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Abstract

The introduction of Electric Vehicles (EVs) in the exist-
ing Energy Grid raises many issues regarding Grid sta-
bility and charging behavior. Uncontrolled charging on
the customer’s side may increase the already high peaks
in the energy demand that lead to respective increase in
the energy prices. We propose a novel smart charging al-
gorithm that maximizes individual welfare and reduces
the individual energy expenses. We use Reinforcement
Learning trained on real world data to learn the indi-
vidual household consumption behavior and propose a
charging algorithm with respect to individual welfare
maximization objective. Furthermore, we use statistical
customer models to simulate the EV customer behav-
ior. We show that the individual customers, represented
by intelligent agents, using the proposed charging al-
gorithm reduce their energy expenses. Additionally, we
show that the average energy prices, on an aggregated
level, are reduced as a result of smarter use of the energy
available. Finally we prove that the presented algorithm
achieves significant peak reduction and reshaping of the
energy demand curve.

Introduction
Key energy initiatives worldwide have as their main focus
to become fully independent from nuclear power and move
towards massive integration of renewable energy sources
(such as Germany to become totally independent from nu-
clear power by 2020). These sources are highly volatile and
create instability in the energy flow process. Therefore, en-
ergy policy makers stress the importance of effective balanc-
ing between energy supply and demand to avoid outages.

Electric Vehicles (EVs) are important tools towards a sus-
tainable solution, since they have storage features. Massive
EV integration in the Energy Grid has been outlined by the
main players in the energy policy landscape: according to
US president’s energy plan 1 million EVs are to be inte-
grated in the US energy market by 2015 (Department of
Energy 2011), similar aspirations have been expressed by
the German, Dutch and UK governments by 2020. The un-
coordinated use of EVs, though, will lead to high price
peaks during the charging time. Specifically, considering
customers range anxiety (Franke et al. 2011), this charg-
ing may threaten the grid’s stability. This particular anxi-
ety refers to the people’s feeling that they may run out bat-

tery capaciy while they are driving. Therefore they select
to charge their cars more often than needed. People plug in
their EVs when the loads on the grid are already high and
without controlled charging this might lead to problems.

Consequently, EVs are expected to change the logic be-
hind individual power consumption. Uncoordinated charg-
ing of EVs will lead to critical stress test of the current
grid. Therefore, there is need for smart charging algorithms
that will alleviate this strain. We propose a smart charging
algorithm that maximizes individual welfare and reduces
the individual energy expenses. As a result, it reduces the
peak consumption and supports grid’s stability. We use Q-
learning trained on real world data (described in the Data
Description subsection) to learn the individual consump-
tion behavior and propose a charging algorithm with respect
to individual welfare maximization objective. Furthermore,
we use statistical customer models to simulate the EV cus-
tomer behavior. We show that the individual customers, rep-
resented by intelligent agents, using the proposed charging
algorithm reduce their energy expenses. Additionally, we
show that the average energy prices, on an aggregated level,
are reduced as a result of smarter use of the energy available.

This paper is structured as follows. First we present re-
lated work with regard to EVs and their smart use in the
Smart Grid. Secondly, we describe the designed EV cus-
tomer model and explain the parameters used. Next, we pro-
pose a novel Smart Charging algorithm based on RL. Ad-
ditionally, we present various results from our analysis and
discuss their impact on the Energy Grid. And finally, we add
conclude remarks and outline streams for future research.

Background and Related Work
EVs comprise an essential party for absorbing demand peaks
on the grid, resulting from renewables’ volatility or other
causes. They have a prominent role because of the the stor-
age features available in the vehicle’s battery (Kempton
and Letendre 1997). These batteries play two roles, apart
from providing mobility to the owners. The first use is to
store power when there is available surplus and return it to
the grid when there is shortage. This can happen through
remote-control mechanisms, or by observing price varia-
tions (Kahlen et al. 2012). The second role is short-term bal-
ancing, which requires less capacity, and is controlled by ex-
ternal signaling. EVs show different consumption behavior
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from the plug-in hybrid EVs which use conventional fuels,
as well. In the presented research we aim at the less possible
dependence from fossil fuels, thus we focus on pure EVs.

