective
in avoiding such a problem. One important case is a fully
online learning setting where learning has to be done on
an example-by-example basis. In the presence of an unend-
ing stream of data, the computational cost of a fully online
learning method should be small and should not grow as
more data is seen. Here we study how representations can
be learned fully online as well. Most representation learning
methods consider a fixed batch of data, and pass through it
several times in order to learn from it. Only a few represen-

16

Learning Rich Representations from Low-Level Sensors: Papers from the AAAI 2013 Workshop

tation learning methods (e.g., supervised gradient-descent
learning) can be used fully online. In general, how repre-
sentations can be learned effectively in an online learning
setting is not well understood.

In this work, we take a search approach to representation
learning which fits naturally with continual learning. In this
approach, good representations are searched through gener-
ating and testing features, while the base system is perform-
ing on its original task. A large number of candidate fea-
tures are generated in this approach, and they are then tested
for their utility in the original task. Features that are more
useful are preserved, and less useful features are replaced
with newly generated ones. We refer to this approach as rep-
resentation search. Although our approach is different than
the conventional approaches, it is not opposed to them. The
existing approaches such as unsupervised learning or super-
vised gradient-descent learning can be viewed as different
ways of generating candidate features within this approach.

Search through generate and test is not a new idea; simi-
lar ideas existed for a long time, often under different names.
For example, some feature selection methods (Blum & Lan-
gley 1997, Guyon & Elisseeff 2003) such as those called
wrappers (John et al. 1994) share a similar idea with rep-
resentation search. Other methods often fall under the um-
brella of evolutionary computation (Goldberg 1989). Except
for some of the recent works (Whiteson 2007), they were
seldom viewed as representation learning methods. Efforts
have been made to extend existing representation search
methods to online variants (Whiteson & Stone 2006, Vam-
plev & Ollington 2005), however, a fully online method for
representation search is still absent in the literature. In gen-
eral, search through generate and test is not fully developed
for representation learning.

We develop new representation search methods that can
utilize generate and test for representation learning in a sim-
ple and effective way. Our methods are fully online, that
is, they change the representation on each example, but add
only a fixed small fraction to the overall computation of the
system. Using a supervised learning setting, we demonstrate
that our methods can effectively learn the representation by
continually improving it with more data. We show that rep-
resentation search can also utilize existing representation
learning methods such as gradient descent. These results
indicate that representation search can be a potential and
computationally effective solution for representation learn-
ing problems.

Effectiveness of Search

We view a representation search method as an auxiliary to
a base system the objective of which is to perform well on
a given learning task. In order to perform its task, a base
system typically takes input examples and produces outputs.
We consider a particular form of base systems, in which,
each input example is mapped nonlinearly into a number
of features, and the features are then mapped to produce
an output. Once an output is produced, the base system re-
ceives an error or a feedback, based on which the system up-
dates the maps. Typically, the base system only updates the

output map. But, the base system may also update the in-
put map using conventional representation learning methods
such as unsupervised learning or supervised feature learning
through gradient descent. Under this framework, the objec-
tive of representation search is to search for good features so
that the base system performs better.

The basic idea that underlies our representation search
methods is generate and test. A representation search
method uses a tester that estimates the utility of each feature.
Based on the estimate, the method eliminates a small frac-
tion of the features that are least useful. A generator then
generates new features, and those are added to the feature
pool for the base system’s use.

The generate and test process can be executed either on-
line or in a batch. If executed in a batch, the base system
can learn the maps, perhaps until convergence, on a fixed
batch of data, and then the generate and test process can be
applied. In an online setting, the generate and test process
should be able to operate on an example-by-example basis.

There are two important challenges using a generate and
test process on an example-by-example basis. First, it is dif-
ficult to estimate the utility of the features reliably when
learning online. In a batch setting, the base system can learn
the maps until convergence, at which point all the estimates
become stable, and hence the least useful features can be
reliably identified. In an online setting, new examples may
always arrive, making it difficult to obtain reliable estimates.
Moreover, as the generate and test process operates on each
example, the feature representation may contain different
kinds of features among which some are old and some are
just newly generated. Among such a heterogenous group of
features, estimating the utility is much more difficult.

