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Abstract

Lifted inference algorithms exploit symmetries in prob-
abilistic models to speed up inference. They show im-
pressive performance when calculating unconditional
probabilities in relational models, but often resort to
non-lifted inference when computing conditional prob-
abilities, because the evidence breaks many of the
model’s symmetries. Recent theoretical results paint a
grim picture, showing that conditioning on binary rela-
tions is #P-hard, and in the worst case, no lifting can
be expected. In this paper, we identify Boolean rank of
the evidence as a key parameter in the complexity of
conditioning. We contrast the hardness result by show-
ing that conditioning on binary evidence with bounded
Boolean rank is efficient. This opens up the possibility
of approximating evidence by a low-rank Boolean ma-
trix factorization that maintains the model’s symmetries
and admits efficient lifted inference.

Introduction
Statistical relational models are capable of representing both
probabilistic dependencies and relational structure (Getoor
and Taskar 2007; De Raedt et al. 2008). Due to their first-
order expressivity, they concisely represent probability dis-
tributions over a large number of propositional random vari-
ables, causing inference in these models to quickly become
intractable. Lifted inference algorithms (Poole 2003) at-
tempt to overcome this problem by exploiting symmetries
found in the relational structure of the model.

In the absence of evidence, exact lifted inference algo-
rithms work well for large classes of statistical relational
models (Jaeger and Van den Broeck 2012). They perform
inference that is polynomial in the number of objects in
the model (Van den Broeck 2011) and are therein expo-
nentially faster than classical inference algorithms. When
conditioning a query on a set of evidence literals, how-
ever, these lifted algorithms lose their advantage over clas-
sical ones. The intuitive reason is that evidence breaks the
symmetries in the model. The technical reason is that these
algorithms perform an operation called shattering, which
ends up reducing the first-order model to a propositional
one. This issue is implicitly reflected in the experiment sec-
tions of exact lifted inference papers. Most report on exper-
iments without evidence. Examples include publications on

FOVE (Poole 2003; de Salvo Braz, Amir, and Roth 2005;
Milch et al. 2008) and WFOMC (Van den Broeck et al. 2011;
Van den Broeck 2011). Others have found ways of effi-
ciently dealing with evidence on only unary predicates.
They perform experiments without any evidence on bi-
nary or higher-arity relations. There are again examples for
FOVE (Taghipour et al. 2012; Bui, Huynh, and de Salvo
Braz 2012), WFOMC (Van den Broeck and Davis 2012),
PTP (Gogate and Domingos 2011) and CP (Jha et al. 2010).

This evidence problem has largely been ignored in the
exact lifted inference literature, until recently, when Bui,
Huynh, and de Salvo Braz (2012) and Van den Broeck and
Davis (2012) showed that conditioning on unary evidence
is tractable. More precisely, conditioning on unary evidence
is polynomial in the amount of evidence. This type of ev-
idence expresses attributes of objects in the world, but not
relations between them. Unfortunately, Van den Broeck and
Davis (2012) also showed that this tractability does not ex-
tend to evidence on binary relations, for which conditioning
on evidence is #P-hard. Even if conditioning is hard in gen-
eral, its complexity should depend on properties of the spe-
cific relation that is conditioned on. It is clear that some bi-
nary evidence is easy to condition on, even if it talks about a
large number of ground atoms, for example when all atoms
are true (∀X,Y p(X,Y )) or false (∀X,Y ¬p(X,Y )). As
our first main contribution, we formalize this intuition and
characterize the complexity of conditioning more precisely
in terms of the Boolean rank of the evidence. We show that
it is a measure of how much lifting is possible, and that one
can efficiently condition on large amounts of evidence, pro-
vided that its Boolean rank is bounded.

Despite the limitations, useful applications of exact lifted
inference were found by sidestepping the evidence problem.
For example, in lifted generative learning (Van den Broeck
2013), the most challenging task is to compute partition
functions without evidence. Regardless, the lack of symme-
tries in real applications is often cited as a reason for reject-
ing the idea of lifted inference entirely (informally called
the “death sentence for lifted inference”). This problem has
been avoided for too long, and as lifted inference gains ma-
turity, solving it becomes paramount. As our second main
contribution, we present a first general solution to the evi-
dence problem. We propose to approximate evidence by an
over-symmetric matrix with low Boolean rank. The need for

81

Statistical Relational Artificial Intelligence: Papers from the AAAI 2013 Workshop



approximating evidence is new and specific to lifted infer-
ence: in (undirected) probabilistic graphical models, more
evidence typically makes inference easier. Practically, we
will show that existing tools from the data mining commu-
nity can be used for this low-rank Boolean matrix factoriza-
tion task.