The main issues that arise with the large scale use of EVs
in the grid are the charging availability of each individual
and the charging coordination to avoid demand peaks caused
by simultaneous charging. A number of scholar publications
deal with the issue of proper coordination strategies for EVs
with main objectives varying from making profit as individ-
ual energy providers (brokers) to increasing the social wel-
fare by reducing the energy prices. In (Acha et al. 2011)
the authors examine the optimal power flow using agent-
based modeling or EVs. The work (Gerding et al. 2011)
presents an online auction mechanism where the owners of
EVs state their timeslots available for charging and also bid
for power. The authors propose mechanism for charging co-
ordination which achieves better allocative efficiency com-
pared to some fixed benchmarks. In (Lopes et al. 2009) the
authors focus on the Portuguese energy grid and proposed
a smart charging coordination with the objective of maxi-
mizing the EVs integration. Finally, in (Vytelingum et al.
2010) the authors deal with storage batteries without spec-
ifying their use in EVs. However, they propose a charging
coordination mechanism that leads to price reduction and
increases the social welfare in a smart home.

We propose a smart charging algorithm that maximizes
individual welfare and reduces the individual energy ex-
penses. We use Reinforcement Learning (RL) to learn the
individual consumption behavior and propose a charging al-
gorithm with respect to individual welfare maximization ob-
jective. Furthermore, we design statistical customer mod-
els to simulate the EV customer behavior. In order to
model the customers we use the bottom-up design. This ap-
proach (Christoph 1998; Valogianni et al. 2012) focuses on
each individual household (or EV customer) and attempts to
create a detailed user profile. We show that the individual
customers, represented by intelligent agents, using the pro-
posed charging algorithm reduce their energy expenses.

EV Customer Modeling
The proposed customer model focuses on EV owners and
simulates their driving and charging behavior. More specif-
ically, simulates each individual driving behavior and dis-
tance for various activities performed per day, as well as the
household energy consumption behavior. Regarding charg-
ing, we assume initially only regular charging without hav-
ing any fast charging. We plan to integrate fast charging ca-
pabilities later on. However, this addition will create higher
challenges, since the demand peaks will be higher (i.e.
higher demand at shorter time). We base our simulation on
Smart Electricity Markets as discussed by (Bichler, Gupta,
and Ketter 2010) (phase 1 and 2) and we are working to-
wards integrating it in the Power TAC1 environment (Ketter
et al. 2012). An important factor in modeling the EV own-
ers is their driving profile. This profile directly determines
the battery capacity that a customer needs for driving and
consequently the capacity available to offset supply-demand

1powertac.org

imbalances. For the precise creation of the customers’ driv-
ing profiles we use mobility data from the Dutch Statistics
Office(CBS)2. The population is divided according to gen-
der and the social groups that comprise the total popula-
tion. Those social groups with their special characteristics
are: part-time employees, full-time employees, students and
pupils, unemployed and retired persons. Here full-time em-
ployees are considered those who work 30 hours per week
or more, whereas part-time employees are those with 12-30
hours of work per week. For each group there are different
activities accompanied with the kilometers needed per day
for each activity.

Table 1: Social groups and characteristics.

Social Start work Absence for
Group (time of the day) work (hours)

Part-time employee [7am− 8.30am] 4
Full-time employee [7am− 8.30am] 8
Pupil/ Student [7am− 8.30am] 7
Unemployed, Retired - -

Second step in the modeling process is the day determi-
nation (weekday or weekend). Having determined the ac-
tivities related to each group considering the day, we cre-
ate driving profiles corresponding to the distance that each
customer drives per day (assuming average driving speed).
Additionally, we determine the EV type that the customer
owns and consequently the respective storage capacity. We
assume that the customers in our population own purely
electric cars like Nissan Leaf3 and Tesla4 (Table 2). With re-
gard to the customer’s charging and discharging availability
we assume that the customers can charge their EV’s battery
when they are not only at home but also at work (”standard”
charging with direct billing to the customer), which is nowa-
days implemented by large businesses in order to encourage
their employees to drive ”green.” In this phase we do not
assume that the customers discharge their remaining battery
capacity for covering daily consumption needs. The Vehicle
to Grid (V2G) concept will have a different effect on the
energy consumption and we plan to examine it in the future.