Second, in order to execute a generate and test process
on an example-by-example basis, a representation search
method must fulfill some computational constraints that are
typically more severe than in a batch setting. In a fully online
learning problem, data arrives frequently and unendingly as
a stream of examples. As examples arrive in a frequent man-
ner, the overall system has a limited time to process each
example. As examples arrive unendingly, per-example com-
putation of a system must not grow with more data. Hence,
the per-example computation of the system should be small
and constant. Typically representation learning is seen as a
computation-intensive process. But in online learning set-
tings, it has to be done cheaply.

We develop several representation search methods that
overcome these two challenges. To demonstrate their per-
formance, we use a series of experiments in an online super-
vised learning setting.

We use an online supervised learning setting for our
experiments where data arrives as a series of examples. The
kth example is presented as a vector of m binary inputs
xk ∈ {0, 1}m with elements xi,k ∈ {0, 1} , i = 1, . . . ,m
and a single target output yk ∈ R. Here the task of the
base system is to learn the target output as a function of the
inputs in an online manner, that is, the learning system can
use each example only once and can spend a small, fixed
amount of computation for each example.

17

The base system approximates the target output as a non-
linear function of the inputs. To achieve this, the inputs are
mapped nonlinearly into a number of features, which are
then linearly mapped to produce the output. In order to keep
the per-example computation constant, the number of fea-
tures must remain fixed over the course of learning. We de-
note the number of features as n.

The nonlinear map from the inputs to the features is
achieved using Linear Threshold Units (LTU). The partic-
ular form of the representation in adopted from Sutton and
Whitehead’s (1993) work. Each feature is computed as fol-
lows:

fi,k =

{
1

∑m
j=1 vij,kxj,k > θi

0 otherwise

where vij,k is the input weight for the ith feature and the jth
input, and θi is the threshold for the ith feature. The input
weights are initialized with either +1 or −1 randomly, and
they remain fixed in the absence of representation learning.
The task of representation learning is to learn these weights.
The threshold θi is set in such a way that the ith feature
activates only when at least β proportion of the input bits
matches the prototype of the feature. This can be achieved
by setting the thresholds as θi = mβ − Si, where Si is the
number of negative input weights (−1) for the ith feature.
The threshold parameter β is tunable.

The output is produced by linearly mapping the features:
ŷk =

∑n
i=0 wi,kfi,k, where f0,k is a bias feature always

having the value of 1, and wi,k is the output weight for the
ith feature. The output weights are initialized to zero. The
overall structure of the representation is shown in Figure 1.

In the absence of representation learning, the feature rep-
resentation is always a fixed map of the inputs. Then the base
system only learns the output weights using the Least Mean
Squares (LMS) algorithm:

wi,k+1 = wi,k + αδkfi,k, (1)

for i = 0, . . . , n. Here, δk is the estimation error yk − ŷk,
and α is a positive scalar, known as the step-size parameter.
The objective of the base system is to approximate the target
output as well as possible, which can be measured using a
window or a running average of δ2k.

The cost for mapping each input vector to a feature vec-
tor is O(mn), and producing the linear map from a feature
vector to an output costs O(n). Therefore, the total cost of
the overall map is O(mn) for each example, that is, propor-
tional to both the number of inputs and features, and remains
constant over examples. The computational cost for learning
the output weights using LMS is O(n) for each example.
Therefore, the total per-example computation used by the
base system is O(mn).

We introduce three representation search methods that
search features on an example-by-example basis. Each
method searches for features through generate and test. All
of the methods use the same generator that generates fea-
tures randomly. The three methods differ by their testers.

We first describe what is common between these meth-
ods. All the methods start with the same representation. Af-
ter each example is observed, the base system executes its

operations once. First the input example is mapped to pro-
duce the output, and the output weights are then updated us-
ing the LMS algorithm (Eq. 1). When representation search
is not used, only these steps are repeated for each example.
A representation search method does the following in ad-
dition to the operations of the base system. The tester first
estimates the utility of each feature. The search method then
replaces a small fraction ρ of the features that are least useful
with newly generated features. The replacement parameter
ρ is a constant and has to be tuned. Input weights vij of the
new features are set with either +1 or −1 at random. The
output weights wi of these new features are set to zero. This
process is repeated for each example. Note that selecting ρn
features does not require sorting all features. It only requires
finding the ρnth order statistic and all the order statistics that
are smaller, which can be computed in O(n). Generating ρn
features randomly requires O(ρnm) computation. Note that
ρ is a small fraction.

