
Recommending Improved Configurations for
Complex Objects with an Application in Travel Planning

Amihai Savir
Department of Computer Science

Ben-Gurion University of the Negev
asavir@cs.bgu.ac.il

Ronen I. Brafman
Department of Computer Science

Ben-Gurion University of the Negev
brafman@cs.bgu.ac.il

Guy Shani
Information Systems Engineering

Ben-Gurion University of the Negev
shanigu@bgu.ac.il

Abstract
In many applications a user attempts to configure a com-
plex object with many possible internal choices. Rec-
ommendation engines that automatically configure such
objects given user preferences and constraints, may pro-
vide much value in such cases. These applications offer
the user various methods to provide the input and gen-
erate appropriate recommendations. It is likely, though,
that the user will not be able to fully express her prefer-
ences and constraints, requiring a phase of manual tun-
ing of the recommended configuration. We suggest that
following this manual revision, additional constraints
and preferences can be automatically collected, and the
recommended configuration can be automatically im-
proved. Specifically, we suggest a recommender com-
ponent that takes as input an initial manual configura-
tion of a complex object, deduces certain user prefer-
ences and constraints from this configuration, and con-
structs an alternative configuration. We show an appeal-
ing application for our method in complex trip planning,
and demonstrate its usability in a user study.

Introduction
The configuration of complex objects is known to be a dif-
ficult task (Magro and Torasso 2000; Soininen et al. 2000;
Aldanondo, Moynard, and Hamou 2000). Consider the task
of purchasing a computer. Such a computer is constructed
from a CPU, RAM, hard disk, and many more internal items.
The user must select appropriate components to meet her
needs. An even more complex problem is that of construct-
ing a trip to a country, where the goal of such a trip is to visit
a set of attractions located in different parts of the country. A
configuration of a such trip consists of a set of attractions to-
gether with a schedule for visiting them, as well as, possibly,
additional locations for over-night stays and meals.

To come up with a good travel plan, a traveler may re-
search the destination country thoroughly, reading travel
books or talking to past travelers. Although some people en-
joy this planning phase, it is clear that constructing a sat-
isfactory trip requires investing significant time and effort.
Given one’s limited resources, it unlikely that she be able to
exhaustively search the huge configuration space involved
and design an optimal trip.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Alternatively, a soon-to-be traveler may use a sophis-
ticated recommender system (e.g., (Venturini and Ricci
2006)) for constructing trips. In these systems the user often
answers a set of required questions about her preferences,
and receives a recommended plan. This plan is unlikely to
be taken as is by the user, and users typically revise the
recommended plan manually, by, e.g., switching attractions,
changing the schedule, and so forth. This manual revision
phase is needed because it is well known that expressing
preferences and constraints is difficult and exhausting for
users (Pu et al. 2011). Thus, one can consider the manual re-
vision phase as implicitly expressing additional preferences
and constraints that were not initially inserted.

In this paper we propose a method that can be used to
automatically improve such manually constructed or revised
plans. We envision our method as a component within a so-
phisticated travel recommender system, used after the man-
ual revision phase. Our suggested algorithm takes as input a
manual configuration from the user, with additional personal
preference data. In the trip example, the user provides an ini-
tial planned trip, possibly generated through a manual revi-
sion of a previously suggested trip. The user also specifies
numeric ratings for the attraction in the input trip, reflecting
how interesting each chosen attraction is to her.

The system then learns from the trip and the attraction
ratings the user’s preferences over both attraction properties
and more global trip properties. For example, from a user
who rates many museums positively the system may learn
that the user prefers museums to hiking. The system also
learns constraints over the relationships between items in
the configuration. For example, the system may learn that
the user plans a trip with no more than an hour drive be-
tween attractions, and hence deduce a constraint of short
distances between attractions. Thus, while the user supplies
preferences on the components, the system deduces prefer-
ences and constraints about both component classes and the
relationship between components, automatically. Our algo-
rithm then translates the constraints and preferences into an
integer programming (IP) problem, and runs an IP solver to
obtain a solution. The solution is translated back into a re-
vised trip, and returned to the user for inspection. The user
may choose to farther revise the trip, and so forth.