The evidence problem is less pronounced in the approxi-
mate lifted inference literature. These algorithms often intro-
duce approximations that lead to symmetries in their com-
putation, even when there are no symmetries in the model.
Also for approximate methods, however, the benefits of lift-
ing will decrease with the amount of symmetry-breaking ev-
idence. One example is CBP (Kersting, Ahmadi, and Natara-
jan 2009), which reports optimal performance at 0% evi-
dence. We expect our approximation technique to also im-
prove the performance of those algorithms.

1 Encoding Binary Relations in Unary
Our analysis of conditioning is based on a reduction, turning
evidence on a binary relation into evidence on several unary
predicates. We first introduce some necessary background,
and then describe the reduction.

Background
An atom p(t1, . . . , tn) consists of a predicate p /n of arity n
followed by n arguments, which are either (lowercase) con-
stants or (uppercase) logical variables. A literal is an atom
a or its negation ¬a. A formula combines atoms with logical
connectives (e.g., ∨, ∧, ⇔). A formula is ground if it does
not contain any logical variables. An Herbrand interpreta-
tion or possible world assigns a truth value to each atom.

Statistical relational languages define a probability distri-
bution over interpretations. Many have been proposed in re-
cent years. Our analysis will apply to all such languages,
including MLNs (Richardson and Domingos 2006), parfac-
tors (Poole 2003) and WFOMC problems (Van den Broeck
et al. 2011). For these models, we will consider the tasks
of computing conditional probabilities Pr(q | e) and most
probable explanations (MPE) of e.

Example 1. The following MLNs model the dependencies
between web pages. A first, peer-to-peer model says that stu-
dent web pages are more likely to link to other student pages:

w studentpage(X) ∧ linkto(X,Y )⇒ studentpage(Y )

A second, hierarchical model says that professors are more
likely to link to course pages:

w profpage(X) ∧ linkto(X,Y )⇒ coursepage(Y )

Evidence e is assumed to be of the form l1 ∧ l2 ∧ · · · ∧ ln
where li are ground unary (arity 1) or binary (arity 2) liter-
als. Without loss of generality, evidence is assumed to be full
(i.e, instantiating each ground atom) for all binary relations
that appear in e.1 Instead of representing the evidence as a
term, we will represent unary evidence as a Boolean vector

1Partial evidence on the relation p can be encoded as full ev-
idence on predicates p0 and p1 by adding ∀X,Y p(X,Y ) ⇐
p1(X,Y ) and ∀X,Y ¬p(X,Y ) ⇐ p0(X,Y ) to the model.

and binary evidence as a Boolean matrix. A final (weak) as-
sumption is that the statistical relational language being used
can express universally quantified hard logical constraints.
Example 2. The evidence matrix

P =


p(X,Y ) Y = a Y = b Y = c Y = d

X = a 1 1 0 0

X = b 1 1 0 1

X = c 0 0 1 0

X = d 1 0 0 1


represents the evidence term

e = p(a, a) ∧ p(a, b) ∧ ¬ p(a, c) ∧ · · · ∧ ¬p(d, c) ∧ p(d, d)

Vector-Product Binary Evidence
Certain binary relations can be represented by a pair of unary
predicates. By adding the formula

∀X, ∀Y, p(X,Y )⇔ q(X) ∧ r(Y ) (1)

to our statistical relational model and conditioning on the q
and r relations, we can condition on certain types of binary
p relations. Assuming that we condition on the q and r pred-
icates, adding this formula (as hard clauses) to the model
does not change the probability distribution over the atoms
in the original model. It is merely an indirect way of condi-
tioning the p relation.

If we now represent these unary relations by vectors q and
r, and the binary relation by the binary matrix P, the above
technique allows us to condition on any relation P that can
be factorized in the outer vector product

P = q rᵀ

Example 3. Consider the following outer vector factoriza-
tion of the Boolean matrix P.

