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Abstract

In this short position paper, we consider MaxWalkSAT, a
local search algorithm for MAP inference in probabilistic
graphical models, and lift it to the first-order level, yielding a
powerful algorithm for MAP inference in Markov logic net-
works (MLNs). Lifted MaxWalkSAT is based on the obser-
vation that if the MLN is monadic, namely if each predicate
is unary then MaxWalkSAT is completely liftable in the sense
that no grounding is required at inference time. We propose
to utilize this observation in a straight-forward manner: con-
vert the MLN to an equivalent monadic MLN by grounding a
subset of its logical variables and then apply lifted MaxWalk-
SAT on it. It turns out however that the problem of finding
the smallest subset of logical variables which when grounded
will yield a monadic MLN is NP-hard in general and there-
fore we propose an approximation algorithm for solving it.

Introduction
Statistical relational models (Getoor and Taskar 2007) such
as Markov logic networks (Domingos and Lowd 2009) bring
the power and compactness of first-order logic to proba-
bilistic graphical models. They are routinely used to solve
hard problems in a wide variety of real-world application
domains including computer vision, natural language pro-
cessing, robotics and the Web. Recently, there has been a
growing interest in exploiting relational structure during in-
ference in statistical relational models. Unlike propositional
inference algorithms which operate on individual random
variables, these algorithms, which are often called lifted or
first-order inference algorithms (Poole 2003), perform infer-
ence over a group of random variables. As a result, they are
more scalable, typically exponentially faster when relational
structure is present, than propositional inference algorithms.

In this paper, we show how to lift MaxWalkSAT (Kautz,
Selman, and Jiang 1997; Selman, Kautz, and Cohen 1996),
a state-of-the-art local search algorithm for MAP inference
in probabilistic graphical models (MaxWalkSAT is currently
the algorithm used in the Alchemy system (Kok et al. 2006)
for MAP inference in MLNs). Our approach is based on
the observation that when the MLN is monadic, i.e., when
each atom in the MLN is unary, MaxWalkSAT is completely
liftable. In monadic MLNs, the set of full assignments
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having cardinality O(2nd) where n is the number of logi-
cal variables and d is the maximum domain size (possible
groundings) of the logical variables, can be partitioned into
O((d + 1)n) subsets such that each element in each subset
has the same probability. Thus, instead of performing a local
search over O(2nd) assignments as the propositional Walk-
SAT does, we can perform local search over a much smaller
O((d + 1)n) space, yielding the lifted MaxWalkSAT algo-
rithm.

We propose to take advantage of the aforementioned ob-
servation in a straight-forward manner: convert the given
MLN to a monadic MLN (pre-processing step) by ground-
ing a subset of its logical variables and then apply lifted
MaxWalkSAT on the monadic MLN. Unfortunately, it turns
out that finding the smallest subset of logical variables which
when grounded will yield a monadic MLN is NP-hard in
general. Therefore, we propose to solve the optimization
problem approximately by encoding it as a weighted maxi-
mum satisfiability (weighted MAX-SAT) problem and solv-
ing it using a weighted MAX-SAT solver (e.g., MaxWalk-
SAT). We chose this encoding because it is polynomial in
the size of the MLN (i.e., in number of logical variables,
predicates and formulas in the MLN) and simplifies the im-
plementation because only one solver (MaxWalkSAT) needs
to be implemented.

Preliminaries
In this section, we describe notation and preliminaries on
propositional logic, first-order logic, Markov logic net-
works, MAP inference and WalkSAT architecture. For more
details, refer to (Domingos and Lowd 2009; Koller and
Friedman 2009; Hoos and Stützle 2004).

The language of propositional logic consists of atomic
sentences called propositions or atoms, and logical con-
nectives such as ∧ (conjunction), ∨ (disjunction), ¬ (nega-
tion), ⇒ (implication) and ⇔(equivalence). Each proposi-
tion takes values from the binary domain {False, True}
(or {0, 1}). A propositional formula f is an atom, or any
complex formula that can be constructed from atoms using
logical connectives. For example, A, B and C are proposi-
tional atoms and f = A∨¬B∧C is a propositional formula.
A knowledge base (KB) is a set of formulas. A world is a
truth assignment to all atoms in the KB.