To examine the utility of this approach, we ran a user
study for trips to New Zealand, an attractive destination for

38

Intelligent Techniques for Web Personalization and Recommendation: Papers from the AAAI 2013 Workshop

tourists, and in particular hikers, many of which spend con-
siderable time planning their trip. Participants in the user
study, all people who toured New Zealand, provided an ini-
tial 5-6 day trip. After running our algorithm, we displayed
3 optional suggestions and asked participants to rate them.
Study participants clearly preferred the revised trip, and in-
dicated that if a system like that was available, they would
have liked to use it.

Background
Recommender systems (Ricci, Rokach, and Shapira 2011)
are now widely used in many applications, such as the on-
line retailer Amazon1 and the online video streaming service
NetFlix2. Perhaps the most popular approach for provid-
ing recommendations is the collaborative filtering (CF) ap-
proach (Resnick et al. 1994; Breese, Heckerman, and Kadie
1998) where the system recommends to a user items that
where preferred by users with similar behavior (e.g. similar
past purchases). This approach requires that users provide
historical data, typically through past interactions with the
system. In CF, the system typically ignores the attributes of
items and users, and computes similarity only based on the
interactions of users with items.

A second popular alternative is the content-based (CB)
approach (Lops, de Gemmis, and Semeraro 2011), where
items are described using a set of attributes. For example,
in our system, attractions may be described by their cate-
gory (e.g. museum, or hiking), by their location, by their
price, and so forth. We can also describe users in terms of
preferred attributes, and then compute which items are pre-
ferred by the user. Pure CB systems require no knowledge
of past user choices/preferences, or they may be augmented
with CF data in the case of hybrid systems (Burke 2002).

In some cases, in addition to the information about item
attribute values, the system must also maintain information
about relationships between items. For example, in the case
of attractions we may need to have distance information
or public transportation opportunities between attractions.
Two attractions in New Zealand, for instance, may be rel-
atively nearby geographically, but due to a mountain range
in between may require significant time to travel in between.
Also, when visiting an attraction one must plan accommo-
dations, dining, and so forth. The museum, the restaurant,
and the hotel must be sufficiently close in order for the user
to enjoy them all in one afternoon. Other information may
describe how similar two attractions are. For example, two
museums may be very similar, making a visit to both less
desirable, or they could be distinct, and a visit to both can be
interesting for a museum lover.

A system that maintains, in addition to the item attributes,
relationships between attributes and items, is often referred
to as a knowledge-based recommender system (Cunning-
ham and Bonzano 1999). Such systems are naturally costly
to build, as the knowledge must be identified by a domain
expert, then collected and inserted into the system. There-
fore, they are appropriate mainly to systems that sell rel-

1www.amazon.com
2www.netflix.com

atively profitable items. Indeed, vacation packages are an
obvious example of such complex and costly products that
require much knowledge to construct properly, and it is
no surprise that much work on knowledge-based recom-
menders considers this domain (Fesenmaier et al. 2003;
Ricci et al. 2006).

A second, orthogonal, research direction considers the in-
teractions of the users with the system (Cavada, Ricci, and
Venturini 2003). When recommending costly and complex
items, it is unlikely that the system will provide good rec-
ommendations without collecting information from the user
concerning her preferences by, e.g., filling out a lengthy
questionnaire. An alternative to a tiresome questionnaire is
to present the user with recommended items after a very
brief collection of user goals (e.g. the vacation destination).
These recommendations are likely not to be satisfactory, and
we must allow the user to criticize them. From the user’s re-
sponse, the system learns additional preference information
concerning, and provides improved recommendations.

Such systems provide relatively lengthy interactions be-
tween the user and the system in order to identify good
items. Therefore, such systems are only useful in the case
where a user gains significant value from the items, and is
hence willing to invest the required effort in a conversation
with the system.