The minimum charge level, the customer expects to have
available for unplanned use of the vehicle, expresses cus-
tomer’s risk attitude towards range anxiety. Customers who
are risk averse, want their EV fully charged as soon as pos-
sible after it’s plugged in, and never want the charge to be
less than 100% once it’s charged. On the other hand to-
tally risk seeking customers expect just the amount needed
for planned driving at the times they plan to drive. In other
words, they do not expect to use the vehicle for unanticipated
driving. Thus, we experiment with populations expressing
various risk attitudes.

The described model is depicted in Figure 1. The dark
colored parameters denote the inputs in the model, while

2www.cbs.nl
3www.nissanusa.com/leaf-electric-car/
4www.teslamotors.com
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Table 2: Electric Vehicles specifications.

Tesla S Nissan
Leaf

Battery 40 60 85 24
Capacity (KWh)
Distance with 257.6 370.1 563.3 222.5
full battery (km)
Charging Time 12 17.5 23 7
for full battery (h)

the light colored ones are those calculated by each module
(using look-up tables, and functions derived from the data).
The model’s output is the charging demand at each point
of time (timeslot) according to the inputs given. This is the
customer model used in the rest of the paper to simulate the
individual driving behavior. It can represent various types
of individuals according to the parameters given as input.
In this case we parametrize it based on probabilities given
from the Dutch Statistics office data (i.e the probabilities of
each customer type, activities etc within the total popula-
tion). Consequently, the demand coming from charging in-
cludes a stochasticity factor. This factor is interpreted as the
uncertainty regarding which social group the customer be-
longs to, which kind of activities he/she has chosen for the
coming day etc.

Figure 1: Electric Vehicle Customer Model.

For household consumption we use real world data avail-
able here (Frank and Asuncion 2010). These data refer to
household consumption including all the various household
appliances and refer both to weekdays and weekends. For
more information see the respective subsection. Firstly, we
need to define the percentage of the battery that a customer
can charge in a 24h horizon. From Table 2 we conclude
that customers owning Nissan Leaf cars, are more likely to
charge up to full battery’s capacity, since the nominal capac-
ity is smaller compared to the Tesla car models. In the latter
case a fully charged battery is not needed for a 24h horizon,
unless the customer is planning a long trip. These specifi-
cations refer to the most optimistic case without taking into
the urban driving environment. Thus, in future work we take
into account various driving attitudes depending on the ur-
ban environment (traffic lights, congestions, rush hours etc.),
so that we achieve higher realism.

Individual Utility and Welfare Function
Customers’ utility results both from power consumption
within the household and from consuming power for charg-
ing the EV. Assuming that the total consumption consists
of the two components: xh, household demand (KW) and
xc demand from EV charging we have the total utility in
equation (1). This gives us the utility that the customer gets
both from consuming energy through household devices and
through EV charging. It does not apply on a time scale. In-
stead, it gives a relation between consumption and received
utility, whenever this consumption might happen. Further-
more, it expresses an additive relationship since EV can be
considered as an extra device with different consumption
features that adds utility to the existing utility from house-
hold consumption. In other words, the customer gets utility
from using each household appliance (and consuming en-
ergy) and EV is considered one of this devices, which has
no inter-dependency with other devices. Thus, given that
the utility from all the household devices is Uh(xh, ω), the
utility from the EV is additional to that and expressed as
Uc(xc, λ). There is no relation between household consump-
tion and EV charging, since the customer decides based on
different activity set for consuming household energy and on
different activity set for EV charging. The user is charged for
the sum of his/her consumption which in our case is the sum
of the household consumption and the consumption coming
form EV charging.