First-order logic (FOL) generalizes propositional logic
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by allowing atoms to have internal structure; an atom in
FOL is a predicate that represents relations between ob-
jects. A predicate consists of a predicate symbol, denoted
by Monospace fonts, e.g., Friends, Smokes, etc., fol-
lowed by a parenthesized list of arguments called terms. A
term is a logical variable, denoted by lower case letters such
as x, y, z, etc., or a constant, denoted by upper case letters
such as X , Y , Z, etc. We assume that each logical variable,
e.g., x, is typed and takes values over a finite set (called
domain) ∆x. The language of FOL also includes two quan-
tifiers: ∀ (universal) and ∃ (existential) which express prop-
erties of an entire collection of objects. A formula in first
order logic is a predicate (atom), or any complex sentence
that can be constructed from atoms using logical connectives
and quantifiers. For example, the formula ∀x Smokes(x)⇒
Asthma(x) states that all persons who smoke have asthma.
Where as ∃x Cancer(x) states that there exists a person x
who has cancer. A first-order KB is a set of first-order for-
mulas.

In this paper, we use a subset of FOL which has no
function symbols, equality constraints or existential quan-
tifiers. We also assume that domains are finite (and there-
fore function-free) and that there is a one-to-one mapping
between constants and objects in the domain (Herbrand in-
terpretations). We assume that each formula f is of the
form ∀x f , where x are the set of variables in f and f
is a conjunction or disjunction of literals; each literal be-
ing an atom or its negation. For brevity, we will drop ∀
from all the formulas. Given variables x = {x1, ..., xn} and
constants X = {X1, ..., Xn} where Xi ∈ ∆xi , f [X/x]
is obtained by substituting every occurrence of variable
xi in f with Xi. A ground formula is a formula ob-
tained by substituting all of its variables with a constant.
A ground KB is a KB containing all possible groundings
of all of its formulas. For example, the grounding of a
KB containing one formula, Smokes(x) ⇒ Asthma(x)
where ∆x = {Ana,Bob}, is a KB containing two formu-
las: Smokes(Ana) ⇒ Asthma(Ana) and Smokes(Bob)
⇒ Asthma(Bob).

Markov logic (Domingos and Lowd 2009) extends FOL
by softening the hard constraints expressed by the formu-
las and is arguably the most popular modeling language for
SRL. A soft formula or a weighted formula is a pair (f, w)
where f is a formula in FOL and w is a real-number. A
Markov logic network (MLN), denoted by M, is a set of
weighted formulas (fi, wi). Given a set of constants that
represent objects in the domain, a Markov logic network de-
fines a Markov network or a log-linear model. The Markov
network is obtained by grounding the weighted first-order
knowledge base and represents the following probability
distribution.

PM(ω) =
1

Z(M)
exp

(∑
i

wiN(fi, ω)

)
(1)

where ω is a world, N(fi, ω) is the number of groundings
of fi that evaluate to True in the world ω and Z(M) is a
normalization constant or the partition function.

In this paper, we assume that the input MLN to our algo-
rithm is in normal form (Jha et al. 2010). We require this

Algorithm 1 WalkSAT(F, p, maxFlips)
ω = randomly chosen assignment to all variables in F
for flip = 1 to maxFlips

if ω satisfies F then return ω
c = randomly selected unsatisfied clause in F
with probability p flip a randomly selected variable in c
else flip a variable that satisfies maximum number of clauses

return ‘no solution found’

for simplicity of exposition. A normal MLN is an MLN that
satisfies the following two properties: (1) There are no con-
stants in any formula, and (2) If two distinct atoms with the
same predicate symbol have variables x and y in the same
position then ∆x = ∆y. Note that in a normal MLN, we
assume that the terms in each atom are ordered and there-
fore we can identify each term by its position in the order.
Furthermore, we assume that the MLN is expressed as a set
of weighted clauses.

A common optimization inference task over MLNs is
finding the most probable state of the world ω, that is finding
a complete assignment to all ground atoms which maximizes
the probability. This task is known as Maximum a Posteriori
(MAP) inference in the Markov network literature, and Most
Probable Explanation (MPE) inference in the Bayesian net-
work literature. For Markov logic, this is formally defined
as follows:

argmax
ω

PM(ω) = argmax
ω

1

Z(M)
exp

(∑
i

wiN(fi, ω)

)
= argmax

ω

∑
i

wiN(fi, ω) (2)

From Eq. (2), we can see that the MAP problem in Markov
logic reduces to finding the truth assignment that maximizes
the sum of weights of satisfied clauses. Therefore, any
weighted satisfiability solver can used to solve this problem.
The problem is NP-hard in general, but effective solvers
exist, both exact and approximate. The most commonly
used approximate solver is MaxWalkSAT, a weighted vari-
ant of the WalkSAT local-search satisfiability solver (Sel-
man, Kautz, and Cohen 1996) and is the algorithm used in
the Alchemy system (Kok et al. 2006) for MAP inference.