There are a few examples of previous systems designed to
recommend travel destinations or plans to users (Fesenmaier
et al. 2003; Cavada, Ricci, and Venturini 2003; Dema 2009;
Cao et al. 2011; Gretzel et al. 2004; Bauernfeind 2003;
Fesenmaier et al. 2010), in addition to many online travel
planning systems with no recommendation component, such
as Travelocity3 or Trip Advisor4. These systems typically
ask the user to specify many input parameters, such as the
destination, the travel party (e.g. couple or family), duration,
budget, attraction types and so forth. Then, these systems
may use information over the choices of other users to rec-
ommend attractions, accommodations and so forth.

Recommending Complex Objects
In this section we outline our general approach to recom-
mending complex objects. We explain the various compo-
nents of our system, but their actual implementation is often
domain dependant. Hence, we return to these components
in the next section, and explain how they manifest within a
specific Travel Planning application.

Figure 1 presents our complex objects recommender sys-
tem, composed of 3 major components — a recommender,
a constraint generator, and a constraint solver. The system
takes as input an example of a possible configuration of a
complex object designed by the user. It is important that
the user will provide a sufficiently rich example, because
the system then deduces from this example various features.
Two separate types of features are learned, the user pref-
erence over components, and a set of constraints over the
combination of components into a complex object. Then,

3www.travelocity.com
4www.TripAdvisor.com

39

Figure 1: Complex Objects Recommender System.

the system uses the deduced features to compute a recom-
mended complex object. This object is then returned to the
user, and she may revise it manually, and provide it as input
for a second recommendation.

Recommender: The recommender component takes as
input a list of preferred or positively rated components.
Then, it uses some rating prediction approach, such as CF,
to predict ratings for other components. These ratings do not
take into consideration any constraints or correlations be-
tween components.

Constraint generation: The constraint generator takes as
input the constraints expressed in the given example com-
plex object. Some constraints, such as total price, are global,
i.e., apply to the complete complex object. Other constraints
apply to subsets of components. For example, the maximal
time allotted in the trip to travel between attractions. Finally,
there are some constraints that apply to specific components.
For example, the user may decide that some attractions must
be kept. In our system, all attractions that got the highest
possible rating, are considered irreplaceable.

Constraint solver: We now feed the results of the two
previous stages to an optimizer, designed to provide a solu-
tion that satisfies all constraints while maximizing the sum
of predicted ratings. The solution directly corresponds to a
complex object that meets all constraints and is considered
best in terms of user preferences, e.g., the sum of ratings of
all attractions, or some other aggregate measure.

Travel Planning Recommender System
While the system we suggest above is designed generically
to fit various types of complex objects, in this paper we focus
on a travel planning application. We consider a trip to be a
complex object constructed of a sequence of attractions (the
components of the complex object). The system’s goal is to
provide a trip, i.e., a schedule of activities for a 5 day visit
to New Zealand. We now explain how the generic phases in
the former section manifest themselves in our application.

Database: As we explain above, our system requires
a database consisting of the various possible components
(attractions), their attributes, and their relationships. Our
database contained 327 attractions, 21 attraction types, and
50 different areas of New Zealand. All the information in the
database was taken from the popular Lonely Planet travel
guide (Bain et al. 2006).

Input: The interaction of users with the system begins
with inserting information about a possible trip. In our ap-
plication we asked the user to specify which attractions she
would like to visit during each of the 5 days. In addition, the
user specified an attraction interest rating, specifying how
important is the attraction, on a scale of 1 to 5. Finally, the
user was asked to provide information regarding the area
where she would like to spend each night.

Recommender: In order to extrapolate attraction ratings
for users, we used a simple CF engine. We constructed a
memory-based algorithm, using the popular Pearson cor-
relation to compare user profiles (Breese, Heckerman, and
Kadie 1998). The algorithm was run on all the users who
provided initial ratings for attractions in their input.

