
Classification Driven Detection of Opportunistic Bids in TAC SCM∗

Anuj Toshniwal
Center for Data Engineering,

International Institute for
Information Technology (IIIT).

Hyderabad, India.
anuj.t@students.iiit.ac.in

Kuldeep Porwal
Center for Data Engineering,

International Institute for
Information Technology (IIIT).

Hyderabad, India.
kuldeep.porwal@students.iiit.ac.in

Kamal Karlapalem
Center for Data Engineering,

International Institute for
Information Technology (IIIT).

Hyderabad, India.
kamal@iiit.ac.in

Abstract

The main objective of a bidding agent in TAC SCM
is to get profitable orders and to get enough orders to
keep the production going. There is a delicate balance
that the bidding agent needs to maintain while deciding
on which specific orders to bid and what bidding price
to set. In this highly complex bidding problem with
(i) many inter-dependencies, (ii) multiple information
flows, (iii) historical data and knowledge, the bidding
agent can bid for a few opportunistic orders at a rea-
sonably higher price, which gives higher profit. In this
paper, we use classification to determine opportunistic
bids to increase our profit. Our solution is robust and
adapts according to the dynamic changes in the market
condition and the competition provided by the compet-
ing agents. Our results show that classification using our
opportunistic approach contributes to a significant per-
centage of our agent’s profit.

1 Introduction
In today’s highly competitive market place, managing

supply chains is one of the most challenging problems. Sup-
ply chains consist of heterogeneous subsystems and com-
plex relationships requiring collective effort and constraint
based optimization. In dynamic market conditions, it is very
difficult to take both short and long term decisions simul-
taneously. A multi agent system, consisting of several au-
tonomous agents can address this problem and take appro-
priate decisions.

The Trading Agent Competition for Supply Chain Man-
agement (TAC SCM) (Collins et al. 2007) was designed to
capture many of the challenges involved in sustaining dy-
namic supply chain practices. This paper describes the bid-
ding strategy of the Iota trading agent, which is one of the
winning agents in TAC SCM 2012. In this paper we focus on
the bidding sub-system, which is a crucial component. Bid-
ding in TAC SCM can be considered similar to First Price
Sealed Bid Auction in which the submitted bids against cus-
tomers’ request for quotes (RFQs) are compared and the bid-
der with the lowest bid wins the order.

∗Trading Agent Competition for Supply Chain Management
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Agents participating in the game must simultaneously
compete in two markets with interdependencies, and take
their decisions based on incomplete information about the
state of the market. In one market, agents buy their sup-
plies and in the other, they sell their finished products. Sup-
ply and demand of each market varies dynamically not only
by randomness but also due to competing agents’ strategies.
Agents have a limited time to take a number of decisions. All
these factors make the problem quite challenging to address.

In this highly complex bidding problem with (i) many
interdependencies, (ii) multiple information flows, (iii) his-
torical offline data and knowledge, the agent can bid for a
few opportunistic orders at a reasonably higher price, which
gives higher profit.

We have modeled our agent as a business entity capable of
using game theory, machine learning and data mining tech-
niques. Our agent focuses on dynamics such as market trend,
customer demand and changes in procurement costs to learn
and adapt. We present a classification driven approach to
identify opportunistic bids. Our agent classifies the customer
requests received each day into different classes using a pa-
rameterized decision tree and bids accordingly.

The remaining paper is structured as follows. In section
2, we discuss TAC SCM game specifications and describe
the problem and related work. We present an overview of
our agent’s bidding module and focus on classification of
customer requests in section 3. In section 4, we present the
results showing performance of our agent in TAC SCM.

2 Bidding in TAC SCM
In this section, we describe the game overview and problem
specifications. We also highlight some relevant related work
that has been done on the problem.

TAC SCM Overview
In TAC SCM, six assembly agents compete in a simulated

market environment constituting a supply chain. An agent’s
task is to procure components, manufacture personal com-
puters (PCs) and to win customer orders (bidding subtask).

Each simulation day is of 15 sec and the game consists
of E days (in standard settings, E=220). At the start of each
day, all agents receive a Request For Quotes (RFQ) bundle
specifying customer requests. Each RFQ specifies (i) prod-

33

Trading Agent Design and Analysis: Papers from the AAAI 2013 Workshop



uct id, (ii) desired quantity, (iii) due date, (iv) reserve price
and (v) penalty.