U((x, ω, λ)) = κ · Uh(xh, ω) + (1− κ) · Uc(xc, λ) (1)

where Uh(xh, ω) the utility from household consumption
and Uc(xc, λ) the utility from charging. The parameter κ ∈
(0, 1) indicates the weight of those two utility components to
the customers overall utility from power consumption. The
parameters ω and λ characterize each individual customer
and their role is explained in the next paragraph. This util-
ity function does not apply to a timescale. Instead yields the
utility that the individual receives from the consumption of
each extra energy unit, whenever the customer consumes.

Regarding customer’s utility function resulting from
household consumption, Uh(xh, ω) we use the quadratic
utility function (2) which expresses the individual satisfac-
tion level for individual power consumption. This particular
family of functions is used for power consumption since the
customer receives increasingly lower benefit for each extra
energy unit he/she consumes.

Uh(xh, ω) =

{
ω · xh − α

2 · x2
h if 0 ≤ xh ≤ ω

α
ω2

2·α if xh > ω
α

(2)

where ω, stands for the level of satisfaction obtained by the
user as a function of its power consumption. It varies among
customers and gets values ω ∈ [0, 1]. The variable xh (KW)
stands for the individual power consumption and α is a pre-
defined parameter (e.g. 0.5 used in (Fahrioglu and Alvarado
2000)). This particular function family is chosen for power
consumption, since shows linear decreasing marginal benefit
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and represents sufficiently the power consumption behavior.
The marginal benefit Vh(xh, w) is presented in equation (3).

Vh(x, ω) =

{
ω − α · xh if 0 ≤ xh ≤ ω

α

0 if xh > ω
α

(3)

Figure 2 presents some examples of utility functions coming
from household demand (continuous lines) and respective
marginal benefits (dashed lines) for various values of ω and
with predefined α = 0.2. It becomes clear that higher values
of ω yield higher utility to the customer. We also observe,
that the higher the value for ω, the higher the individual
consumption that yields maximum utility to the energy cus-
tomer. This parameter may vary not only among customers
but also across time periods for the same customer. Thus it is
an strong indication for the customer’s elasticity of demand.

With regard to customer’s utility function resulting from
EV charging, Uc(xc, λ) we use sigmoid utility function
(Equation (4)). Intuitively, this choice results from the cus-
tomers satisfaction level which is little until the customer
has charged enough to cover his/her driving needs, and af-
ter this point each extra consumption unit adds less utility to
the customer. The point that is enough to cover the driving
needs varies among customer groups and attitudes towards
range anxiety. The more risk averse customers are, the more
utility for each extra power unit they get.

Uc(xc, λ) =
1

1 + e(−xc+λ)
(4)

with 0 ≤ xc ≤ xc,max. The parameter λ ∈ [0, λmax]
could be assumed as an indication for range anxiety, since
the higher λ is, the steeper the increase in the utility func-
tion for each extra power unit, that the customer ”consumes”
(charges in this case). The max value for λ, λmax is the
nominal capacity of the EV battery. The range anxiety and
parameter λ association becomes more clear from Equation
(5) which shows the marginal utility from EV charging. We
see that the marginal utility increases up to a maximum point
(where the customer feels that has enough battery capacity
to drive) and then decreases up to a point where no extra
utility is added.

Vc(xc, λ) =
e(−xc+λ)

(1 + e(−xc+λ))2
(5)

with 0 ≤ xc ≤ xc,max. Figure 3 displays the utility func-
tion coming from EV charging and the marginal utility for
various values of λ. We see that for higher λ values, the cus-
tomer needs more power, so that he feels that has enough
battery capacity. Thus, the higher the λ, the more risk averse
towards range anxiety the customer is.

According to consumer theory (Mas-Colell, Whinston,
and Green 1995), the individual welfare is defined as shown
in (6).

