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Abstract

Practitioners and researchers in health services and pub-
lic health routinely estimate population health indica-
tors from a range of data sources. These indicators are
used in many settings to describe health status, monitor
quality of care, and evaluate the effect of interventions.
The data and knowledge necessary to calculate indica-
tors, however, are scattered across different health set-
tings, resulting in inconsistent and fragmented indica-
tors and an inefficient use of population health infor-
mation in research and practice. The Population Health
Record (PopHR) described in this paper is an informat-
ics platform for semi-automated integration of disparate
data to enable measurement and monitoring of popula-
tion health status and determinants. The research and
development to build the PopHR uses AI methods to
perform many tasks, including calculation of indicators
and interaction with users.

Introduction
There is a pressing need in public health practice for access
to representative and timely data about population health.
Access to such data is necessary for describing population
health status, identifying targets for public health interven-
tion, and evaluating interventions. Currently available pop-
ulation health data tend to be limited either by their lack
of timeliness (e.g., administrative data), their lack of spa-
tial resolution (e.g., survey data), or their lack of representa-
tiveness (e.g., clinical data). The implications of these data
limitations are most apparent for chronic diseases, such as
obesity, diabetes, hypertension, and ischemic heart disease
because monitoring these disease generally requires access
to multiple linked databases over time. Also known as non-
communicable diseases, these conditions account for a large
proportion of global illness, disability, and death (Wang et
al. 2012). As the rates of illness and death related to chronic
diseases continue to grow worldwide, researchers and pub-
lic health practitioners are struggling to develop and evalu-
ate interventions to decrease their impact. Demographic and
lifestyle changes, together with increases in the prevalence
of risk factors, have contributed to the rising incidence of
chronic diseases (Crews and Gerber 1994). Public health
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interventions can modify behaviors to prevent and control
chronic diseases (Mirolla 2004).

Examples of such interventions include tobacco control
through taxation and limits on sales, sodium intake control
through labeling and awareness campaigns, and coordina-
tion of disease management programs (Luo et al. 2007).
However, the effectiveness of these interventions is not al-
ways well documented and is rarely demonstrated across
different populations due to barriers in access to current pop-
ulation health data (Sanson-Fisher et al. 2008)

Our approach to address these limitations is to build a
population health record, (PopHR),(Buckeridge et al. 2012)
which is an infrastructure that retrieves and integrates het-
erogeneous data from multiple sources (administrative, clin-
ical, and survey) in almost real- time, links these records to
demographic data for a representative cohort, and supports
intelligent analysis, and visualization of a portrait of popu-
lation health through a comprehensive set of indicators. In
addition to describing the health status of a defined popula-
tion, this system is designed to allow monitoring of an indi-
cator with the application of statistical algorithms to detect
changes prospectively in the indicator over time and space.
The PopHR can therefore be used to evaluate the effect of a
public health intervention by comparing changes in indica-
tors over time or between regions.

In our initial work, we have focused on health indicators
related to obesity. Relevant indicators describe diabetes, hy-
pertension, coronary heart disease, and stroke. They span
a continuum from disease burden (e.g., incidence, preva-
lence, and mortality), to measures of therapy (e.g., prescrip-
tion, persistence, and treatment risk factors), to outcomes
(e.g., complications and hospitalizations), and to preven-
tive measures (e.g., disease-related screening). Three user
groups are anticipated to interact with this system: public
health professionals, clinicians, and the public. The infras-
tructure provides a platform for sharing population health
data with clinicians and individuals to examine the role of
population health data in clinical practice and disease self-
management by allowing population context to assist diag-
nostic and therapeutic decisions, making population health
information directly available at the point of care such as in-
dividual’s home, a community, or medical clinic. In addition
to supporting these users, the infrastructure also provides a
platform for public health informatics research.
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From a health informatics research perspective, this in-
frastructure enables evaluation of the effect of different data
linkage strategies on the accuracy and usability of popula-
tion health indicators for complex combinations of disease
status, evaluation of the effect of using multiple clinical and
administrative data sources on the accuracy of population
health indicators, and evaluation of how access to health in-
dicators influences work patterns and outcomes in different
settings. In last few years, there have been major advances
in artificial intelligence methods including those for integra-
tion of multiple data streams, analysis of spatial and tempo-
ral data, and mining heterogenous data sources. While the
future holds great potential for utilizing such tools in medi-
cal and health informatics systems, their actual deployment
in practice settings remains a challenge. Within the PopHR,
there are several compelling use cases for artificial intel-
ligence techniques, from ontologies and natural language
interfaces for managing and accessing health indicators to
probabilistic reasoning for analysis and monitoring of indi-
cators.