An agent must bid to satisfy both quantity and due date
for the customers to consider the bid. Also, each day the
agents receive a price report containing information about
the lowest and highest prices for each type of PC ordered on
the previous day. Full specification of the TAC SCM game
is given in (Collins et al. 2007).

Problem Specification
The agent receives numerous RFQs from the customer

each day, requesting different types of PCs. The total quan-
tity of PCs requested on a given day is much higher com-
pared to an individual agent’s production capacity. Faced
with this problem of plenty, the agent aims to identify and
bid on a set of selected customer RFQs that maximize the
profit subject to its factory capacity constraints (Collins et
al. 2007) and component (current and expected in future)
availability.

The profit depends not only on the RFQs being bid on the
current day, but also on RFQs that need to be bid in immedi-
ate future. If these future RFQs are ignored while selecting
the current day’s bids, the agent might commit all available
production resources on the current RFQs, leaving it unable
to bid on more profitable future RFQs.

In a naive approach, the agent attempts to predict the high-
est winning price and bid on selected RFQs, expecting to
win each one of them. But we follow a more viable op-
portunistic approach, which involves placing high bids on
a subset of RFQs depending upon current market situation,
expecting to win a few of them. Our agent tries and ensures
that it balances this risky approach in such a way that it does
not lead to low revenue while keeping its assembly line busy.

Design Challenges There is a delicate balance that the
agent needs to maintain while deciding on which specific
orders to bid, and what bidding price to set. The agent does
not want to acquire all orders but neither does it wish to
underutilize its factory production capacity. Agents in the
past have used varying approaches to solve this problem, but
these approaches are highly complex and involve expensive
computations.

Related Work
Different techniques have been explored by agents to solve
Bidding problem. Mostly statistical approaches are used to
win sealed price based auctions. Some of the those ap-
proaches are discussed in the following survery (Vicky and
Cassaigne 2000). A heuristic approach to search for the op-
timal set of bids is described in (Pardoe and Stone 2004). An
approximate optimization procedure that uses values to de-
compose the decision problem is presented in (Kiekintveld
et al. 2009). Other examples of some important work in-
clude empirical game theory approach (Jordan, Kiekintveld,
and Wellman 2007), mathematical programming approach
[(Benisch et al. 2004) and (Kovalchuk and Fasli 2008)], de-
cision making [(He et al. 2006), (Collins, Ketter, and Gini
2009), (Ketter et al. 2009)], particle swarm optimization
and policy search via adaptive functions (Chatzidimitriou,

Figure 1: Dependency Model for Bidding subsystem.

Symeonidis, and Mitkas 2012). Main disadvantage for most
of these approaches that are based on learning from offline
past bid data is that there are many dependent variables
which make it difficult for the agent to map the current situ-
ation to a similar situation in the past data. There are numer-
ous variables like competing agents, past and present mar-
ket trend, agent performance, expected future demand, sup-
plier factory settings - price, delivery time, capacity - and
resource availability (component and factory cycles), which
affect the decision making of the agent. It is very difficult
to map all these parameters and settings to some previous
game data and use it. Further, most of the models also fail to
include current rivalry in the market while some algorithms
fail to adapt quickly. In this paper we present a classification
model which captures dependencies and can easily adapt to
any runtime changes.

3 Bidding Agent
We have modeled our agent as a business entity capable of

using game theory, machine learning and data mining tech-
niques. Our agent focuses on dynamics such as market trend,
customer demand and changes in procurement costs to learn
and adapt. In this paper, we present only the classification
subtask of the bidding subsystem.

Each day, the agent takes decisions based on past, current
and expected future dynamics of the market. Our agent con-
siders the daily market condition as a data stream and uses
the information from the past k days window (we use k=5).
We follow trial and error approach with different window
sizes to figure out the corresponding impact on agent’s per-
formance and fix the window size accordingly. Window size
is an important parameter in our strategy, since our agent
learns the current market situation based on information
gathered in present window and adapts accordingly. Win-
dow size not only affects the bidding module, but also plays
a crucial role in the pricing and procurement modules (which
are not discussed in this paper).

In Figure 1, we describe the dependencies between vari-
ous subtasks of bidding. These dependencies are described
below:

34



Table 1: Daily Execution Loop for bidding

(i) At the start of each day, the agent does preprocessing
of data involving:

• Demand Estimation.
• Price Report Analysis.
(ii) Classify the RFQs. Prune the non-profitable

RFQs and sort the remaining RFQs.
(iii) Process the sorted RFQs, predict a bid price for each

RFQ and send offer.