W (x, ω, λ) = U(x, ω, λ)− x · P (6)

where P stands for the price per power consumption unit
(e/KW). Substituting the Equations (1)-(5) in (6), we have:

W (x, ω, λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κ · (ω · xh − α
2 · x2

h) + (1− κ) · 1
1+e(−xc+λ) ...

..− (xh + xc) · P
if 0 ≤ xh ≤ ω

α and 0 ≤ xc ≤ xc,max

κ · ω2

2·α + (1− κ) · 1
1+e(−xc+λ) − (xh + xc) · P

if xh > ω
α and 0 ≤ xc ≤ xc,max

(7)

Figure 2: Utility function coming from household consump-
tion and marginal benefit for various values of ω.

Figure 3: Utility function coming from EV charging and
marginal benefit for various values of ω.

Given equations (1)-(7), we assume that each energy cus-
tomer/EV owner is represented by an intelligent agent that
acts towards the individual welfare maximization objective.
More specifically, the agent is responsible for scheduling the
EV charging so that individual welfare is maximum for each
timeslot.

Learning Individual Power Consumption
Using the described customer model we simulate large pop-
ulations of customers with different behavioral characteris-
tics and socio-demographics. However, it is important for
the customer agents to learn the individual household con-
sumption before they decide on EV charging. If they have
knowledge about each individual consumption they can ap-
ply charging algorithms that maximizes individual welfare.

We chose Reinforcement Learning (RL) to learn the cus-
tomers’ energy consumption. RL is based on a reward mech-
anism that provides the algorithm with positive and negative
rewards for optimal or non-optimal decisions, respectively.
We argue that this learning approach is suitable for the par-
ticular context, since the energy consumption shows a 24h
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periodicity and similarities in the trends throughout this 24h
time frame. More specifically, we use the Q-learning mech-
anism as described by equations (8) and (9) (Mitchell 1997).
The customer agent has to learn the optimal policy through
rewards r(s, a) that are offered to it for each (s,a). In the
described problem, the learned policy corresponds to the in-
dividual household consumption over a daily horizon. The
value of each reward is stated as Q(s, a). The rewards are
related to the utility function, giving higher utility, the closer
the state is to the actual consumption. The (s,a) represents a
state s to which the agent ends up as a result of an action a.
The states in this problem are the various consumption levels
discretized into levels of 1 Watt. Hence, the optimal policy is
the one that yields the maximum reward evaluation Q(s, a)
for each action a. In other words, the agent selects the policy
with the highest rewards which correspond to highest utility
obtained from each state (consumption level). After having
learned the individual household consumption, the agent can
adjust the EV charging, so that the total individual welfare
obtained (from household consumption and EV charging) is
maximal.

Q(s, a) = r(s, a) + γ · v∗(δ(s, a)) (8)

The function v∗(·) represents the discounted cumulative re-
ward achieved by the policy starting from state s. The func-
tion δ(·) is the one that determines the next state that the
agent should proceed, i.e si+1 = δ(s, a).

Therefore, the optimal policy is summarized as (Watkins
and Dayan 1992):

π∗ = argmaxaQ(s, a) (9)

where γ ∈ [0, 1] is the discount factor and practically
expresses the weight of the previous state rewards. For
our experiments we selected some representative values for
gamma (e.g γ = 0.7), and we aim to explore the effect of
the whole value range of this parameter in our future steps.

Markov Decision Process Representation
Based on the proposed Q-learning mechanism the customer
agent has to decide on the customer’s individual consump-
tion value, based on training on previous consumption en-
tries. More formally, the customer agents’ decision making
problem is outlined by the following Markov Decision Pro-
cess (MDP) (Puterman 1994) representation.