This paper briefly describes the PopHR architecture and
presents the work in progress towards implementing AI
methods in three main components of PopHR: a public
health indicator ontology (PHIO), a natural language inter-
face (NLI) query system, and an analysis module for deriv-
ing inference from indicator values. Some possible samples
of navigation through PopHR system in our current proto-
type development are presented in the result section.

Background
A population health indicator is calculated by application of
an algorithm to raw data. In this context, an algorithm is usu-
ally a set of rules to identify individuals with a given health
condition. The elements of such algorithms for health sta-
tus indicators usually include the type of administrative data
source used, the relevant diagnostic or medication codes, the
required frequency of the codes, and the length of time con-
sidered when searching for codes.

There is generally little standardization of public health
indicators, which can consequently be estimated through a
variety of algorithms. Even for a single algorithm, differ-
ent definitions may include different arrangements of codes
for disease diagnosis, drug prescribing and dispensing, and
medical procedures. To further complicate matters, defini-
tions can vary in a country within regions, or over different
years in the same region. Therefore, having a representation
of the concepts rather than only system specific details is
critical for information sharing and reusability. This is one
of the motivating factors in the developmental choice of ar-
chitecture for PopHR.

Overview of PopHR System
The system architecture includes four structural compo-
nents: databases and interfaces to other systems; an ontology
that provides a semantic framework for defining population
health indicators and supporting interactive browsing of in-
dicators by capturing the domain knowledge in the form of
concepts, instances, and a rich variety of relationships and

axioms: a natural language interface for user queries; and an
analysis module that provides tools for analyzing population
health indicators.

The data integrated within the PopHR originate from
a wide variety of resources such as structured and non-
structured textual resources, databases, charts, tables, im-
ages, and existing controlled vocabularies in the domain.
Also the cross-disciplinary and dynamic nature of the do-
main gives rise to volatility, heterogeneity and ambiguity at
both the conceptual level and the data level. Indexing, clas-
sifying, integrating and interpreting these data is far from
trivial.

PopHR relies on ontologies, where the concepts, relations
and instances are meaningful while accompanied by a de-
scriptive data set, to provide users with flexible access to
different levels of information. Ontologies support consis-
tent data access practices, both within our PopHR applica-
tion and across the public health domain, and enable seman-
tic analysis through reasoning and inference using a logical
reasoner.

In addition, ontologies can assist in reducing ambiguity,
overcoming redundancies, and enabling inference through
reasoning (e.g. satisfiability and consistency checking) and
querying.

PopHR Cohort
In the first phase of PopHR research and development, we
are using a 25% random sample of people residing in the
Montreal Census Metropolitan Area (CMA). The popula-
tion in the CMA was 3.8 million in the year 2011. For
sampled individuals, we are developing a mechanism to ob-
tain bi-weekly updates of data describing physician billing
and drugs dispensed, and periodic updates of hospitalization
records and death certificates. In the current system proto-
type, we use a database that follows an open cohort from
1998 to 2006. Data from the Census and other sources are
used to define geographical boundaries of administrative re-
gions and to provide demographic data describing the popu-
lation. These data enable population health assessment with
a flexible spatial resolution including postal and census ge-
ographies, neighborhoods, and urban/rural areas. A main re-
quirement of the infrastructure is that the indicators must
be representative of the population. To achieve this require-
ment, we use as the foundation for our data the beneficiary
file from the provincial health insurance agency in Quebec,
the Regie de l’Assurance Maladie du Quebec (RAMQ). This
beneficiary file includes 99% of residents in the province
and is therefore representative of the entire population. Us-
ing this file, we selected a 25% random sample of people
living in the Montreal Census Metropolitan Area (CMA) in
1998, an in each subsequent year we refreshed the cohort by
sampling from new immigrants and births to replace those
leaving through emigration or death.

Data
Administrative data for PopHR cohort include physician ser-
vices claims and prescription medication claims data ob-
tained directly RAMQ as used to process payment claims.
Hospitalization discharge abstract data are also obtained
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from a provincial registry in Quebec, MED-ECHO, and
death data are obtained directly from the provincial vital
statistics agency, ISQ. None of these data sources includes
patient identifiers such as name, Social Insurance Number
(SIN), or exact address. The system is also designed to ac-
cept clinical data such as laboratory test results from micro-
biology and clinical chemistry labs, but these data are not
yet available in the PopHR.