(a): Based upon the current arrivals of RFQs, agent predicts
the behavior of future RFQ arrivals and demand (section 3).
(b), (c), (k): Our agent’s decision making criterion depends
upon its previous criterion, it’s bidding performance and fu-
ture demand (section 3).
(d), (e), (f), (g): Dynamic Profit Adjuster Scale (DPAS) is
our price prediction module, used to decide the bid price.
Our agent’s pricing strategy depends upon it’s previous state,
bidding log, analysis of price reports and expected future de-
mand.
(i), (j): Current availability of resources depends not only on
current active orders, but also on demand in future.
(h): Projected components inventory of agent depends upon
the past negotiations with suppliers.
(l), (m), (n): The bidding agent learns from the past, present
and future knowledge as shown in Figure 1.

Table 1 describes the daily execution loop for bidding fol-
lowed by our agent. Detailed description of pricing strategy
and supplier negotiation strategies are not described in this
paper.

Demand Estimation
Demand estimation is necessary to make important deci-

sions like classification of RFQs, planning for future inven-
tory levels and resource restriction.

Products are classified into three market segments – high
range, mid range, and low range – according to their nominal
price (Collins et al. 2007). Correspondingly, customers ex-
hibit their demand by issuing RFQs in each segment. Num-
ber of customer RFQs for day d issued in each market seg-
ment is determined by a draw from a Poisson distribution
with mean Qd. Demand evolves according to Qd, which is
varied using a trend τ given by daily update rule:

Qd+1 = min(Qmax,max(Qmin, τdQd)) (1)

τ is updated according to a random walk given by:

τd+1 = max(τmin,min(τmax, τd + random(−0.001, 0.001)))
(2)

Whenever τ exceeds its min-max bound, it is reset to its ini-
tial value, which is equal to 1. The statesQ and τ are hidden,
but we know thatQd+1 is a deterministic function ofQd and
τd as specified in Equation 1. This deterministic relation is
exploited using a Bayesian Network Model in (Kiekintveld
et al. 2004) to estimate the demand process based on the cur-
rent observed demand. We use this distribution to estimate
expected future demand as in (Kiekintveld et al. 2004).

We require a holistic view of demand. For this, we con-
sider the sum of RFQs of the three market segments (Qsum)
and define net demand of a day d (Dnet(d)) as follows:

Dnet(d) =


low, if Qsum(d) < 130.

mid, else if Qsum(d) < 220 .

high, otherwise.
(3)

The above values used for comparison are chosen through
empirical analysis of large number of games and by analyz-
ing the number of RFQs sent by customers each day which
falls in the range of 80 to 320 RFQs per day.

Price Report Analysis
We define H(d,p) and L(d,p) for a product p at day

d from High Price (HighPrice(d,p)) and Low Price
(LowPrice(d,p)), received in price report at the start of each
day. We use H(d,p) and L(d,p) to estimate the current trend
and predict bid price accordingly.

Since we do not want to bias our decision on price fluctu-
ation of a single day, we define H(d,p) as the weighted sum
of High Prices of past k days window. Exponentially decay-
ing weight factor (γ/2i) is used to give higher weightage to
recent days.

H(d,p) =
k∑

i=1

γ

2i
∗HighPrice(d−i,p) (4)

Here, γ is the scaling factor such that (γ *
∑k

i=1 2
−i = 1).

Similarly we find L(d,p) based on Low Prices of past k days.
If we increase the window size, the weight associated

with most recent information decreases as the weight is dis-
tributed to include more days. This leads to slow adaptation
by our agent which in turn affects our agents performance.
Similarly decreasing the window size will bias our agent’s
decision towards most recent information leading to poorer
performance, as shown in Results (section 4) under Experi-
ments subsection.

RFQ Classification
The vital aspect for winning any multiplayer game is that

the agent must be alert to identify and grab any opportunity
that comes along. Sometimes taking immediate rewards are
better than waiting for long term rewards. On the other hand,
sometimes the agent must think long term and be willing to
take a dip in performance if it leads to a spike later, thereby
improving the agent’s performance. An opportunistic agent
is one which is able to identify opportunities and act pos-
itively on them. But sometimes there are cases when there
is no opportunity. Then agent should be flexible enough to
choose the best possible strategy for that period too.