Our three methods have three different testers. Our first
tester uses the magnitude of the instantaneous output weight
as an estimate of the utility of each feature. This is not an
unreasonable choice, because the magnitude of the output
weights is, to some extent, representative of how much each
feature contributes to the approximation of the output. When
magnitudes of the features are of the same scale, then the
higher the output-weight magnitude is, the more useful the
feature is likely to be. Features that are newly generated will
have zero output weights, and will most likely become el-
igible for replacement on the next example, which will be
undesirable. In order to prevent this, we calculate the age ai
of each feature, which stands for how many examples are
observed since the feature is generated. A feature is not re-
placed as long as its age is less than a maturity threshold
μ. Therefore, the selection of ρn least-useful features occurs
only among the features for which ai ≥ μ. The maturity
threshold μ is a tunable parameter. Age statistics ai can be
kept and updated using O(n) time and memory complexity.

Our second tester uses the trace of the past weight mag-
nitudes instead of the instantaneous ones. The trace is es-
timated as an exponential moving average, which can be
updated incrementally. Instead of using an age statistic for
each feature, the trace of a newly generated feature is ini-
tialized using a particular order statistic of all the existing
traces (e.g., the median of all traces), so that newly gener-
ated features do not get replaced immediately. If a feature is
irrelevant, its weight will have a near-zero value, and its trace
will also get smaller with time, making the feature eligible
for replacement. The decay rate of the exponential average
and the order statistic for initializing the traces are tunable.

Our third tester uses the instantaneous output weight mag-
nitudes for estimating the utility, but also uses learned step
sizes as measures of how reliable the weight estimates are.
No age statistic is used in this tester. We use the Autostep
method by Mahmood et al. (2012) that learns one step size
for each feature online without requiring any tuning of its
parameters. Higher confidence is ascribed to a weight es-
timate if the corresponding feature has a smaller step size.
The initial step size of a newly generated feature is set to a
particular order statistic of all step sizes. A feature is eligi-

18

01001100100110110010

fixed, random weights vji∈±1

learned weights wi ∈

binary inputs x∈{0,1}20

linear output y ∈

∑

r m w

rn

massively expanded, nonlinear map

LTUs f∈{0,1}n

linear map

Figure 1: The general architecture of the base system.
A binary input vector is nonlinearly mapped into an ex-
panded feature representation. The features are linear
threshold units, which are linearly mapped to produce a
scalar output. The base system learns the output weights
whereas representation search learns the input weights.

F:100

F:300

F:1K F:10K

F:100K

F:1M

Examples

Figure 2: The base system with fixed representation per-
forms better in online learning with larger representa-
tions. Best performance is achieved by a fixed repre-
sentation with one million features (F:1M), but the per-
formance increase is neglible compared to the ten times
smaller representation (F:100K).

ble for replacement only if its step size is smaller than that
statistic. The order statistic is a tunable parameter.

Per-example computation cost for all three testers is
O(n), hence our online representation search methods use
a total of O(n) + O(ρnm) computation. Therefore, the or-
der of per-example computation of the representation search
methods is not more than that of the base system. If we
choose ρ always to be less than 1/m, then the total cost be-
comes O(n). Moreover, each tester overcomes the difficulty
of reliably estimating the feature utility by using different
measures (age statistics, traces and step sizes).

Experiments and Results

Here we empirically investigate whether our representation
search methods are effective in improving representations.
The base system performs a supervised regression task, and
the task of a representation search method is to improve the
performance by searching and accumulating better features.

Data in our experiment was generated through simulation
as a series examples of 20-dimensional i.i.d. input vectors
(i.e., m = 20) and a scalar target output. Inputs were binary,
chosen randomly between zero and one with equal probabil-
ity. The target output was computed by linearly combining
20 target features, which were generated from the inputs us-
ing 20 fixed random LTUs. The threshold parameter β of
these LTUs was set to 0.6. The target output yk was then
generated as a linear map from the target features f∗

i,k as
yk =

∑n
i=1 w

∗
i f

∗
i,k + εk, where εk ∼ N(0, 1) is a random

noise. The target output weights w∗
i were randomly chosen

from a normal distribution with zero mean and unit variance.
Their values were chosen once and kept fixed for all exam-
ples. The learner only observed the inputs and the outputs.
If the features and output weights of the learner are equal

to the target features f∗
i,k and target output weights w∗

i , re-

spectively, then the MSE performance E
[
(yk − ŷk)

2
]

of the
learner would be at minimum, which is 1 in this setting.