State Space S = {S0, ..., Si}
Action Space A = {a0, ..., ai}
Probabilities Pr(S0, S1) =

Pr(Si+1 = S1|Si = S0, ai = a0)
Rewards ri = {r0, ..., ri}

(10)
where i ∈ [1, N ] and N is the size of the horizon (minutes)
over which we want to learn the consumption. The states
here represent the energy consumption range, discretized at
the level of 1 Watt. The learning rewards are related to the
utility function and give lower utility when the state has con-
sumption farther from the exact amount that the consumer
needs. This choice is based on the fact that neither less nor
more energy would give the appropriate policy. In summary,

the learning algorithm learns the consumption trend through
iterating over the states which represent consumption levels

Data Description
Regarding the energy consumption data, we use the house-
hold consumption data from University of California Irvine
(UCI) machine learning repository (Frank and Asuncion
2010). This data set5 includes detailed consumption per
minute for a whole household. The measurements are gath-
ered between December 2006 and November 2010 (47
months). The collected data come from France, thus we
argue that represent the average European household con-
sumption behavior. However, the data selection is not re-
strictive for the applicability of the algorithm in different
consumption data patterns (e.g US energy consumption be-
havior). With regard to algorithm’s training, we train it on
data coming from one day (24h, 1440 observations) (ran-
domly picked). This means that the algorithm each time is
trained in random 24 hour time frame and then tested to the
rest of the data set. We chose the 24h timeframe, since the
periodicity of the learned policy is 24 hours. This training
is repeated multiple times to achieve well trained algorithm.
Part of our future work is to examine how much training is it
needed to have a good learning performance without having
over-fitting.

Smart Charging
After having learned the household consumption, the agents
have to schedule EV charging in the optimal way, with re-
spect to individual welfare maximization. For each times-
lot, t (1 min time period) the customer agent calculates the
amount that needs to be charged based on (11).

x∗
t = argmaxxt

W (x, ω, λ) (11)

subject to the constraint lbt < xt < ubt.
The lower bound for daily charging, lbt equals to the min-

imum capacity needed to cover the daily driving needs, as
they result from the statistical customer model. The upper
bound ubt represents the maximum power that the customer
agent can charge from the network per timeslot t. This rep-
resents the main network constraint and is dependent on the
voltage the current characteristics of the residential connec-
tion. The selection of this double constraint lies on the fact
that the agents must not violate the customer’s comfort and
have the EV always charged. Furthermore, the agents need
to support network stability, therefore we decided on this
particular upper bound.

Using (1)-(7), (11) becomes:

x∗
c,t = argmaxxc,t

{ (1− κ)

1 + e(−xc,t+λ)
− (xh,t + xc,t) · P}

(12)
which is a non-linear constrained maximization problem.

Table 3 presents a general formalization of Smart Charg-
ing Algorithm, as used by the customer agents.

5http://archive.ics.uci.edu/ml/machine-learning-
databases/00235/

45



Table 3: Smart Charging Algorithm Formalization.

Algorithm: Smart Charging

1 Initialization
2 Calculate optimal policy as

π∗ = argmaxaQ(s, a)
3 for each timeslot t
4 Learn household consumption xh,t

5 Calculate charging amount as
x∗
c,t = argmaxxc,t

{A}
with A = { (1−κ)

1+e(−xc,t+λ) − (xh,t + xc,t) · P}
6 end for
7 return x∗

c,t

Results
Using the designed customer model, we simulate popula-
tions of customers that own EVs. We assume that the energy
customers are represented by an agent responsible for their
EV charging. This agent uses the proposed Smart Charging
based on RL. End goal is to examine how this smart charging
algorithm affects the individual welfare and the general con-
sumption behavior. We compare the results with customer
agents that decide about EV charging based on purely be-
havioral characteristics, resulting from the designed EV cus-
tomer model. Finally, we assume real time pricing, and more
specifically we use the EEX price-trend over 24h horizons.