To identify and utilize opportunities, we classify the RFQs
and bid accordingly,i.e. the agent predicts different bid price
based on the assigned class of the RFQ to maximize it’s
profit. We use a parameterized decision tree model along
with other learning algorithms like dynamic programming
and heuristic based learning to solve this problem as elab-
orated below. We dynamically learn the parameters of the

35



decision tree based on current agent performance and mar-
ket conditions of past, present and future.

With the use of decision tree we prune the non-profitable
RFQs and classify the remaining RFQs into three different
classes namely Singles, Fours and Sixes 1 .

Figure 2: Decision Tree for RFQ Classification

• Singles: RFQs which are highly profitable, considering
the manufacturing cost incurred by the agent. We need to try
and acquire orders for these RFQs, even if we need to bid
at a slightly lower price than desired, just to be sure that we
win the bid. The profit margin, even at this lower price, is
better than most other RFQs. The intuition here is that other
agents might also try to bid on these RFQs and we must aim
to outbid them.
• Fours: These are the RFQs for which our agent takes

some risk. The agent bids on these RFQs, expecting to win
a few of these. Such RFQs corresponds to mainly two cases
– (i) the expected profit margin compared to other RFQs is
low, and (ii) profit margin is decent but the future demand is
expected to increase, implying that the agent can earn more
in the future. In either case, the agent takes risk knowingly
and bids at a comparatively higher price in order to earn bet-
ter profit. Also based on the acceptance rate of these bids,
our agent analyzes the current pricing trend and competition
in the market.
• Sixes: Remaining RFQs are classified as Sixes. We try

for maximum profit and bid very close to the reserve price
for such RFQs. Orders for such RFQs are like bonus -it is
good if we have them, but it does not matter if we don’t.

As we move from Singles to Fours to Sixes, the element of
risk taken by the agent increases. In other words the chances
of agent winning the order decreases. A ‘steady flow’ of or-
ders corresponding to Singles RFQs is a must to ensure de-
cent profit and sufficient factory utilization. Classifying all
RFQs into Singles or Fours or Sixes is considered to be the

1We use Cricket game analogy – Singles are used to keep the
scoreboard ticking, while Fours and Sixes are highly risky but op-
portunistic.

pure strategy as each class has its own significance. But in
SCM, market conditions are very dynamic and to adapt and
utilize these conditions we have to use the proper mix of
Singles, Fours and Sixes i.e. we have to be opportunistic.

We did thorough analysis to determine certain rules for
building decision tree and for this we ran 1261 games with
various parameters. These rules help us in selecting the at-
tributes and in deciding the splitting conditions for various
attributes of the decision tree.

Empirical Analysis based Classification After empirical
analysis of 1261 games, we came up with certain heuristics
and threshold values of the various parameters about the
game. Using this we built the decision tree model. The deci-
sion tree is parameterized, where each parameter is learned
/ adapted dynamically based on market conditions of past,
present and future. Thus, this decision tree is applicable for
all types of games low, mid and high demand. Described
below are the basic rules that we have obtained through
analysis.

Rule 1 : We increase the number of Fours and Sixes when
either there is less competition in the market i.e. Singles ac-
ceptance rate is Good, or if the future demand is expected
to be high. In the former case, the agent has the opportu-
nity to take more risks; in the latter the agent knows it will
get the opportunity to sell it’s products at a comparatively
higher price in the future, thereby bidding for more Fours
and Sixes.

Rule 2 : We decrease the number of Fours and Sixes when
either there is high competition in the market i.e. if Singles
acceptance rate drops below a certain level (noGood condi-
tion), or if the future demand is expected to be low. In both
cases, we need to try and get more orders to increase rev-
enue.

Rule 3 : Closer the due date, the more difficult it is for
the agents to fulfill the order in time, leading to possible
late deliveries and penalty. Hence, RFQs with closer due
date are classified as Fours or Sixes and priced a bit higher
than normal. But if the expected profit is very good and
resources are available, we take the risk with respect to late
delivery and classify the RFQ as Singles.

Decision Tree Decision tree (Figure 2) has 3-attributes:
< ProfitFactor, DD, SAR>.