P =

0 0 0 0
1 0 0 1
0 0 0 0
1 0 0 1

 =

010
1


100
1


ᵀ

In a model containing Formula 1, this factorization indicates
that we can condition on the 16 binary evidence literals

e = ¬p(a, a) ∧ ¬ p(a, b) ∧ · · · ∧ ¬p(d, c) ∧ p(d, d)

of P by conditioning on the the 8 unary evidence literals

e =¬ q(a) ∧ q(b) ∧ ¬ q(c) ∧ q(d)

∧ r(a) ∧ ¬ r(b) ∧ ¬ r(c) ∧ r(d)

represented by q and r.

Matrix-Product Binary Evidence
This idea of encoding a binary relation in unary relations can
be generalized to n pairs of unary relations, through adding
the following formula to our model.

∀X, ∀Y, p(X,Y )⇔ (q1(X) ∧ r1(Y ))

∨ (q2(X) ∧ r2(Y ))

∨ . . .

∨ (qn(X) ∧ rn(Y )) (2)
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By conditioning on the qi and ri relations, we can now con-
dition on a much richer set of binary p relations. The rela-
tions that can be expressed this way are all the matrices that
can be represented by the sum of outer products (in Boolean
algebra, where + is ∨ and 1 ∨ 1 = 1):

P = q1 r
ᵀ
1 ∨q2 r

ᵀ
2 ∨ · · · ∨ qn r

ᵀ
n,

or equivalently

P = QRᵀ, (3)

where the columns of Q and R are the qi and ri vectors
respectively, and the matrix multiplication is performed in
Boolean algebra, that is,

(QRᵀ)i,j =
∨

r Qi,r ∧Rj,r

Example 4. Consider the following P, its decomposition
into a sum/disjunction of outer vector products, and the cor-
responding Boolean matrix multiplication.

P =

1 1 0 0
1 1 0 1
0 0 1 0
1 0 0 1

 =

010
1


100
1


ᵀ

∨

110
0


110
0


ᵀ

∨

001
0


001
0


ᵀ

=

0 1 0
1 1 0
0 0 1
1 0 0


1 1 0
0 1 0
0 0 1
1 0 0


ᵀ

This factorization shows that it is possible to condition on
the binary evidence literals of P by conditioning on the
unary literals

e =¬ q1(a) ∧ q1(b) ∧ ¬ q1(c) ∧ q1(d)

∧ r1(a) ∧ ¬ r1(b) ∧ ¬ r1(c) ∧ r1(d)

∧ q2(a) ∧ q2(b) ∧ ¬ q2(c) ∧ ¬ q2(d)
∧ r2(a) ∧ r2(b) ∧ ¬ r2(c) ∧ ¬ r2(d)
∧ ¬ q3(a) ∧ ¬ q3(b) ∧ q3(c) ∧ ¬ q3(d)
∧ ¬ r3(a) ∧ ¬ r3(b) ∧ r3(c) ∧ ¬ r3(d)

2 Boolean Matrix Factorization
Matrix factorization (or decomposition) is a popular lin-
ear algebra tool. Some well-known instances are singu-
lar value decomposition and non-negative matrix factor-
ization (NMF) (Seung and Lee 2001; Berry et al. 2006),
which decomposes a matrix into a product of matrices with
only non-negative entries. NMF attracted much attention re-
cently, in unsupervised learning and feature extraction, be-
cause its decompositions do not contain negative numbers
and are therefore more easily interpretable. These factoriza-
tions all work with real-valued matrices. We instead consider
Boolean-valued matrices, with only 0/1 entries.

Boolean Rank
Factorizing a matrix P in Boolean algebra as QRᵀ is
a known problem called Boolean Matrix Factorization
(BMF) (Miettinen et al. 2006; Snášel, Platoš, and Krömer
2008; Miettinen et al. 2008). BMF factorizes a (k × l) ma-
trix P into a (k × n) matrix Q and a (l × n) matrix R,

where potentially n � k and n � l and we always have
that n ≤ min(k, l).

