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Relational Markov Decision Processes (RMDPs) offer
an elegant formalism that combines probabilistic and
relational knowledge representations with the decision-
theoretic notions of action and utility. In this paper
we motivate RMDPs to address a variety of prob-
lems in AI, including open world planning, transfer
learning, and relational inference. We describe a sym-
bolic dynamic programming approach via the ‘tem-
plate method’ which addresses the problem of reason-
ing about exogenous events. We end with a discussion
of the challenges involved and some promising future
research directions.

Introduction
The past decade has seen significant advances in expressive
probabilistic and relational knowledge representations and
inference on the one hand and effective decision-theoretic
planning on the other. The formalism of Relational Markov
Decision Processes (RMDPs) brings the two paradigms to-
gether by combining expressive knowledge representation
with decision-theoretic notions of actions and utilities.

To motivate the need for such a rich formalism, consider
the problem of building a general-purpose household robot.
A necessary condition for such a robot is that it should be
able to understand and do a variety of tasks, e.g., from open-
ing the doors to making coffee. In other words, its vocabu-
lary must include everyday objects such as cups and tables
and the relationships between them, thus ruling out systems
based on propositional languages (Boutilier et al. 2001). Im-
portantly, it must be able to plan and execute a sequence
of actions, and must respond rationally to exogenous events
such as hearing a door bell when making coffee. Unlike the
current planning systems that make the closed world as-
sumption, the robot needs to be able plan in open worlds,
where the set of objects in the world are variable and un-
known, e.g., a cup falls on the floor and breaks into many
pieces, or a neighbor brings a plate full of cookies (Tala-
madupula et al. 2010; Joshi et al. 2012). It should be able to
reason about the consequences of actions, and make infer-
ences about the goals and potential future actions of other
agents based on observations (Lang and Toussaint 2010).
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Indeed, it is hopelessly inadequate to either divorce action
from inference, or ignore the realities of open, relational,
stochastic, and multi-agent worlds. The robot must be able
to learn new knowledge and generalize and transfer to other
related settings, which means that the knowledge must be
represented in a general enough form (Proper and Tadepalli
2009). For example, while a cup may not be similar to a
vase, a broken cup is very much similar to a broken vase and
must be dealt with in similar ways.

In the current paper, we focus on one particular problem,
namely planning in the presence of exogenous events. We
are particularly motivated by applications to “service do-
mains,” such as taxi service, or inventory control, where
the stochasticity arises mainly due to the exogenous ser-
vice requests. The problem is to derive optimal plans that
allow the agent to effectively respond to these requests in a
timely manner over the long term. The main difficulty with
the exogenous events is that they are not directly addressed
by the standard MDP framework. They are instead treated
as stochastic outcomes of the agent’s actions, which is un-
natural. Further, the propositional formulation of the MDP
framework prevents us from taking advantage of the similar-
ity of different objects in the way they generate exogenous
events. We argue that a more natural modeling and analysis
of exogenous events would lead to more efficient and prac-
tical algorithms.

Our approach to the problem of solving RMDPs with high
exogeneity is based on Relational Symbolic Dynamic Pro-
gramming (RSDP) which builds a symbolic representation
of the optimal value function over relational states using
generalized first order decision diagrams (GFODDs). Un-
like the propositional approach which requires grounding of
the dynamics to each domain size, the relational (first or-
der logic) approach (Boutilier et al. 2001) generalizes to all
sizes. To our knowledge, the only work to have approached
first order treatment of exogenous events is (Sanner and
Boutilier 2009; Sanner 2008). While this work is very am-
bitious in that it attempted to solve a very general class of
problems using approximate policy iteration and heuristic
simplification, it is not clear when the particular combina-
tion of these ideas is applicable.

Instead of trying to solve general RMDPs with arbitrar-
ily complicated exogeneities, in this paper, we argue for fo-
cusing on a common but well-constrained kind of exogene-

15

Statistical Relational Artificial Intelligence: Papers from the AAAI 2013 Workshop



ity, which is centered around individual objects such as cus-
tomers in the aforementioned service domains. It seems rea-
sonable to assume that the customers behave independently
of each other and impact the service agent only through their
collective demands on its resources. Hence, in general, we
model the state transition in each step as first taking the
agent’s action, and then following a sequence of “object-
centered exogenous events” in any order. While the exact
solution to this problem is still likely to be complex, we
argue that a symbolic lower bound approximation can be
computed, and that this provides a useful solution. In par-
ticular, we develop and evaluate a new “template-based” al-
gorithm that substitutes and reasons about a generic exoge-
nous event, and uses it to calculate a symbolic approxima-
tion of the value function. We show that the approximation
is monotonic, which provides a guarantee that the resulting
greedy policy will at least achieve the computed value. We
have verified in two inventory control domains that our new
algorithm scales better than propositional approaches, and
produces a size-independent solution of high quality.