(i) ProfitFactor is used to consider the profitability feature
of RFQs. It is the main attribute in classification. To define
ProfitFactor, we first define PriceFactor for a RFQ as fol-
lows:

PriceFactor =

{
H(d,p) − CostPricep, if Res> H(d,p)

Reserve− CostPricep, if Res< H(d,p)

(5)

Here d is current date, p is productID and Res is the re-
serve price of the RFQ. CostPricep represents the mini-
mum cost price of the given product, determined from the
projected component inventory of agent available before the
due date of the RFQ. We first find those set of components

36



available in our projected inventory which sums up to min-
imum nominal price for the product and this price is con-
sidered as CostPrice. Say, if the due date for the RFQ is
day 56. We consider components required for assembling
the product, which are expected to be available by day 54
(one day is for production and the last day for delivery).
From this set we find the components available with mini-
mum cost and calculate the CostPrice of product by adding
the price of all 4 corresponding components.

We use minimum cost price to determine the best possible
profit that we can get for each RFQ, by considering the in-
ventory available. To normalize the PriceFactor correspond-
ing to each RFQ we define ProfitFactor as follows:

ProfitFactor = PriceFactor/AssemblyCycp (6)
AssemblyCycp is the number of assembly cycles required
to manufacture a unit quantity of the product.

(ii) DD attribute considers the due date of the RFQ. Due
date plays an important role in pricing and resource alloca-
tion.

DD = (dueDate− currentDate) (7)
(iii) SAR represents offer acceptance rate of Singles RFQs

over previous k days. This attribute is used to evaluate the
current market performance of the agent and the rivalry be-
tween the competing agents. High value of SAR implies that
the agent is performing well by efficiently handling the com-
petition from the rival agents and vice versa. We consider
RFQs of only Singles category and not Fours or Sixes cat-
egory for this factor, because of the critical importance of
acquiring orders corresponding to Singles RFQs.

SAR = (singlesOrdered/singlesOffered) (8)
where singlesOffered is the sum of offers sent for
RFQs treating them as Singles in previous k days and
singlesOrdered is the sum of orders received correspond-
ing to these offers.

To implement the discussed rules in the decision tree we
have to dynamically learn the thresholds to split profitFactor
attribute.

Determining Thresholds RFQs with ProfitFactor value
less than T3 are pruned. T0, T1, T2 and T3 thresholds are
dynamically learned based on the following two factors:
(i) expected customer demand in the future (futureD). It is
computed as follows:
futureD = mode(Dnet(i)) i = (d+1) to (d+k) (9)

If the predicted future demand is higher than current ob-
served demand, we increase the thresholds, since price is
expected to increase when the demand improves and vice
versa. Thus, if higher demand is expected in future, we can
wait for the prices to rise, and at this time take more risks
by bidding for Fours and Sixes RFQs. If lower demand is
predicted in future, agent must try and acquire more orders
now, before prices start decreasing. We define demandEffect
for current day d as:

demandEffect =


−1, if futureD < Dnet(d).

1, if futureD > Dnet(d).

0, otherwise.
(10)

(ii) offer acceptance rate of Singles RFQs (SAR). If SAR
drops below a predefined lower bound static threshold lowT,
we need to decrease the value of thresholds to try and get
more orders. Similarly, if SAR is greater than upper bound
threshold highT, we can afford to increase the thresholds and
convert few RFQs from Singles to Fours and some RFQs
from Fours to Sixes in order to get more profit. We have set
lowT and highT values on the basis of a large number of
training games’ result logs. We define sarEffect as:

sarEffect =


−1, if SAR<lowT.
1, if SAR>highT.
0, otherwise.

(11)

For day d, we compute Ti by using the following dynamic
programming approach:

Ti(d) = (1+(β ∗ (sarEffect+demandEffect)))∗Ti(d−1)
(12)

Here, β is the rate of change of threshold. β is a constant
factor in the range [0,1]. Value of β is decided based on the
confidence in determining demandEffect and sarEffect and
is given by

β = 0.5 ∗ TotalSingles
TotalRFQs

+ 0.5 ∗ Pr(futureD|Dnet(d))

(13)
Here the TotalSingles denotes total number of Singles of-
fered by agent and TotalRFQs denotes total number of RFQs
received by agent in the current window. The probability
term is determined through Demand Estimation process de-
scribed above.

Once we update Ti’s, we wait for a period of 3 days before
making another update, to give time for the change in Ti’s
to work.

After classification, we first process the Singles, then
Fours and lastly Sixes. In each category, the RFQs are ranked
in descending order based on ProfitFactor of the RFQs. This
method of ranking ensures that the profitable RFQs come
out on top and are given more priority when allocating re-
sources.