Individual-level data from RAMQ, MED-ECHO, and ISQ
are linked by a unique encrypted code. Physicians’ name and
the name of care providing institutions are also anonymised.
We have access to three digit postal code of the cohort
member’s place of residence. These data enable population
health assessments with a flexible spatial resolution, includ-
ing three digit postal codes, neighborhoods, and urban/rural
areas.

PHIO Ontology

Figure 1: The major components of public health indicator ontol-
ogy (PHIO). The Indicator box represents the application ontology
developed in PopHR, and the other boxes demonstrate other data
sources, databases and existing biomedical ontologies that have
been reused or imported by PHIO.

The population health indicator ontology (PHIO) is an
integrated application ontology implemented in OWL DL.
Figure 1 illustrates the components imported or incorporated
in PHIO. This ontology encodes knowledge about the epi-
demiological indicators used in the PopHR, defining cate-
gories of indicators and describing in a consistent manner
the algorithms for calculating indicators. The indicators tax-
onomy developed by the Canadian Institute of Health Infor-
mation CIHI (CIHI 2006) is incorporated into PHIO, focus-
ing on health status indicators class and its subclasses (see
Figure 2). The Semantic Science Integrated Ontology (SIO)
(SIO 2008) is also used in PHIO as an upper ontology for
consistent knowledge representation across physical, proce-
dural and informational entities. The logical consistency and
satisfiability are controlled using a logical reasoner (Pellet
and Fact++). In PHIO, health indicator and algorithm are
both defined concepts and a relation between their individ-
uals is that an algorithm is used to calculate the value of

a health indicator. A Public Health domain ontology (Jorm,
Gruszin, and Churches 2009) is extended and incorporated
into PHIO to describe diseases and their determinants not-
ing, for example, Obesity is a risk factor of Diabetes. Indica-
tors are linked explicitly to disease and risk factor concepts
in the public health ontology through an indicator of rela-
tion. PHIO is used by the PopHR system to guide the selec-
tion of indicators by users, to automate the calculation of in-
dicator values, and to support the interpretation of indicator
values. The use of PHIO within the PopHR facilitates data
and knowledge integration, enables knowledge discovery
and exploration, and also serves as computable repository of
knowledge for driving data manipulation and analysis func-
tions. Development of the system of indicators started with a
review of approaches to measuring health determinants (e.g.,
food supply chain, dietary intake) and health outcomes (e.g.,
disease burden, therapy, secondary prevention, and compli-
cations). In addition to defining a taxonomy of population
health indicators, PHIO encapsulates all concepts, axioms
and relationships necessary to calculate population health
indicators. We also developed the GeoPopHR ontology to

Figure 2: A partial view of the taxonomy of indicators based on
CIHI framework and indicator instances in Protege.

assist establishing the relationships between administrative
data to geospatial data, with emphasize on mapping varia-
tions in disease rates. Once integrated geographically, these
individual-level health data and regional data enable the flex-
ible assessment of population health status and determinants
across different geographic regions, temporal intervals, and
population sub-groups.

Natural Language Query Processing
Processing natural language queries about population health
indicators is another unique component for PopHR. This
feature allows users to access information about a particu-
lar health outcome or determinant from a massive reposi-
tory of heterogeneous and distributed data without learning
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to use a complicated interface or a specialized query lan-
guage. However, natural language queries can be ambigu-
ous and potentially correspond to many or no indicators
available in the system (Vallet, Fernndez, and Castells 2005;
Guha, McCool, and Miller 2003). Therefore, the PopHR
query module must check the completeness, consistency,
and relevance of a user query. This module attempts to an-
ticipate a user’s information need and deliver the relevant
population health information automatically. The indicator
retrieval model in the PopHR query system works in two
parts. In the first part, the natural language query is parsed
and query components are matched to concepts in the on-
tology. Matching concepts are presented to the use to ver-
ify that their query was interpreted correctly. In the second
part, the knowledge base is queried to return indicator val-
ues and if necessary, statistical methods are applied to the
returned indicator values. Figure 3 presents this phase de-
veloped for our prototype. We used a guided and controlled
Natural Language Interface (NLI), based on our defined se-
mantic framework captured by the ontology. The PopHR vi-
sualization module is currently being designed to present the
final results of the query module in a format that corresponds
to the type of results. It will support a range of options in-
cluding charts, graphs, maps, and tables.

Figure 3: Query examples from the natural language interface part
of PopHR prototype.