Constraint generation: This is perhaps the most domain-
specific part of our system. We defined the following set of
constraints over a trip:
• Budget — we computed the overall price of the trip that the
user has given us as input. We then require the budget of the
revised trip not to exceed this budget by some fixed amount
δ (in our experiment we used δ = 50NZD).
• Daily load — we compute the minimal and maximal time
required for the attractions that the user chose to visit in a
single day. We use this to measure whether the user prefers a
relaxed trip with much leisure time, or a packed trip, visiting
as many attractions as possible.
• Travel distance — we compute maximal travel distance be-
tween attractions. This allows us to measure how much time
the user is willing to spend traveling between places.
• Diversity level — a user may enter a trip with various types
of attractions. We hence constrained the revised trip to also
contain the same attraction types, so as not to reduce the di-
versity of the trip. For example, even if the recommender
predicts higher scores for all hiking attractions than all mu-
seum attractions, yet the user entered a few museum attrac-
tions in her input trip, we will force the revised trip to also
contain some museums. We considered here only attractions
rated 3 or higher.
• Preserving important attractions — in the input the user
may have specified a few attractions as “very important” (a
rating of 5). In that case we force these attractions to appear
in the revised trip as well.
• Local transportation constraints — while our system does
not maintain transportation information between attractions,
such as how to get from one museum to another within the
same city, we add a fixed transportation time (30 minutes)
for travel between attractions in the same city.

Constraint Optimization: We can formulate the problem
of optimizing the total value of visited attractions subject to
the above constraints using an integer programming (IP). To
do so, we define two types of boolean variables — xi,j is
true whenever attraction j is visited on day i, and yi,l is true
whenever area l is visited in day i. We now explain how the
constraint types above are implemented in the IP.
• Budget: ∑

i,j

Cjxi,j ≤ Budget+ δ (1)

40

specifies the budget constraints, where Cj is the cost per at-
traction, Budget is the overall allowed budget, and δ is a
fixed parameter to allow us some flexibility in exceeding the
budget that the user has specified.
• Diversity: For each attraction type t we have a constraint∑

i,j

Typet,jxi,j = #Typet ± 1 (2)

where t is an attraction type, Typet,j = 1 iff attraction j is
of type t, and #Typet is the number of attractions of type
t with rating higher than 3 that were specified in the input
example.
• Time: For each day i we have two constraints∑

j

Timejxi,j ≥ MinTime (3)

∑
j

Timejxi,j ≤ MaxTime (4)

where Timej is the time required for visiting attraction j,
and MinTime and MaxTime are the minimal and maxi-
mal time required to visit all attractions in a single day in the
input example, respectively. We added 30 minutes to Timej
to model the local transportation costs.

• Mandatory attractions: For each attraction j rated 5 (the
highest rating) in the input example we have a constraint∑

i,j

xi,j ≥ 1 (5)

to force it to appear in the revised trip. When we have multi-
ple mandatory attractions, we define a traveling sales person
problem on the attractions to provide the constraint solver
with a given ordering of attractions, which will reduce the
effort and time in solving the IP problem.

• Attraction time: Some attractions, such as certain hiking
trips or cruises, requires multiple days. We hence add for
each such attraction that requires Dj > 1 days a variable xj
signifying whether this attraction has been chosen. We add
constraints: ∑

i

xi,j = Dj · xj (6)

• Distance: The distance constraints were somewhat more
complicated to define. We divide the destination region into
a set of areas A. First, we add constraints that model dis-
tances between areas. For each day i and area a we define

|A|yi,a +
∑
l6=a

dl,ayi,l + dl,ayi+1,l ≤ |A| (7)

where da1,a2
is 1 if the distance between areas a1 and a2 is

greater than the maximum distance that the user is willing to
visit in a single day, and 0 otherwise. That is, if the solution
includes a visit to area a in day i then it cannot visit any other
area which is farther than the maximum allowed distance on
day i or the next day (i+ 1).
To specify which attraction belong to an area, we add for
each day i, each area a, and each attraction j belonging to
area a the constraint

xi,j − yi,a ≤ 0 (8)

To specify that each attraction j is visited once at most we
add a constraint ∑

i

xi,j ≤ length(j) (9)

where length(j) is the number of days required for complet-
ing attraction j (for example, hiking trails may take more
that a day to complete). Attractions requiring more than a
single day required us to add additional variables to specify
that they must be executed in adjacent days. We skip the ex-
act definition of these variables and constraints due to space
restrictions.
• Optimization criterion:∑

i,j

Rjxi,j (10)

where Rj is the predicted or specified rating for attraction j.
That is, the program optimizes the sum of attraction ratings.