Any Boolean matrix can be factorized this way and the
smallest number n for which it is possible is called the
Boolean rank of the matrix. Unlike (textbook) real-valued
rank, computing the Boolean rank of a matrix is NP-hard
and cannot be approximated unless P=NP (Miettinen et al.
2006). The Boolean and real-valued rank of a matrix are
incomparable, and the Boolean rank can be exponentially
smaller than the real-valued rank.
Example 5. The factorization in Example 4 is a BMF with
Boolean rank 3. It is only a decomposition in Boolean alge-
bra and not over the real numbers. Indeed, the matrix product
over the reals contains an incorrect value of 2:0 1 0

1 1 0
0 0 1
1 0 0

×real

1 1 0
0 1 0
0 0 1
1 0 0


ᵀ

=

1 1 0 0
2 1 0 1
0 0 1 0
1 0 0 1

 6= P

Note that P is of full real-valued rank (having four non-zero
singular values) and that its Boolean rank is lower than its
real-valued rank.

Approximate Boolean Factorization
The problem of computing Boolean ranks is a theoretical
one. Because many real-world matrices will have close to
full Boolean rank, applications of BMF look at approximate
factorizations, where the matrix is approximated as a prod-
uct of two significantly smaller matrices. The goal is to find

argmin
Qk×n,Rl×n

d
(
Pk×l ,

(
Qk×n R

ᵀ
l×n
))

for some distance function d. When n � k and n � l, this
approximation extracts interesting structure from the matrix
and removes noise. For this reason, BMF has recently re-
ceived considerable attention in the data mining community,
as a tool for analyzing high-dimensional data. In this data
mining research, the goal is to find interpretable (here mean-
ing Boolean, not real-valued) representations of the most im-
portant concepts in a data matrix.

Unfortunately, the approximate BMF optimization prob-
lem is NP-hard as well, and inapproximable (Miettinen et
al. 2008). However, several algorithms have been proposed
that work well in practice. Algorithms exist that find good
approximations for fixed values of n (Miettinen et al. 2008)
and that select optimal values of n using the MDL princi-
ple, (Miettinen and Vreeken 2011). When P is sparse, good
approximations can be found in polynomial time (Mietti-
nen 2010). BMF is related to other data mining tasks, such
as biclustering (Mirkin 1996) and tiling databases (Geerts,
Goethals, and Mielikäinen 2004), whose algorithms could
also be used for approximate BMF.

3 Complexity of Binary Evidence
The previous sections have shown how binary evidence can
be represented by unary evidence and how this corresponds
to a BMF. This section builds on that insight to obtain a com-
plexity result for conditioning on binary evidence e, that is,
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computing Pr(q | e) for ground atoms q, or the most prob-
able explanation of e. Our analysis will apply to classes of
models that are domain-liftable (Van den Broeck 2011), such
as the ones in Jaeger and Van den Broeck (2012), where no
grounding is required and inference runs polynomial in the
number of objects.

Unary Evidence
Bui, Huynh, and de Salvo Braz (2012) and Van den Broeck
and Davis (2012) both present lifted algorithms for condi-
tioning on unary relations. Their algorithms have a complex-
ity that is polynomial in the number of evidence atoms in e.
The technique of Van den Broeck and Davis (2012) supports
hard evidence on multiple different predicates. It is not clear
whether Bui, Huynh, and de Salvo Braz (2012) also supports
this, but they do allow for soft evidence on a single predicate.
We refer to these papers for a more technical discussion, and
provide the following intuition instead.

Lifted inference algorithm exploit the fact that certain
groups of objects (referred to by constants) in the world
are indistinguishable and can be reasoned about as a whole.
The set of constants can be grouped into equivalence classes.
Each unary predicate u that we have evidence on splits a set
of constants into three: for a constant c, u(c) is either true,
false, or unobserved in the evidence. When there are n unary
predicates, this induces 3n equivalence classes of constants.
Therefore, exact lifted inference algorithms are generally ex-
ponential in the number of unary predicates. However, their
complexity is polynomial in the number of constants inside
each equivalence class (and the number of objects in the
world). For lifted algorithms, it only matters how many con-
stants there are in each equivalence class, since they have the
same properties.