Analysis Module
Methods for statistical analysis and data mining are also core
components of the PopHR. These methods are used to de-
velop a portrait of health status for a defined population,
to monitor indicators of population health over time, and to
evaluate changes in indicators to determine the effect of an
intervention.

To perform the functions of describing, monitoring, and
evaluating, the PopHR employs methods that are efficient

and scalable. We are developing the PopHR to use machine
learning methods that exploit the linkage of indicator val-
ues with domain knowledge to perform prediction, classifi-
cation, and pattern recognition. Future research will evaluate
the effectiveness of these methods for tracking disease bur-
dens over time, identifying high risk populations, localizing
diseases and therapies, and ascertaining important variations
in health services utilization by geographic regions.

Within the PopHR project, we are also exploring the use
of machine learning to develop algorithms for classifying in-
dividuals according to their disease status. In practical terms,
an algorithm is needed to compute an indicator. To date, al-
gorithms for computing health indicators have been defined
as Boolean combinations of different codes for diseases,
drugs, and other health events. However, these definitions
are essentially an encoding of expert opinion regarding what
pattern of healthcare utilization is likely to reflect a true case
of disease. Although this simple approach to defining algo-
rithms can work reasonably well for simple indicators such
as disease prevalence, it does not scale well to more compli-
cated indicators such as incidence, and adherence to therapy.
Moreover, algorithms developed in this manner are not capa-
ble of considering the richness of high-dimensional admin-
istrative data, including time-varying patterns of health ser-
vices utilization, healthcare establishments consulted, and
health providers’ characteristics. A wide spectrum of ad-
vanced classification methods, statistical machine learning
and probabilistic reasoning techniques can be used to under-
stand and quantify relationships in administrative data that
indicate a case of a disease and to generalize this findings
to develop an automated case detection method with a po-
tentially profound increase in sensitivity and specificity over
currently used algorithms.

Monitoring an indicator includes comparing changes in
an indicator over time or between regions using the applica-
tion of statistical algorithms to a time series or space-time
series in order to detect significant changes in the indica-
tor value. Probabilistic graphical models such as Bayesian
networks variation (Lin, Chiu, and Wu 2002; Aliferis and
Cooper 2013; Tawfik1 and Neufeld2 2002; Diard, Bessiere,
and Mazer 2003) and Markov models (Scott 2002; Marti-
nis and Twele 2010; Mari and Ber 2006) have demonstrated
considerable success in other fields for temporal pattern dis-
covery. We intend to employ these techniques to improve
the accuracy of monitoring disease burden indicators. Simi-
larly, the advanced methodologies in case-based reasoning
(Bichindaritz and Montani 2012; Nilsson and Sollenborn
2004) can contribute to targeting potential interventions to
high-risk populations identified by PopHR and to evaluating
disease interventions already deployed.

Results
We are currently developing a prototype system that imple-
ments the architecture described above. An initial version
of the population health indicator ontology has been cre-
ated, and we have defined algorithms and calculated values
of indicators related to diabetes. To demonstrate this proto-
type, we present a use case where a decision-maker uses the
PopHR to understand neighbourhood changes in diabetes
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determinants and outcomes. The general interaction with the
user is as follows. First, the user is presented with a search
box and enters a query in normal language. PopHR inter-
prets and executes the query and then returns the indicator
values in a tabular for- mat. The user can then modify the
query or perform a new query. This prototype currently al-
lows the users to access only information related to diabetes
in the greater Montreal region. The taxonomies of disease
and health determinants in PHIO are used to expand queries
so that related and more specific indicators are matched to
queries, not only indicators with an exact textual match to
the query. For example, if a user is interested in find- ing in-
dicators in the system related to diabetes, PHIO will expand
the search term Diabetes to identify all indicators describing
determinants and outcomes related to that disease. Similarly,
the knowledge captured by PHIO can also support interpre-
tation of indicator values. As example queries, consider the
following questions:

• Which neighbourhoods in Montreal had a high prevalence
of diabetes in 2005?
prevalence is identified as a type of indicator in PHIO and
diabetes is identified as a disease defined in PHIO, so the
PopHR infers that the request is about the indicator that
measures the prevalence of diabetes; high is interpreted to
mean values of the diabetes prevalence indicator that ares
statistically significantly greater than the mean value for
all regions taken together; neighborhoods are recognized
as a type of a region with defined boundaries and Mon-
treal is recognized as an individual region in PHIO. To
answer this query, prevalence values for all regions must
be compared to the distribution of value for all regions
and an appropriate statistical test (e.g., t-test, percentile)
must be applied to the values to identify the regions with a
value that is statistically significantly higher or lower than
the average of all regions. Based on this analysis, regions
are categorized as low, average, or high diabetes preva-
lence and the classified results are returned to the user;