The pseudo-code for WalkSAT is given in Algorithm 1.
It takes as input a CNF formula F , a real number p and an
integer maxFlips which denotes the maximum number of
iterations for which the algorithm will be run. The algorithm
begins by randomly generating an assignment to all proposi-
tional variables in F . Then, at each iteration it randomly se-
lects an unsatisfied clause and flips the value assigned to one
of its literals as follows. With probability p, it flips the value
assigned to a randomly selected literal and with probability
1− p, it flips a literal that maximizes the number of satisfied
clauses (greedy hill-climbing step). WalkSAT is an incom-
plete algorithm, and as with other local search schemes may
not yield the optimal solution. However, it performs remark-
ably well in practice, often outperforming other competing
schemes by an order of magnitude. The optimization ver-
sion of WalkSAT, i.e., MaxWalkSAT is similar to WalkSAT
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except that at each step it tries to find an assignment that
maximizes the total weight of the satisfied clauses.

Monadic WalkSAT
In this section, we will extend the WalkSAT solver to
monadic first-order logic, a subset of first-order logic that
contains only unary predicate symbols and has no func-
tion symbols. For example, the formula ∀x Smokes(x)⇒
Asthma(x) is in monadic first-order logic. For simplicity
of exposition, we further restrict ourselves to a subset of
monadic logic with no self-joins, i.e., a predicate appears
only once in each formula.

To lift WalkSAT, we will lift the flip operation. The flip
operation for propositional WalkSAT alters the truth value
of a propositional variable. Analogously, the lifted flip op-
eration alters truth assignments to all groundings of a pred-
icate. To lift the flip operation, we make use of the fact that
in monadic logic, several assignments will have the same
probability. Therefore, if we group them together, the local
search algorithm can directly jump from one group to the
next group without making any “within group” moves. For-
mally, using the generalized binomial rule (Jha et al. 2010),
we can prove that:
Proposition 1 If two worlds ω1 and ω2 of a monadic MLN
M are such that: (a) they differ only on truth assignments
to the groundings of predicate S; and (b) the number of
true groundings of S is the same in both ω1 and ω2, then
PrM(ω1) = PrM(ω2).

Proposition 1 enables us to group assignments to all
groundings of a first-order atom by the number of true (or
false) groundings. Therefore, we can compactly represent
these equi-probable assignments of a predicate S using the
tuple (S, k) where k is the number of true groundings of S.
We will refer to (S, k) as a lifted assignment.

Algorithm 2 presents the lifted WalkSAT algorithm. The
algorithm begins with a random lifted assignment to all
predicates S in F . Then at each iteration flip, it heuristi-
cally selects an unsatisfied clause c of F and changes the
lifted assignment to one of the atoms of c either randomly or
greedily.

On monadic MLNs, lifted WalkSAT is clearly more ef-
ficient than propositional WalkSAT. The search space over
which WalkSAT operates is bounded by O(2nd) where n is
the number of atoms in the MLN and d is the maximum do-
main size (possible groundings) of a logical variable. On the
other hand, the search space of Lifted WalkSAT is bounded
by O((d + 1)n). The space complexity of lifted WalkSAT
is O(n) while that of WalkSAT is O(nd). When d is large
(e.g., in a social networking application, d can be as large as
a few billion), this represents a significant improvement.

WalkSAT for arbitrary polyadic MLNs
To use Algorithm 2 in arbitrary (polyadic) MLNs, we pro-
pose the following approach: convert the polyadic MLN to
an equivalent monadic MLN by grounding a subset of its
logical variables. For example,
Example 1 Consider the MLN R(x, y)∨S(y, z) with ∆x =
∆y = ∆z = {A,B,C}. We can convert this MLN to an

Algorithm 2 Monadic WalkSAT(F , p, maxFlips)
(Si, ki)

n
i=1 = a random lifted assignment to all predicates in F

for flip = 1 to maxFlips
if (Si, ki)

n
i=1 satisfies F then return (Si, ki)

n
i=1

c = heuristically selected unsatisfied clause of F
with probability p select at random a predicate S in c

and assign a random lifted assignment to S
else find a tuple (S, k) such that S is in c

and (S, k) satisfies the maximum number of clauses in F
Assign k to S

return ‘no solution found’

equivalent monadic MLN, by grounding y, i.e., by substi-
tuting the logical variable y with {A,B,C}. This yields
the following MLN with three clauses: R(x,A)∨S(A, z),
R(x,B)∨S(B, z) and R(x,C)∨S(C, z). Renaming these
partially ground predicates yields the monadic MLN:
RA(x)∨ SA(z), RB(x)∨SB(z) and RC(x)∨SC(z).