For all the methods except the third representation search
method, the step-size parameter has been set to γ

λk
for the

kth example, where 0 < γ < 1 is a small constant, that
we refer to as the effective step-size parameter. Here, λk is
an incremental estimate of the expected squared norm of the
feature vector Ê

[∑n
i=0 f

2
i,k

]
. The effective step-size param-

eter γ is set to 0.1 for all the experiments. The replacement
rate ρ is set to 1/200, which stands for replacing one feature
in every 200 for every example. The rest of the parameters
of the representation search methods are roughly tuned.

First we study how well the base system with fixed
representations performs with different size of representa-
tions. Figure 2 shows the performance of fixed representa-
tions with different sizes (from 100 up to one million fea-
tures) over one hundred thousand examples. Performance
is measured as a running estimate of Mean Squared Error
(MSE). Performance is averaged over 50 runs. Results show
that fixed representations with more features perform better.
However, as the number of features is increased, the increase
in performance becomes smaller and smaller. Similar results
were also found by Sutton and Whitehead (1993) in their
work on online learning with random representations.

The result of our first representation search method is
shown in Figure 3 over one million examples. This result
is on the same problem as in Figure 2. Performance is mea-
sured as an estimate of MSE averaged over last 10,000 ex-
amples and 50 runs. The search method performed substan-
tially better than fixed representations and continued to im-

19

F:100

F:300

F:1K

F:10K
F:100K

F:1M
S:1K

S:100

S:10K

Examples

Figure 3: A simple representation search method outper-
forms much larger, fixed representations. With 1,000 fea-
tures (S:1K), it outperforms a fixed representation with
one million features (F:1M) and continues to improve.

fixed representation

tester using
weight mag

tester using
weight mag
 & step size

tester using
weight mag

trace

Number of features

Figure 4: The choice of a tester has a significant effect on
the performance of representation search. Our simplest
tester using weight magnitudes is outperformed by testers
that use more reliable estimates of feature utility.

prove as more examples are seen. Performance of the fixed
representation with 100 features (F:100) settled at a certain
level, but representation search with the same number of fea-
tures (S:100) outperformed it at an early stage and contin-
ued to improve until the end of the sequence. Representa-
tion search with 1,000 features (S:1K) outperformed fixed
representation with 1,000 times more features (F:1M).

Figure 4 compares the three representation search meth-
ods on the same problem as previous. Performance after
observing one million examples is plotted against different
number of features. The simple tester is outperformed by the
other testers. The tester with learned step sizes performed
the best.

Search with Gradient Descent Learning

In this section, we study the effects of combining search with
the supervised Gradient-Descent (GD) learning through
error backpropagation. The backpropagation algorithm is
one of the most-popular supervised learning methods for
representation learning and is well suited for online learn-
ing. We use online backpropagation to minimize the squared
error δ2. Online backpropagation uses a stochastic gradient-
descent rule to learn both input and output weights.

In order to compare search with GD learning, we tuned
the GD learning method in various ways and obtained the
best variant. We experimented with logistic functions, hy-
perbolic tangent functions and LTUs as features. The GD
update of input weights requires computing the derivative of
the features. As LTUs are step functions, its partial deriva-
tive is zero everywhere except at the threshold. Therefore,
the exact GD update for LTUs will not be useful. In order to
overcome this problem, we used a modified backpropagation
for LTUs. Whenever the derivative of a LTU is needed, the
derivative of the logistic function is used instead, with the in-
flection point set at the threshold of the LTU. We tuned both

the slope of the sigmoid functions and the initial variance
of the input weights. We also used an additional variation.
The input-weight update of the backpropagation algorithm
is proportional to the output weight, and this leads to a prob-
lem: the update tends to modify the most useful features the
fastest. To alleviate this problem, we used a simple modifi-
cation, where the input-weight update uses only the sign of
the output weight, but the update is not proportional to its
magnitude. We refer to it as the modified gradient update.