We now use an IP solver 5 to solve the specified integer
program. Unfortunately, the computation of an optimal so-
lution for the above IP takes too long to compute. It is pos-
sible, however, to stop the solver after a predefined time and
request the best current solution. We would like to ensure,
though, that every returned solution is at least as good as the
original program. We hence add a constraint∑

i,j

Rjxi,j ≥ Rexample (11)

whereRexample is the sum of ratings of the attractions in the
trip that was inserted as input by the user.

Any solution to the IP problem is mapped directly into a
specification of which attractions to visit in each day, using
the xi,j boolean parameters.

Empirical Evaluation
We now describe our evaluation of the trip revision recom-
mender system presented in the previous section. Clearly,
evaluating the system must be conducted in a user study
with people who have knowledge of the destination region
(New Zealand), so that they can provide an initial trip. While
the system is intended for people who are planning a trip,
we evaluate it using people who have already visited New
Zealand, enabling educated judgments of the revised trips.

While we envision our method as a component within a
larger recommender system that helps the user in construct-
ing an initial configuration (trip), in this paper we evaluate
our suggested method as a stand-alone system, leaving its
evaluation within a complete system to future research. In
our experiments, we did not use a complete system, rather,
users were asked to specify a trip in a given format. The trip
was fed into to the algorithm, and the results were translated
into a map showing the trip. Figure 2 show an example of a
suggested trip displayed to the users.

The users in our study were thus asked to specify a 5 day
trip to New Zealand. They were asked to provide a sequence

5In our experiments, we used lp solve (http://lpsolve.
sourceforge.net/5.5/).

41

Figure 2: Example of a trip suggested to users. Clicking on
a day on the bottom centralizes the map on the attractions
designed for that day. Clicking on an attraction on the map
opens an information page for that attraction.

of attractions that they would like to visit in their trip, and
to specify in which city they would spend each night. Users
were also requested to add an interest rating for each attrac-
tion in the trip that they constructed. In a complete system,
this would amount to specifying how much the user thinks
that each of the attractions suggested by the system for the
trip is interesting after, e.g., reading information about the
suggested attractions online.

These manually constructed trips were ran through our
system and we computed 3 different suggestions:

1. Best revision: the output of the algorithm of the previous
section, within the given time limit.

2. Conservative revision: a revision with an additional set
of constraints forcing at most two attractions that were
ranked lowest to be replaced.

3. Best attraction list: a list of the attractions with the high-
est predicted rating, with no trip planning, as is done by
simpler recommendation systems.

The alternatives were presented in a random order to re-
duce biasing due to presentation order. The users could ob-
serve the revisions, watch the suggested trip on the map, and
display information from Wikipedia concerning the attrac-
tions in a separate pane on the user interface.

The users were then asked to fill a short survey asking
questions about the 3 suggestions. We used a 1-6 scale so as
to avoid users making neutral judgments.

Collecting Ratings for New Zealand Attractions
As a part of this research, we have constructed a simple on-
line application that allows travelers to New Zealand to pro-
vide ratings for attractions that they visited. This application
was installed by the owners of a number of guest houses in
New Zealand, which are popular among travelers. The appli-
cation contained a list of attractions from the Lonely Planet
travel guide (Bain et al. 2006), but users could also add ad-
ditional attractions. We collected more than 600 responses
of travelers through this online application, and we use the
collected ratings to perform the collaborative filtering pre-
dictions over attractions.

Figure 3: The distribution of the most popular attraction
types in input trips. The x-axis is the number of attractions
of that type per trip. The y-axis is the portion of the users
who chose this number of attractions in their input trip.

Experimental Results
We had 19 participants in our user study, ages 20 through 45.
All of them have visited New Zealand in the past 5 years.
We had 12 male participants and 7 females. Although this
is certainly not a large user study, we still got significant
results, which further suggests that the differences between
the methods are very noticeable.