To gain a deeper understanding of the presented algo-
rithm we present some representative results using param-
eters ω = 1 (we will experiment with the whole range of
ω ∈ [0, 1] in coming subsection) and α = 0.5 (commonly
used in literature (Fahrioglu and Alvarado 2000), more ex-
perimentation with this parameter is part of our future work).
Furthermore we use λ = 8 since it gives customer satisfac-
tion for charging at around 50% of the nominal battery ca-
pacity. The minimum allowed State of Charge (SoC) for an
EV is 20%, so λ = 8 represents the average customer. Next
we use κ = 0.5 assuming equal split of the utility to house-
hold consumption utility and EV charging utility. End goal
of this research project is to examine the effect of all the pa-
rameter across their whole range. At this level we present
a general framework and some indicative results with some
fixed parameters, assuming they represent the average con-
sumer. Our results are based on the double bottom line: in-
dividual and society. Thus, we show the effect of the Smart
Charging adoption to the individual energy expenditures and
also to peak and price reduction for all the individuals in the
market (societal perspective).

Energy Expenditures Reduction
To test the effect of the proposed Smart Charging on individ-
uals, we examine the energy expenditures with and without
the use of our algorithm. We observe that Smart Charging
reduces significantly the average daily demand coming from
charging by 23.5%.

In parallel, the expenditure reduction dependent on the pa-
rameter λ is shown in Figure 4. We chose to do sensitivity

analysis for this parameter since it expresses the level of sat-
isfaction that the customer receives from energy consump-
tion, and thus it is indirectly related to the expenditures. This
illustration shows that the expenditure reduction reaches a
maximum for λ = 6 which corresponds to reduction of 30%.
Then the reduction is stable for increasing values of λ. This
illustration shows that there is no linear trend in the expen-
diture reduction and gives us the maximum of our algorithm
performance. Also, it indicates that customers with λ > 6
get no extra expenditures reduction. This means that cus-
tomers who are risk averse (higher λ) they do not get expen-
diture reduction. This is explained by the fact that the more
risk averse a customer is the more he/she charges the EV
battery, meaning that he/she consumes more and does not
get benefits from Smart Charging which practically sched-
ules the charging so that the individual is benefited from low
price time intervals.

It becomes clear that the proposed algorithm is rather ef-
fective in terms of benefiting the individuals. A maximum
of 30% decrease at the expenses for energy consumption is
strong incentive for the customers to adopt Smart Charging
for their EVs. In addition, it offers extra benefits to the en-
ergy policy makers since in supports stability and reduces
the volatility within the network. In the following section
we present analysis regarding this volatility and more specif-
ically the peak reduction (peak clipping).

Figure 4: Energy Expenditures Reduction as a function of λ.

Energy Peak Reduction
In this section we illustrate the energy peak reduction as
a function of the Smart Charging adoption in a population
where all the customers own an EV and use either uncon-
trolled charging (results direction from the EV customer
model) or Smart Charging. Specifically, we compare the
Smart Charging approach with the Uncontrolled Charging,
which results from the customers behavior. This practically
means that the customer charges whenever he/she comes
back from work and charges the EV according to the cur-
rent state of charge. This summarized on Table 4. Herex
is charging availability vector (i ∈ [0, 23]), E{ci} is ex-
pected capacity for driving, D – total demand vector, dh,
dc are the household and charging demand, respectively.
We observe that the peak reduction is linear with maximum
almost 25% of peak reduction. That means that there are
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Table 4: Uncontrolled Charging Decision Algorithm.

Algorithm: Uncontrolled Charging

1 Initialization
2 for i=0:23

Calculate xi

Calculate E{ci}
endfor

3 if xi == TRUE & SoCi < E{ci}
Di = dh,i + dc,i

endif
4 return D

strong incentives from the energy policy maker side to en-
courage the adoption of smart charging, since it will reduce
the heavy loads from the network (Figure 5). The linear
trend is straightforward, since the more agents move from
uncontrolled charging to Smart Charging, the more the de-
mand peaks are reduced. The maximum of almost 25% is
comparable to many Demand Side Management practices
that are used in the energy domain to shape the peaks to-
wards a smoother demand curve. Part of our future work is to
calibrate our algorithm so that achieves the desired demand
shaping, given particular input parameters. Finally, this peak
reduction leads to changes in the energy prices. The reason
is that the high energy prices are mostly resulting from peaks
in the energy demand.