The agent has already committed some factory cycles in
the future for the completion of it’s active orders. Further,
depending on the future demand, some of the factory cycles
are restricted and not available for committing on the cur-
rent day. For each RFQ, we check if sufficient free factory
cycles are available to complete the order. If not, we check
for any extra inventory which can be committed to the par-
ticular RFQ. But, if still unsuccessful, we demote the cate-
gory of RFQ – from Singles to Fours; Fours to Sixes; Sixes
to Prune.

Also to accomplish Rule 1 and Rule 2, we convert some
RFQs from Fours to Singles and some from Sixes to Fours.
The intuition here is that some profit is better than no profit.
But, we also ensure that we maintain the balance, as ulti-
mately it is the profit that matters at the end of the game and
not the revenue.

Our agent is flexible enough to know when there isn’t any
opportunity available. In that case, we can intuitively infer
that rivalry is strong and it is better to increase number of
Singles.

37



Strategy Profit% Utilization Singles Fours Sixes
(in %) True False Offers Orders True False Offers Orders Offers Orders

1. Only Sixes 12.29 18 0 0 0 0 0 0 0 0 31681 429
2. Only Fours 24.71 34 0 0 0 0 7154 20092 27246 2008 0 0
3. Only Singles 58.38 71 15030 5887 20917 6524 0 0 0 0 0 0
4. Window (=1) 58.79 57 15495 1290 16785 4474 5975 296 6271 734 2839 205
5. Window (=3) 62.01 58 15909 1062 16971 4592 6118 208 6402 878 3639 308
6. Window (=7) 61.64 60 16062 1152 17214 4501 6389 224 6629 833 3198 292
7. Window (=9) 57.09 58 17980 1323 19303 4311 6634 308 6942 796 3402 187
8. Opportunistic Bidding 66.68 64 16690 845 17535 4812 4751 152 4903 1170 3651 443

Table 3: Experiment Results (average of 50 games each)

Rank Agent Average Score Average Score
(final) (at end of 195th day)

1. Deep Maize 11.46 M 8.118 M
2. Punga2Bani 8.364 M 2.635 M
3. Iota 5.835 M 3.226 M
4. HEU2012 4.223 M -4.058 M
5. Mertacor -1.367 M -5.586 M
6. Crocodile -2.625 M -7.897 M

Table 2: Average scores of Final round in TAC SCM 2012

4 Results
In this section, we evaluate the agent performance and com-
pare the agent strategies under different experimental setups.

Agent Performance
To evaluate and validate the adaptive and dynamic tech-
niques of our agent under different conditions, we took part
in TAC SCM 2012 competition. The final score provides
suggestive evidence regarding the efficacy of our strategy
and approach. Our agent Iota finished third behind two other
agents. This is mainly because our agent was not able to
adapt well in the end phase of the game and fell behind the
other top agents after 195th day. Table 5 shows that at the
end of 195th day, the average profit of our agent was sec-
ond highest. But during the end phase of the game, we were
unable to hold our position and slip to third. To improve
our performance in the end phase of the game, we need to
improve coordination between the different modules of our
agent. Apart from bidding module, pricing and procurement
modules also play an important role.

In this paper, we focus only on the classification sub-task
of the bidding subsystem. Pricing and procurement strate-
gies are not discussed.

Experiments
We present the results of controlled experiments designed

to compare different strategies of our agent and their im-
pact on our agent’s performance. We run 50 games for each
experiment against five of the best agents that have par-
ticipated in TAC SCM competition – TacTex (Pardoe and
Stone 2004), DeepMaize [(Kiekintveld et al. 2009), (Kiek-
intveld et al. 2004)], Phant Agent (Stan, Stan, and Florea
2006), Maxon and Mertacor (Chatzidimitriou, Symeonidis,
and Mitkas 2012). All five agents have finished first in atleast

one of the previously held TAC SCM competitions. We
use the binary codes of the agents available in TAC Agent
Repository to run the simulations. Running each experi-
ments 50 times basically covers different low demand, mid
demand and high demand games and gives us a nice plat-
form to analyse these results.

For the experiments conducted, Table 3 presents the com-
parison of average results of different parameters of our
agent. Comparison is done mainly on the basis of Profit%
among other factors.