Diversity of the input trips: Figure 3 shows the distri-
bution of the 5 most popular attraction types. We can ob-
serve that the user population had museum lovers, and peo-
ple who never visit museum, avid hikers alongside people
who choose one or less hikes, and so forth. In addition, there
were 7 attraction types, such as cruises, fishing, and horse
riding, that were selected by only a single person.

Our system extracts several constraints from the input
trips, such as the minimal and maximal time per day, and
the overall total budget (for attractions only). Here we again
spot significant diversity of user preferences. For the mini-
mal time per day, 16% of the users allowed for a very relaxed
day of less than 3 hours for visiting attractions, 67% allowed
between 3 to 4 hours in their most relaxed day, and 17% had
more than 4 hours in their most relaxed day. For the maximal
time per day, 22% had 6 hours at most in their busiest day,
39% had 6 to 7 hours in their busiest day, and 28% had more
than 7 hours in their most busy day. For budget constraints,
28% spent less than 150 NZD on attractions, 28% spent 150
to 250 NZD, another 28% spent 250 to 350 NZD, and 22%
spent 350 to 625 NZD.

These extracted preferences, along with the attraction rat-
ings that the users supplied, were inserted into the system
and the 3 suggestions were computed and presented to the
users. After presenting the users with the suggestions, they
were asked to fill a short survey.

User acceptance of automated suggestions: We asked
several general questions regarding the participants percep-
tion of recommender systems in general and our system in
particular: 90% (17) of the participants said that they feel
that automated recommendations can properly identify their
preferences. 90% (17) of the participants said that trip plan-
ning is difficult and requires much effort, and 95% (18) of
the participants thought that our recommender system for

42

Figure 4: The distribution of grades on a 1-6 scale for the
initial plan and the two revisions presented to the users.

trip planning will be successful, if made available widely.
95% of the users claimed that given the system suggestions
they would have made some change to their initial plan: 53%
would make minor changes and 37% would make significant
changes. Users show willingness to accept the suggestions
of automated systems. It seems that the users in our study
believe that automated systems can help in the complex task
of constructing trips.

Attractions load balance: A possible concern with trip
planning is that the number of attractions per day is too high
and the plan becomes overloaded. This is particularly true
given our objective function which seeks to maximize the
sum of ratings of visited attractions, albeit subject to load
constraints derived from the original plan. 90% of the users
claimed that the best revision was well balanced and was
not overloaded with too many attractions per day. Only 10%
said that the travel plan was overloaded.

Quality of the plan revisions: We now turn to an evalu-
ation of the travel plans and their revisions. Figure 4 shows
distribution of grades for the revisions. The average grade
for the initial plan was 3.94, while the average for the best
revision was 4.45, and the average for the conservative revi-
sion was 3.89. In 10 times out of 19, the best revision got a
higher grade than the initial plan, and for 6 users both plans
got the same grade. Only 3 users gave a higher grade to their
initial plan than the best revision. A sign-test gives a p-value
of 0.002 to the null hypothesis that the revised plan is no
better than the initial plan.

Only 6 participants marked the conservative revision to
be better than the original plan, and 4 gave the original plan
higher grades than the conservative plan. We allowed the
participants to comment on the plans, and we got responses
criticizing the conservative plan as being not novel enough.

We also asked the participants which suggestion they pre-
ferred. 79% (15) of the users preferred the best revision sug-
gestion over the other two suggestions. These results clearly
suggest that, as expected, in general users found the best re-
vision to be most appropriate then the other two plans.

Attraction list vs. complete plans: Classic tourism rec-
ommendation systems suggest a list of attractions for a user.
In this paper we assume that suggestions of complete trips
is more useful to users. Indeed, 90% preferred a suggestion
for a complete plan over a list of interesting attractions. In

general, for complex objects constructed of multiple compo-
nents, these results demonstrate the value of supplying the
actual target object, rather than useful components.

Return on investment: The construction of an initial plan
represents a significant effort, and we asked whether the ef-
fort was worthwhile. Only one participant claimed the effort
was too high for the given results. One other participant said
that the effort is high, but the results are interesting. 26%
(5) of the participants said that the effort is considerable, but
that when planning a trip the effort is acceptable, and the
rest 63% (12) of the participants said that the effort is minor
given the results.