It turns out however that finding the smallest subset of
logical variables which when grounded will yield a monadic
MLN is a NP-hard problem. We are interested in such a sub-
set because we want to ground as fewer variables as possible.
Formally,
Theorem 1 Given a MLN M, finding the smallest subset
of logical variables in M which when grounded yields an
equivalent monadic MLN is NP-hard.
Thus, unless P = NP , there does not exist a polynomial
time algorithm that can solve this minimum subset prob-
lem. Therefore, we propose to solve it approximately by
formulating (encoding) it as a weighted MAX-SAT problem
and using a propositional MAX-SAT solver (e.g., MaxWalk-
SAT) to obtain an approximate solution.

Weighted MAX-SAT Encoding: We associate a Boolean
variable Xi,j with each logical variable in the j-th posi-
tion of each predicate Si in the MLN. A true assignment to
this variable indicates that the variable will be grounded and
a false assignment indicates otherwise. We introduce two
types of hard clauses: selection clauses and link clauses. Se-
lection clauses model the constraint that among the n terms
of the predicate at least (n − 1) should be grounded (note
that at least n − 1 terms should be grounded to convert a
n-ary predicate to a unary predicate). This can be done by
adding clauses of the form Xi,j ∨ Xi,k for all j 6= k. Link
clauses model the constraint that if a term at position j in a
predicate Si shares a logical variable with a term at position
l in the predicate Sj in a formula F in the MLN, then either
both terms should be grounded or not at all. In other words,
Xi,j ⇔ Xk,l. For each variable Xi,j , we also introduce a
soft clause of the form ¬Xi,j , vi,j where vi,j equals the log
of the product of the domain size of the term in the j-th po-
sition of predicate Si and the number of formulas in which
Si is involved in. The soft clauses model that it is better to
ground terms having smaller domain size as well as the ones
which are involved in as fewer formulas.

Algorithm 3 describes the pseudo-code for converting the
optimization problem of finding the minimum subset to a
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Algorithm 3 Weighted-MAX-SAT-Encoding(F )
define variables Xi,j for j-th term of i-th predicate
define G as set of constraints to be solved by weighted
MAXSAT solver
Hard Clauses:

foreach formula in F
if predicates, Si, Sk, share a term on position j, l

add Xi,j⇔Xk,l to G
foreach i, j, k such that j 6= k

add Xi,j∨Xi,k to G
Soft Clauses:

forall variables Xi,j add (¬Xi,j , vi,j) to G
return G

weighted MAX-SAT problem.

Example 2 Next, we illustrate the weighted MAX-SAT en-
coding of the optimization problem on our running example:
R(x, y)∨S(y, z) with ∆x = ∆y = ∆z = {A,B,C}. We
have two predicates, and each of them has two terms. There-
fore, we have to define 4 variables, say R1, R2, S1, S2. The
set of hard clauses are as follows: (i) R2 ⇔ S1; (ii) R1∨R2;
and (iii) S1 ∨ S2. The set of soft clauses are: (i) ¬R13; (ii)
¬R23; (iii) ¬S13; and (iv) ¬S2.

Summary and Future work
In this paper we proposed lifted MaxWalkSAT, an algorithm
for MAP inference in MLNs. Our approach is based on the
observation that if the MLN is monadic, then MaxWalk-
SAT is completely liftable. We used this observation in a
straight-forward manner: convert the MLN to a monadic
MLN and then apply lifted MaxWalkSAT over it. We pro-
posed a method for converting the given (polyadic) MLN
to a monadic MLN. This method first encodes the prob-
lem of finding a minimum subset of logical variables which
when grounded will yield a monadic MLN to a weighted
MAX-SAT problem and then uses a MAX-SAT solver (e.g.,
MaxWalkSAT) to solve the problem.

Directions for future work include: combining our ap-
proach with other lifted inference rules such as the power
rule (Jha et al. 2010; Gogate and Domingos 2011); perform-
ing a detailed experimental evaluation of our proposed algo-
rithm; and applying lifted MaxWalkSAT to real world appli-
cations.
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