Profit% =
ProfitR

max
∀ i∈agents

(Profiti)
∗ 100 (14)

ProfitR indicates the profit of our agent and Profiti de-
notes the profit of agent i.

In Table 3, False indicates the number of RFQs which
should have been classified differently and bid at a differ-
ent price. If majority of the agents bid for a RFQ at a price,
which is either 10% greater or 10% lesser than our agent’s
bid price, we term the RFQ as falsely classified. Lesser num-
ber of False offers indicates better strategy. Complement of
the False set is the True set. True offers are the offers corre-
sponding to the RFQs which are classified and bid appropri-
ately.

In the following experiments, we test the impact of our
RFQ classification model on our agent performance. Strat-
egy 8 is the final version of our agent, which we entered
in the competition. We use the mixed strategy for Singles,
Fours and Sixes RFQs classified using our parameterized de-
cision tree. Window size is 5.

In strategy 1, we treat all the RFQs as Sixes and bid. Sim-
ilarly in strategy 2 and strategy 3, we treat all the RFQs as
Fours and Singles respectively and bid. Strategy 1,2 and 3
are the pure strategies. Strategy 8 is our opportunistic bid-
ding agent that does proper classification and is the mixed
Strategy of Strategies 1,2 and 3.

In ‘Only Sixes’ strategy (highly risky) and ‘Only Fours’
strategy (risky), profit and utilization are both less under-
standable. While in ‘Only Singles’ strategy (safe), the fac-
tory utilization is bit high, but profit is less compared to that
in strategy 8, representing classification based on identify-
ing opportunity. This is because the agent can maximize its
profit by bidding reasonably higher on some RFQs, depend-
ing on the situation, expecting to win a few such orders.

In strategy 4, 5, 6 and 7, we change the ‘window’ size for

38



Rank Agent Average Score
1. TacTex 8.49 M
2. DeepMaize 6.62 M
3. Iota 5.84 M
4. Phant 5.67 M
5. Maxon 3.31 M
6. Mertacor 2.15 M

Table 4: Comparison of our strategy with top agents

Setup Profit% Singles Fours Sixes Utiliz-
Offers Orders Offers Orders Offers Orders ation

(in %)
F(5),S(0) 66.68 17535 4812 4903 1170 3651 443 64
F(4),S(1) 70.11 15934 4902 5225 1286 3817 522 66
F(3),S(2) 75.36 15401 5136 5452 1367 4015 549 69
F(2),S(3) 83.07 15022 5201 5610 1508 4341 583 73
F(1),S(4) 90.88 14680 5315 5785 1587 4498 611 76
F(0),S(5) 98.79 14140 5699 6069 1634 4751 647 80

Dummy(5) 100 13633 5908 6518 1748 5051 706 93

Table 5: Illustrating effect of rivalry due to competing
agents.

our agent, keeping everything else the same as our oppor-
tunistic agent in strategy 8 where window size is set as 5. The
results indicate that the agent is more robust with 5 as the
‘window’ size. Keeping the window size small makes our
agent biased towards a small change in market conditions.
On the other hand, the agent adapts slowly to the dynami-
cally changing market conditions if window size is large.

Table 4 illustrates the performance of our Iota agent
against the five best agents of TAC SCM. In this experiment
we compete against those agents for 50 games with equal
distributin of low,mid and high demand games.

Adaptation
Table 5 shows that our agent learns and adapts according

to the changes in market conditions and rivalry. F(x) in Ta-
ble 5 represents x different agents, which have been finalists
in previous years in TAC SCM competition (same agents
as those in Table 4). Similarly, S(y) represents y different
agents, which got eliminated in the initial rounds in previ-
ous years SCM competitions while competing against agents
of Set-F (F(x)) , the agents are Crocodile, Botticelli, kshitij,
Grunn and GoBlueOval (also taken from TAC Agent Repos-
itory). Dummy represents the default agent of TAC SCM,
based on random bidding strategy. In short F(x) represents x
self learning agents who provides tougher competition in the
market while S(y) represent y self learning agents who had
some startegy but can not provide good competition com-
pare to agents in F(x). So as we increase x in F(x) we in-
crease the competition in the market and as we increase y in
S(y) we decrease the competition in the market.

As the competition decreases, the opportunity increases
and our agent is able to procure more orders. Also percent-
age of orders corresponding to Fours and Sixes increases,
compared to high competition games. This leads to increase
in profit. For each value of x and y we ran 50 simulations

with equal distribution of low, mid and high demand games.
Hence from Table 5, we can conclude that our agent adapts
according to the competition provided by the fellow compet-
ing agents.