Figure 5: Aggregate Peak Reduction as a function of Smart
Charging Adoption.

Energy Price Reduction
To examine the effect of the proposed Smart Charging to
the average prices (societal persecutive), we simulate popu-
lations of individual customers that use the proposed algo-
rithm and aggregate the consumption. This aggregation is
done by an intermediary party or broker (Ketter, Peters, and
Collins 2013). Making use of the Price = f(Demand) re-
lationship obtained by European Energy Exchange (EEX)
(Figure 6), we present the average prices after the use of the
Smart Charging algorithm (Figures 7 and 8) within a pop-
ulation of 10 million energy customers EV owners. Those
two graphs outline a clear increase in the energy savings and
price reduction as the Smart Charging Adoption increases.

In Figure 8 we observe that our algorithm leads to overall
energy price reduction up to 16%. The same trend is ob-
served in Figure 7, where we present the savings for each
individual in week time period. In the latter case, the indi-
viduals may be either Smart Charging adopters or not. This
means, that when there are Smart Charging adopters in the
market, side benefits arise for the non-adopters, as well (as
a result of the overall price reduction). Detailed analysis of
this effect is presented in the following subsection.

Figure 6: Price Demand relationship (source: EEX).

Figure 7: Individual savings as a function of Smart Charging
Adoption.

Figure 8: Average Price Reduction as a function of Smart
Charging Adoption.
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Savings for Smart Charging non-adopters and
adopters
As explained previously, the presence of Smart Charging
adopters in the market, brings average price reduction on
an aggregate level. This reduction is spread in the market
equally among energy customers. Therefore, there are bene-
fits for non adopters as well. As depicted in Figure 9, the sav-
ings for non-adopters are in fact larger than the Smart Charg-
ing adopters. This results from the relative difference be-
tween the charging demand. In the case of non Smart Charg-
ing adopters the demand is higher in absolute terms, and
when the prices are decreased, the benefit is higher. In con-
trast the Smart Charging adopters have already lower energy
demand in absolute terms and thus the price decrease does
not yield very large benefits. However, the Smart Charg-
ing Adopters pay less for energy compared to non-adopters,
even though they receive lower benefits. Therefore, there is
clear incentive for the EV owners to adopt Smart Charging.
The linearity in the graphs comes from the linearity of Smart
Charging adoption among the population. It is only influ-
enced by the percentage of the population that adopts Smart
Charging.

Figure 9: Savings for Smart Charging non-adopters and
adopters.

Conclusions & Future Work
Electric Vehicles are undoubtedly one important part of the
Smart Grid. If they are properly integrated in the grid, they
may yield significant benefits for the network and the energy
users. However, there is present the danger of uncontrolled
use of EVs that may easily lead to energy debacles, due to
”spikes” in the energy demand. Thus, we propose our Smart
Charging Algorithm to mitigate this danger and enhance a
stable energy network. At the same time we achieve price
reduction and individual savings on the electricity bill.

We designed a novel charging algorithm for EV cus-
tomers based on individual welfare maximization objec-
tive. We propose a statistical customer model to simulate
EV customers behavior and use Reinforcement Learning
to learn the individual household consumption. Combining
those components, we achieved reduction in the customers
energy expenditures. Additionally, we proved that the pro-
posed smart charging algorithm leads to peak reduction on
an aggregate level that supports Grid stability. Finally, we

show that the average energy prices are reduced for all cus-
tomers in the market (social welfare improvement) with the
use of smart charging against the uncontrolled charging.

In our future work we aim to increase the learning algo-
rithm’s accuracy and perform sensitivity analysis for the var-
ious parameters. Furthermore, we plan to include the V2G
concept and examine the effect on individual and social wel-
fare. Finally, we will incorporate the urban driving behavior
in the customer model and take into account the electrifica-
tion of transport.
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