Related Work
Our work is somewhat related to the general problem of
re-configuration, where a system modifies or fixes a given
configuration. For example, Stumpner et al. (Stumptner and
Wotawa 1998) uses methods originating in model-based di-
agnosis in order to identify the cause that a given configu-
ration does not match the user goals. As is often the case in
diagnosis, they formulate their problem, as we do, as a con-
straint optimization problem. In contrast to our work, they
do not assume that the current configuration expresses user
preferences and thus, they do not extract such preferences
from the configuration. Their work is more general and thus
they do not use CF techniques as we do. They provide an
example of a telephone network reconfiguration problem.

Falkner et al. (Falkner, Felfernig, and Haag 2011) brings
the areas of configuration and recommender systems to-
gether, discussing a diverse set of advantages that could
be gained, including explanations, recommendations of fea-
tures, and recommendations for feature values. For example,
using a recommendation component can be used to elim-
inate several features from the problem, thus reducing the
search space considerably for the configuration engine. They
also suggest that a user will rank features or components
by their importance, allowing us to compare his taste to the
tastes of other using CF.

Coster et al. (Coster et al. 2002) suggest an interactive
method, as we do, for constructing a computer configura-
tion. In their method a user receives recommendations for
various components, given the current components that she
has selected. They begin by asking the user questions con-
cerning her needs and suggest an initial configuration given
the user preferences. For example, a user who expresses an
interest in graphics, will be suggested a system with stronger
graphical components. Thus, they do not have a mechanism
for extracting the user preferences from an initial configura-
tion. No validating user study is reported.

Zanker et al. (Zanker, Aschinger, and Jessenitsching
2010) suggest a system which is closer to our own, using
constraints and CF techniques for constructing a single city
trip. They attempt to find a resort and a set of attractions
within the same area which will fit the user preferences. As
opposed to us, they do not begin with an initial configura-
tion expressing the user preferences, but start with the user
expressing her preferences where each preference becomes
a constraint. After seeing the result of the constraint solver,

43

the user can further criticize the solution, which results in ad-
ditional constraints being added. The CF component is used
to provide a preference for certain attractions, which needs
to be weighted against the existing constraints. They also do
not report a user study.

Conclusion
In this paper we presented a recommendation component
that takes as input a manually configured or tuned complex
object, such as a trip to a country, and some preference data,
such as attraction ratings, and produces a better configura-
tion, e.g. an improved trip, taking into account a set of con-
straints that were extracted from the input example.

In a user study, we demonstrated that for the problem of
planning a 5 day trip to New Zealand, our component was
in most cases able to produce better trips than the ones that
were manually constructed by the users. We also showed
that users prefer a recommendation for a trip over the more
traditional list of recommended attractions.

In the future we plan to test our component within a com-
plete recommender system, as an integral part of the trip
planning process. In addition, we intend to test our ideas in
other domains where complex objects need to be configured,
such as configuring an appropriate computer system.

References
Aldanondo, M.; Moynard, G.; and Hamou, K. 2000. General
configurator requirements and modeling elements. In ECAI
Workshop on Configuration, 1–6.
Bain, C.; Dunford, G.; Miller, K.; O’Brien, S.; and
Rawlings-Way, C. 2006. New Zealand — Lonely Planet.
Lonely Planet.
Bauernfeind, U. 2003. The evaluation of a recommendation
system for tourist destination decision making.
Breese, J. S.; Heckerman, D.; and Kadie, C. M. 1998. Em-
pirical analysis of predictive algorithms for collaborative fil-
tering. In Cooper, G. F., and Moral, S., eds., UAI, 43–52.
Morgan Kaufmann.
Burke, R. D. 2002. Hybrid recommender systems: Sur-
vey and experiments. User Model. User-Adapt. Interact.
12(4):331–370.
Cao, T.; Nguyen, Q.; Nguyen, A.; and Le, T. 2011. Integrat-
ing open data and generating travel itinerary in semantic-
aware tourist information system. In Proceedings of the
13th International Conference on Information Integration
and Web-based Applications and Services, 214–221. ACM.
Cavada, D.; Ricci, F.; and Venturini, A. 2003. Interactive
trip planning with trip@dvise. In Rauterberg, M.; Menozzi,
M.; and Wesson, J., eds., INTERACT. IOS Press.
Coster, R.; Gustavsson, A.; Olsson, T.; sa Rudstrm; and Rud-
strm, A. 2002. Enhancing web-based configuration with
recommendations and cluster-based help. In In Proceedings
of the AH’2002 Workshop on Recommendation and Person-
alization in eCommerce.
Cunningham, P., and Bonzano, A. 1999. Knowledge engi-
neering issues in developing a case-based reasoning appli-
cation. Knowl.-Based Syst. 12(7):371–379.