Summary
Table 2, 3, 4 and 5 shows that our solution is able to

perform effective opportunistic bidding by not only getting
higher profit but also maintaining high utilization. Our agent
is also able to adapt dynamic market changes. Thus there
is scope for threshold based classification driven solution
to address this important problem. The thresholds are com-
puted at runtime to determine the RFQs to be bid. Our op-
portunistic agent has been able to get significant number of
Fours and Sixes even with the top agents of TAC SCM.

Our classification model can be used for multiplayer game
problems involving continuous iterations in a dynamic envi-
ronment, with feedback from previous iterations. Real Time
Scheduling System for Taxi (Glaschenko et al. 2009) is one
of the example where we can apply our model.2

Future work involves further improving the performance
of the agent in the end phase of the game 3. Also, we must
predict the set of possible future RFQs and bid appropriately.

References
Benisch, M.; Greenwald, A.; Grypari, I.; Lederman, R.; Nar-
oditskiy, V.; and Tschantz, M. 2004. Botticelli: A supply
chain management agent. In ACM Trans. on Comp. Logic,
1174–1181.
Chatzidimitriou, K. C.; Symeonidis, A. L.; and Mitkas, P. A.
2012. Policy search through adaptive function approxima-
tion for bidding in tac scm. In TADA and AMEC.
Collins, J.; Arunachalam, R.; Sadeh, N.; Eriksson, J.; Finne,
N.; and Janson, S. 2007. The Supply Chain Management
Game for the 2007 TAC. In Technical report CMU-ISRI-07-
100,Carnegie Mellon University.
Collins, J.; Ketter, W.; and Gini, M. 2009. Flexible decision
control in an autonomous trading agent. Electron. Commer.
Rec. Appl. 8(2):91–105.
Glaschenko, A.; ; Ivaschenko, A.; ; Rzevski, G.; ; and Sko-
belev, P. 2009. Multi-agent real time scheduling system for
taxi companies.
He, M.; Rogers, A.; Luo, X.; and Jennings, N. R. 2006.
Designing a successful trading agent for supply chain man-
agement. In AAMAS ’06, 1159–1166. New York, NY, USA:
ACM.
Jordan, P. R.; Kiekintveld, C.; and Wellman, M. P. 2007.
Empirical game-theoretic analysis of the TAC Supply Chain
game. In AAMAS’07, 193:1–193:8. New York, NY, USA:
ACM.
Ketter, W.; Collins, J.; Gini, M.; Gupta, A.; and Schrater,
P. 2009. Detecting and forecasting economic regimes in

2Demonstration for Taxi scheduling is out of the scope of this
paper.

3Need to improve coordination between the procurement mod-
ule and the bidding module of our agent.

39



multi-agent automated exchanges. Decision Support Sys-
tems 47(4):307 – 318.
Kiekintveld, C.; Wellman, M. P.; Singh, S.; Estelle, J.;
Vorobeychik, Y.; Soni, V.; and Rudary, M. 2004. Distributed
feedback control for decision making on supply chains. In
14th ICAPS, 384–392.
Kiekintveld, C.; Miller, J.; Jordan, P. R.; Callender, L. F.; and
Wellman, M. P. 2009. Forecasting market prices in a supply
chain game. Electron. Commer. Rec. Appl. 8(2):63–77.
Kovalchuk, Y., and Fasli, M. 2008. Adaptive strategies for
predicting bidding prices in supply chain management. In
10th ICEC, 6:1–6:10. New York, NY, USA: ACM.
Pardoe, D., and Stone, P. 2004. Bidding for Customer Or-
ders in TAC SCM. In In AAMAS’04 Workshop on AMEC VI:
Theories for and Enginnering of Distributed Mechanisms
and Systems, 143–157. Springer Verlag.
Stan, M.; Stan, B.; and Florea, A. M. 2006. A dynamic
strategy agent for supply chain management. In SYNASC’06,
227–232. Washington, DC, USA: IEEE Computer Society.
Vicky, P., and Cassaigne, N. 2000. A critical analysis of
bid pricing models and support tool. In Systems, Man, and
Cybernetics, 2000 IEEE International Conference on, vol-
ume 3, 2098 –2103 vol.3.

40