Relational Symbolic Dynamic Programming
We consider RMDPs that consist of states S which are finite
logical interpretations and action templates A(x) where x
can be instantiated by objects yielding ground actions. Dif-
ferent outcomes of a stochastic action A(x) are represented
as deterministic action variantsAj(x) which are chosen with
prob(Aj(x)|A(x)). We assume that the next state and the re-
wards are deterministic functions of the current state and the
deterministic action variant.
Relational Expressions and GFODDs. The key idea of
symbolic dynamic programming is to directly manipulate
the expressions that represent reward and transition func-
tions to derive symbolic value functions over interpreta-
tions. The RSDP algorithm of (Joshi et al. 2011) generalizes
(Boutilier et al. 2001) and employs GFODD representations
to do this.

For pedagogical reasons, a GFODD can be treated as an
expression f(x), similar to an open formula in first order
logic, which can be evaluated in interpretation I once we
substitute the variables xwith concrete objects in I . A closed
expression (aggregatexf(x)) aggregates the value of f(x)
over all possible substitutions of x to objects in I . In this
paper we focus on average and max aggregation. E.g., in an
inventory control (IC) domain we might use the expression:
“maxt avgs (if ¬empty(s) then 1, else if tin(t, s) then 0.1,
else 0)”. This awards a 1 for any non-empty shop and at most
one shop is awarded a 0.1 if there is a truck at that shop.
Relational Value Iteration. As input, the algorithm gets
closed GFODDs Vn, R, and open GFODDs for the prob-
abilistic choice of actions prob(Aj(x)|A(x)) and for the
dynamics of deterministic action variants. It then imple-
ments the following symbolic value iteration operator, rep-
resented as Vn+1 = RSDP 1(Vn) = maxA maxxR⊕ γ ⊕j

(prob(Aj(x))⊗Regr(Vn, Aj(x)))
Here, ⊕, ⊗ and max represent point-wise sum, multipli-

cation, and max of functions, γ is the discount factor, and
Regr is a regression of a function over a deterministic ac-
tion variant. Importantly, the variables in different parts of

of ⊕ are standardized apart, i.e., maxxf(x)⊕maxxg(x) =
maxxmaxyf(x)⊕ g(y), which is crucial for correctness.
Handling Exogenous Events. We next show how to extend
RSDP to handle exogenous events, which we treat as na-
ture’s actions, and assume to be “object-centered.” In partic-
ular, we assume A1: for every object i in the domain we
have action E(i) that acts on object i and the conditions
and effects of {E(i)} are such that they are mutually non-
interfering. In other words, given any state s, all the actions
{E(i)} are applied simultaneously, and this is equivalent
to their sequential application in any order. For our analy-
sis we make three further modeling assumptions. A2: each
exogenous action E(i) only effects unary predicates of ob-
ject i which we label “special”; A3: the special unary pred-
icates do not occur as preconditions of agent actions; and
A4: the reward function is a closed expression of the form
maxx avgyR(x, y), and any special predicates inR(x, y) are
only applied to y.

We use the same GFODD-based representation to capture
the dynamics of exogenous actions E(i) as we do for the
agent actions. Each potential exogenous action may have
several action variants, minimally, a success variantEsucc(i)
which might mean that the corresponding event has occurred
and a failure variantEfail(i) which means that it has not oc-
curred.
The Template Method. Naive approaches to extend RSDP
will use the explicitly ground E(i) in calculating the value
function but this does not yield an abstract solution. On the
other hand, exact solutions require counting formulas and
are very complex (Sanner 2008; Sanner and Boutilier 2009).
In contrast, our template method provides a completely ab-
stract approximate RSDP solution for the exogenous event
model.

The template method first runs the following 4 steps, de-
noted RSDP 2(Vn), and then applies RSDP 1 to the re-
sult. The final output of our approximate Bellman backup,
is Vn+1 = RSDP 1(RSDP 2(Vn)).
1. Skolemization: Let a be a Skolem constant not in Vn.
Partially ground V to get V = maxx V (x, a)
2. Regression: The function V is regressed over every de-
terministic variant Ej(a) of the exogenous action centered
at a to produce Regr(V,Ej(a)).
3. Add Action Variants: The value function is updated
V = ⊕j(prob(Ej(a)) ⊗ Regr(V,Ej(a))). Importantly, in
contrast with the RSDP 1 step, here we do not standard-
ize apart the functions when performing ⊕j . This leads to a
pessimistic approximation of the value function, as it could
overly constrain the action choices.
4. Reintroduce Avg Aggregation: An inductive argu-
ment based on our assumptions implies that the form
of V is guaranteed to be maxxW (x, a). Return V =
maxx avgyW (x, y).