Binary Evidence
It has been shown that the same tractability does not extend
to binary evidence. Unless P=NP, we cannot condition on
binary evidence in time polynomial in the size of the evi-
dence term e (Van den Broeck and Davis 2012, Thm. 7).
Still, it is clear that certain types of evidence are not a prob-
lem. For example, conditioning on the relation p(X,Y ) be-
ing false for all X and Y is not exponential in the number of
ground atoms being conditioned on. Regardless of the size of
e, we can condition on this evidence by adding the formula
∀X,Y,¬p(X,Y ) to our model. So clearly, specific proper-
ties of the evidence do allow for tractable conditioning.

Section 1 showed that binary evidence can be represented
by unary evidence, by extending the statistical relational
model with pairs of unary predicates (qi, ri) and with For-
mula 2.2 This involves decomposing the evidence matrix P
into a set of vector pairs (qi, ri). It follows from Equation 3
and Section 2 that the number of vector pairs (and predi-
cates) added to the model is the Boolean rank n of P. Using
the complexity results for unary conditioning, we can then

2Note that Formula 2 contains two logical variables. Hence, it
is in the class of models for which we can prove that domain-lifted
inference (polynomial in the number of objects in the world) is
always possible (Van den Broeck 2011; Taghipour et al. 2013)

condition on the specific (qi, ri) vectors in time polynomial
in their size. This leads us to conclude that the complexity
of conditioning on a binary relation, using for instance the
algorithm of Van den Broeck and Davis (2012), is not ex-
ponential in the size of the evidence, but exponential in the
Boolean rank of the evidence.

Theorem 1. The complexity of conditioning on a binary re-
lations with bounded Boolean rank is polynomial in the size
of the evidence.

After extending a model with Formula 2 for some n, it is
possible to condition on binary evidence matrices of any size
in polynomial time, as long as they have Boolean rank n.

Bounded treewidth is another property of the model that
permits efficient inference. Bounded Boolean rank seems
to be a fundamentally different property, more related to
the presence of symmetries than treewidth, which reflects
sparsity. Note that the complexity of exactly computing
treewidth and Boolean rank are both NP-hard (cf. Section 2).

4 Over-Symmetric Evidence Approximation
Theorem 1 opens up many new possibilities. Even for evi-
dence with high Boolean rank, it is possible to find a low-
rank approximate BMF of the evidence, as is commonly
done for other data mining and machine learning problems.
Algorithms already exist for solving this task (cf. Section 2).

Example 6. The evidence matrix from Example 4 has
Boolean rank three. Dropping the third pair of vectors re-
duces the Boolean rank to two.1 1 0 0

1 1 0 1
0 0 1 0
1 0 0 1

 ≈
010
1


100
1


ᵀ

∨

110
0


110
0


ᵀ

�
�
�
�
��@

@
@
@
@@

∨

001
0


001
0


ᵀ

=

0 1
1 1
0 0
1 0


1 1
0 1
0 0
1 0


ᵀ

=

1 1 0 0
1 1 0 1
0 0 0 0
1 0 0 1


This factorization is approximate, as it flips the evidence for
atom p(c, c) from true to false (represented by the bold 0).
By paying this price, the evidence has more symmetries, and
we can condition on the binary relation by introducing only
two instead of three new pairs (qi, ri) of unary predicates.

Low-rank approximate BMF is an instance of a more gen-
eral idea; that of over-symmetric evidence approximation.
This means that when we want to compute Pr(q | e), we ap-
proximate it by computing Pr(q | e′) instead, with evidence
e′ that permits more efficient inference. In this case, it is
more efficient because it maintains more symmetries of the
model and permits more lifting. Because all lifted inference
algorithms, exact or approximate, exploit symmetries, we
expect this general idea, and low-rank approximate BMF in
particular, to improve the performance of any lifted infer-
ence algorithm.

Having a small amount of incorrect evidence in the ap-
proximation need not be a problem. As these literals are not
covered by the first most important vector pairs, they can be
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considered as noise in the original matrix. Hence, a low-rank
approximation may actually improve the performance of, for
example, a lifted collective classification algorithm. On the
other hand, the approximation made in Example 6 may not
be a good one if we are querying attributes of the constant c,
and we might prefer to make approximations in other areas
of the evidence matrix instead. There are many challenges
in finding appropriate over-symmetric evidence approxima-
tions, which makes the task all the more interesting.