When we applied search and GD learning in combination,
the GD learning is regarded as the base system. Therefore,
for each example, first the backpropagation algorithm up-
dates both the input and the output weights, then the generate
and test process is executed. We used the random generator
and the second tester for search in this experiment.

For the experiment, we used the same problem as the
previous one, this time with 500 target features and 1000
learnable features. When 20 target features were used, GD
learning achieved a low error soon and left a little for search
to improve on. We used more target features in this problem
to make the problem harder. The results are shown in Figure
5. Here, ‘GD’ refers to the variant of GD where the features
are hyperbolic tangent functions, and the modified gradient
update is not used. The ‘best GD’ refers to the variant of GD
where the features are LTUs, and the modified gradient up-
date is used. This performed the best among all variants. All
the differences in performance are highly statistically signif-
icant (the standard errors are smaller than the widths of the
lines). The combination of search and the best GD learning
reduced the final MSE by 13% more than the best GD alone.
This improvement in performance is achieved through a neg-
ligible increase to the computational overhead. The extra
runtime the combination took was less than 5% of the total
runtime taken by the standalone backpropagation algorithm.

20

fixed representation

search

GD

best GD

search + best GD

Examples

Figure 5: Combination of search with gradient descent per-
forms better than using gradient descent alone.

Conclusions

In this work, we proposed new methods to search repre-
sentations. Although some prior works used similar ideas,
our study focused directly on the issues of representation
search through generate and test and demonstrated how a
simple and effective representation search method can be
developed. We studied an important online learning set-
ting, where data arrives frequently and unendingly, hence the
learning system is computationally constrained. We demon-
strated that the ideas of generate and test naturally fits with
such a setting, and can search for features in an inexpen-
sive way. With a negligible addition to the overall compu-
tation of the system, representation search can improve on
an existing representation, and make the base system per-
form better. We showed the success of our methods on two
important cases, a base system with no feature learning and a
base system where features are learned through gradient de-
scent. Representation search outperformed both when added
to them. We believe that representation search may also im-
prove other forms of representations, such as those being
learned through unsupervised feature learning, as long as
generate and test can be facilitated.

References

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007)
Greedy Layer-Wise Training of Deep Networks, Advances
in Neural Information Processing Systems 19, MIT Press,
Cambridge, MA.

Blum, A., Langley, P. (1997). Selection of relevant features
and examples in machine learning. Artificial Intelligence,
97(1-2):245271.

Comon, P. (1994). Independent component analysis, a new
concept? Signal Processing, 36(3):287–314.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley.

Guyon, I., Elisseeff, A. (2003). An introduction to vari-
able and feature selection. Journal of Machine Learning Re-
search, 3(Mar):1157–1182.

Hinton, G. E., Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks. Science,
313(5786), 504–507.

Hinton, G. E. (2007). Learning multiple layers of represen-
tations. Trends in Cognitive Sciences 11:428–434.

John, G. H., Kohavi, R., Pfleger, K. (1994). Irrelevant fea-
tures and the subset selection problem. In Proceedings of the
11th International Conference on Machine Learning, 121–
129.

LeCun, Y. and Bengio, Y. (2007) Scaling Learning Algo-
rithms Towards AI. In Bottou et al. (Eds.) Large-Scale Ker-
nel Machines, MIT Press.

Mahmood, A. R., Sutton, R. S., Degris, T., Pilarski, P. M.
(2012). Tuning-free step-size adaptation. In Proceedings
of the 2012 IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 2121–2124.

Olshausen, B. A., Field, D. J. (1997). Sparse coding with an
overcomplete basis set: A strategy employed by VI? Vision
research, 37(23), 3311–3325.

Sutton, R. S., Whitehead, S. D., (1993). Online learning with
random representations. In Proceedings of the Tenth Inter-
national Conference on Machine Learning, pp. 314–321.

Vamplev, P., Ollington, R. (2005). Global versus local con-
structive function approximation for on-line reinforcement
learning. Technical report, School of Computing, University
of Tasmania.

Whiteson, S. A. (2007). Adaptive representations for rein-
forcement learning, Ph.D. Thesis, Department of Computer
Science, University of Texas at Austin, 2007.

Whiteson, S., and Stone, P. (2006). Evolutionary function
approximation for reinforcement learning. Journal of Ma-
chine Learning Research, 7(May):877–917.

21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