Dema, T. 2009. eTourPlan: A Knowledge-Based Tourist
Route and Activity Planner. University of New Brunswick
(Canada).
Falkner, A. A.; Felfernig, A.; and Haag, A. 2011. Recom-
mendation technologies for configurable products. AI Mag-
azine 32(3):99–108.
Fesenmaier, D.; Ricci, F.; Schaumlechner, E.; Wöber, K.;
and Zanella, C. 2003. Dietorecs: Travel advisory for mul-
tiple decision styles. information and communication tech-
nologies in tourism 2003:232–241.
Fesenmaier, D. R.; Xiang, Z.; Pan, B.; and Law, R. 2010. An
analysis of search engine use for travel planning. In ENTER,
381–392.
Gretzel, U.; Mitsche, N.; Hwang, Y.-H.; and Fesenmaier,
D. R. 2004. Tell me who you are and i will tell you where
to go: Use of travel personalities in destination recommen-
dation systems. J. of IT & Tourism 7(1):3–12.
Lops, P.; de Gemmis, M.; and Semeraro, G. 2011. Content-
based recommender systems: State of the art and trends. In
Ricci et al. (2011). 73–105.
Magro, D., and Torasso, P. 2000. Description and config-
uration of complex technical products in a virtual store. In
Proc. ECAI 2000 Configuration WS, 50–55.
Pu, P.; Faltings, B.; Chen, L.; Zhang, J.; and Viappiani, P.
2011. Usability guidelines for product recommenders based
on example critiquing research. In Ricci et al. (2011). 511–
545.
Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and
Riedl, J. 1994. Grouplens: An open architecture for col-
laborative filtering of netnews. In Smith, J. B.; Smith, F. D.;
and Malone, T. W., eds., CSCW, 175–186. ACM.
Ricci, F.; Cavada, D.; Mirzadeh, N.; and Venturini, A. 2006.
Case-based travel recommendations. Destination Recom-
mendation Systems: Behavioural Foundations and Applica-
tions 67–93.
Ricci, F.; Rokach, L.; Shapira, B.; and Kantor, P. B., eds.
2011. Recommender Systems Handbook. Springer.
Ricci, F.; Rokach, L.; and Shapira, B. 2011. Introduction
to recommender systems handbook. In Ricci et al. (2011).
1–35.
Soininen, T.; Niemelä, I.; Tiihonen, J.; and Sulonen, R.
2000. Unified configuration knowledge representation us-
ing weight constraint rules. Citeseer.
Stumptner, M., and Wotawa, F. 1998. Model-based reconfig-
uration. In In Proceedings Artificial Intelligence in Design,
45–64. Kluwer Academic Publishers.
Venturini, A., and Ricci, F. 2006. Aplying trip@dvice
recommendation technology to www.visiteurope.com. In
Brewka, G.; Coradeschi, S.; Perini, A.; and Traverso, P.,
eds., ECAI, volume 141 of Frontiers in Artificial Intelligence
and Applications, 607–611. IOS Press.
Zanker, M.; Aschinger, M.; and Jessenitsching, M. 2010.
Contraint-based personlaized configuration of product and
service bundles. International Journal on Mass Customiza-
tion 3(4):407–425.

44