5 Empirical Illustration
To complement the theoretical analysis from the previous
sections, we will now report on preliminary experiments that
investigate the following practical questions.
Q1 How well can we approximate a real-world relational

data set by a low-rank Boolean matrix?
Q2 For which Boolean ranks can we perform inference with

a state-of-the-art exact lifted inference algorithm?
To answer Q1, we compute approximations of the linkto

binary relation in the WebKB data set using the ASSO al-
gorithm for approximate BMF (Miettinen et al. 2008). The
WebKB data set consists of web pages from the computer
science departments of four universities (Craven and Slat-
tery 2001). The data has information about words that ap-
pear on pages, labels of pages and links between web pages
(linkto relation). There are four folds, one for each univer-
sity. The exact evidence matrix for the linkto relation ranges
in size from 861 by 861 to 1240 by 1240. Its real-valued rank
ranges from 384 to 503. Performing a BMF approximation
adds or removes hyperlinks between web pages, so that more
web pages can be grouped together that behave similarly.
As discussed in the previous section, this is a good idea un-
der the assumption that the added or removed hyperlinks are
noise in the original data.
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Figure 1: Approximation error (number of incorrect literals)
for increasing Boolean rank of the linkto relation

Figure 1 plots the approximation error for increasing
Boolean ranks. The error is measured as the number of in-
correct evidence literals, or equivalently, the number of bits
flipped in the matrix. The point plotted for Boolean rank 0
is the error when all literals are conditioned to be false. As
these matrices are very sparse, this already yields a very low
error. However, by increasing the Boolean rank only slightly,
the error in the approximation reduces significantly. After a

rank of around 70 to 80, the error is reduced by half, even
though the matrix dimensions and real-valued rank are much
higher. Note that the evidence matrix contains around a mil-
lion entries, and that the approximation at rank zero already
correctly labels 99.7% to 99.8% of the evidence. The highest
reported ranks achieve an accuracy of 99.9% to 99.95%.

To answer Q2, we investigate the influence of adding For-
mula 2 to the “peer-to-peer” and “hierarchical” MLNs from
Example 1 (also in the WebKB domain). We extend these
models with Formula 2 to condition on linkto relations with
increasing Boolean rank n. These models are then compiled
using the WFOMC (Van den Broeck et al. 2011) algorithm
into first-order NNF circuits. With these circuits, lifted infer-
ence is possible in time polynomial in the domain size, and
in this case, the size of any evidence of rank n.3

n 0 1 2 3 4 5 6
(a) 18 58 160 1873 > 2129 ? ?
(b) 24 50 129 371 1098 3191 9571

Table 1: First-order NNF circuit size (number of nodes) for
increasing Boolean rank n, and (a) the peer to peer and (b)
hierarchical model

Table 1 shows the sizes of these circuits. As can be ex-
pected, circuit sizes seem to grow exponentially with n. Ev-
idence appears to break more symmetries in the peer-to-peer
model than in the hierarchical model, causing the circuit size
to increase more quickly with Boolean rank.

6 Conclusions
We presented two main results. The first is a precise com-
plexity characterization of conditioning on binary evidence,
in terms of its Boolean rank. The second is a technique to
approximate binary evidence by a low-rank Boolean matrix
factorization. This is a first type of over-symmetric evidence
approximation that can speed up lifted inference.

In the context of social network analysis, our decompo-
sition approach is related to stochastic block models (Hol-
land, Laskey, and Leinhardt 1983) and their extensions.
For future work, we want to thoroughly evaluate the prac-
tical implications of the theory developed here. This in-
cludes investigating the tradeoff between approximation
quality and efficiency given by the Boolean rank parame-
ter. There are many remaining challenges in finding good
evidence-approximation schemes, including ones that are
query-specific (cf. de Salvo Braz et al. (2009)) or that
incrementally run inference to find better approximations
(cf. Kersting et al. (2010)). Furthermore, we want to investi-
gate other subsets of binary relations for which conditioning
could be efficient, in particular functional relations p(X,Y ),
where each X has at most a limited number of associated Y
values.

3Note that having a compiled circuit does not mean that lifted
inference is possible for any evidence matrix and domain size. It
only means that the complexity of lifted inference is polynomial
in the size of these inputs. The degree of the polynomial may be
high, and inference may only be possible for small domain sizes
and evidence matrices.
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