• Which indicators describe determinants of diabetes?
This query will use relations in PHIO to identify determi-
nants of diabetes and display the determinants to the user;

• Which neighbourhoods with a high prevalence of diabetes
in 2005 also have high purchases of sugary soft drinks?
Answering the query would require the same series of
steps as for the first query, but for both the outcome and
the indicator, followed by an intersection operation to
identify neighbourhoods with high values in both;

• Among neighbourhoods with a high prevalence of dia-
betes in 2005, what determinants of diabetes are signif-
icantly elevated?
This query combines elements of the second and the third
queries.

Discussion
The PopHR infrastructure provides a data management, in-
tegration, and analytical platform for a wide range of pop-
ulation health data sources. We presented the requirements
and architecture for the system and we described our initial

work to implement the population health record, focusing on
indicators related to diabetes.

The work presented in this paper is part of prototyping
for PopHR. Rapid prototyping of systems is an effective de-
velopment approach, and the work to date has centered on
experimentation with different system components and the
automation of communication and data flow between them.
Scaling-up the PopHR system in the future development cy-
cles will require further use of techniques for the manage-
ment, integration, and analysis of big data.

Additional relevant data sources include electronic health
records and non-traditional public health data sources such
as weblogs and twitter feeds. Incorporation of these and
other massive data sources into PopHR will require, highly
efficient algorithms to estimate and analyze indicators.

Our experience with validating indicators of diabetes
prevalence in comparison with population surveys suggests
that choices made in the definition of indicator algorithms
(i.e., decisions to rely upon different codes and different data
sources) for identifying individuals with diabetes can have
a considerable impact in the population estimate of disease
prevalence (Buckeridge et al. 2012). For example, prescrip-
tion drugs are specific measures of diabetes, while physi-
cian billing are sensitive measures. We expect that the incor-
poration of clinical data into PopHR and these algorithms,
planned for future phases of this project, will further im-
prove the accuracy of case detection.

PopHR is an innovative application, which demonstrates
the value of applying artificial intelligence methods such as
machine learning and knowledge representation to the man-
agement and analysis of heterogeneous sources of popula-
tion health data.

The prototype of the analysis module is currently focused
on methods for the description of population health status.
In the future, we will extend this module to include method
for monitoring indicators over time and evaluating the ef-
fects of interventions. AI methods in temporal reasoning can
support monitoring through the detection of possible trends
and the characterization of these trends. The incorporation
of temporal reasoning methods into the PopHR will enable
the system to answer queries more challenging than typi-
cal cross-sectional queries presented in this paper. For in-
stance, one could ask: what determinants of diabetes have
changed significantly over the last five years? We anticipate
that methods such as these will further assist public health
decision-making.

The ontology development of PHIO creates explicit, for-
mal, and multipurpose catalogs of knowledge that can be
reused by other intelligent systems for population health re-
search and practice. One of the limitations of our work at
this stage is performing the spatiotemporal reasoning using
the existing logical reasoners. Our future work on PHIO will
be focused on enriching the ontological structure, by defin-
ing meaningful logical axioms using the knowledge derived
from our statistical inference module.

Conclusion
The PopHR is at the center of a multi-year research program
to create an innovative informatics platform for developing
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and evaluating novel methods for population health surveil-
lance. The research and development to build the PopHR
will generate knowledge about how best to exploit existing
data repositories in clinical, administrative, and commercial
settings for assessing population health determinants and
outcomes. The current prototype that we have developed
is focused on the determinants and outcomes of diabetes.
In future research, we plan to extend the current prototype
to cover a range of non-communicable diseases and inte-
grate additional data sources and machine learning models.
We are also exploring the application of our architecture to
infectious disease surveillance in resource-constrained set-
tings. We expect that the system of indicators will support
the development of timely, accurate, and sharable descrip-
tions of population health, and facilitate monitoring changes
in health determinants and outcomes over space and time.
The capacity to assess population health in this manner is
critical for identifying health inequalities and evaluating in-
terventions to enhance the prevention and management of
chronic and infectious diseases in vulnerable groups and the
population at large. The PopHR is being developed to pro-
vide an advanced infrastructure for research on population
health monitoring, policy making, and decision making.
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