Thus, the algorithm grounds V using a generic object for
exogenous actions, it then performs regression for a single
generic exogenous action, and then reintroduces the aggre-
gation. We make the following performance guarantee.

Theorem 1 Under assumptions A1, A2, A3, A4 we have
for all n: Vn ≤ Vn+1 ≤ T [Vn] ≤ V ∗, where T [V ] is the
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true Bellman backup.

The above theorem shows that our algorithm computes a
monotonic lower bound of the true value function, ensuring
that the value of the greedy policy wrt Vn is at least Vn.
In other words, Vn provides an immediate certificate on the
quality of the resulting greedy policy.

Without further logical simplification, the RSDP ap-
proaches including ours produce increasingly complex
GFODDs that can easily overwhelm the system. We devel-
oped new evaluation and model-checking reduction algo-
rithms for GFODDs that simplify diagrams and speed up the
run time. These reductions employ a focus set of examples to
check which parts of the GFODDs are exercised, and prune
the edges which are not exercised by any of the examples.
Experimental Results. Our experiments in two simple ver-
sions of “inventory control” domain showed that our ap-
proach is efficient, and produced policies that are competi-
tive with those found by the propositional approaches. More
importantly, because they are independent of problem size,
they scale more easily to large problem sizes.

The first version of the domain included shops with only
two levels of inventories and the same rate of consumption.
This version satisfied all assumptions (A1 · · · A4). We ob-
served that while the propositional systems could not handle
more than 9 shops, our system was able to scale up to 20
shops with a policy which is statistically indistinguishable
from the optimal policy. The second version had shops with
3 inventory levels and one of two possible rates of consump-
tion. This version violated our assumption A3. Although our
policy was statistically slightly inferior to the optimal in this
case, our system was able to scale to 20 shops, while the
propositional systems failed beyond 5 shops.

Conclusions and Future Work
We argued that RMDPs provide an elegant formalism that
supports planning, reasoning, and action execution in a rich
probabilistic relational language. We showed that at least in
some cases, our GFODD-based RSDP algorithm is efficient
and produces good policies which are size-independent. On
the other hand, our algorithm is not exact and only guaran-
tees a monotonic lower bound of the optimal result. Since
the implementation also uses model-checking reductions to
prune the GFODDs, the guarantees are further weakened
and become essentially statistical.

A cautious lesson one can draw from this is that approxi-
mations are essential. Although many domains have simple
dynamics which is compactly described, their value func-
tions are not necessarily compact, even when they are sym-
bolically expressed in elegant notation. The key questions
are what knowledge representation best supports such algo-
rithms and, when it fails, what to approximate and how. We
believe that RSDP methods have much to tell us about when
the value function is relatively compact, and when it is get-
ting too complicated to represent exactly. It is also possible
that while the value function for the whole RMDP is quite
complex, it might contain several “sub-RMDPs” which may
have more compact value functions. The area of hierarchical
reinforcement learning is founded on this insight.

Another area which seems ripe for exploration is RSDP
approaches for policy search. Indeed, GFODDs have been
used to represent and learn policies directly, and it has been
often argued that learning policies is simpler and better than
learning value functions (Wang et al. 2008). It is yet unclear
how to do this well, and whether and when policy-iteration
and other policy search-based methods would yield superior
results on problems of practical interest.

More recent successes in domains like Go suggest that it
is important to include real-time search in our algorithmic
tool-box (Silver et al. 2012). Approaches such as Monte-
Carlo tree search completely ignore the structured represen-
tation of the problem and treat each search node as atomic.
Most successful learning is problem-specific, and is driven
by feature engineering rather than a principled approach be-
ginning with the domain-dynamics. It seems that there is
much room for novel algorithms that combine symbolic in-
ference with search, sampling, and learning.

Finally, the relational representation provides an excellent
opportunity for studying domain reformulation. Often dif-
ferent formulations of the same problem can lead to very
different representations of the value functions and policies.
Automating such reformulations might be a powerful way
to further scalability, for example, via the induction of new
predicate definitions.
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