
Bandit-Based Search for Constraint Programming
Manuel Loth

MSR–INRIA joint centre
Palaiseau, France

Michèle Sebag
Marc Schoenauer

CNRS–INRIA team TAO
Univ. Paris-Sud, France

Youssef Hamadi
Microsoft Research

Cambridge, UK

Christian Schulte
School of ICT

KTH Royal Inst. of Tech., SW

Abstract

Constraint Programming (CP) solvers classically explore the
solution space using tree-search based heuristics. Monte-
Carlo Tree-Search (MCTS) is a tree-search method aimed at
optimal sequential decision making under uncertainty. At the
crossroads of CP and MCTS, this paper presents the Bandit
Search for Constraint Programming (BASCOP) algorithm,
adapting MCTS to the specifics of CP search trees. Formally,
MCTS simultaneously estimates the average node reward,
and uses it to bias the exploration towards the most promising
regions of the tree, borrowing the multi-armed bandit (MAB)
decision rule. The two contributions in BASCOP concern i) a
specific reward function, estimating the relative failure depth
conditionally to a (variable, value) assignment; ii) a new de-
cision rule, hybridizing the MAB framework and the spirit
of local neighborhood search. Specifically, BASCOP guides
the CP search in the neighborhood of the previous best solu-
tion, by exploiting statistical estimates gathered across multi-
ple restarts. BASCOP, using Gecode as the underlying con-
straint solver, shows significant improvements over the depth-
first search baseline on some CP benchmark suites. For hard
job-shop scheduling problems, BASCOP matches the results
of state-of-the-art scheduling-specific CP approaches. These
results demonstrate the potential of BASCOP as a generic yet
robust search method for CP.

Introduction
A variety of algorithms and heuristics have been designed
in CP, determining which (variable, value) assignment must
be selected at each point, how to backtrack on failures, and
how to restart the search (van Beek 2006).

The choice of the algorithm or heuristic most appropri-
ate to a given problem instance has been intensively investi-
gated since the late 70s (Rice 1976). In the particular domain
of search, many of these approaches, e.g. (Xu et al. 2008;
O’Mahony et al. 2008; Samulowitz and Memisevic 2007;
Streeter, Golovin, and Smith 2007; Hutter, Hoos, and Stützle
2007), rely de facto on supervised machine learning (ML;
more in Sect. ). In this approach, a database describing the
behavior of a portfolio of algorithms or heuristics on many
representative problem instances (using static and possibly
dynamic features (Xu et al. 2008)), is exploited to estimate

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the best option for the problem instance at hand, either in an
off-line or online fashion.

In this paper, the use of another ML blend, specifically
reinforcement learning (Sutton and Barto 1998), is investi-
gated to support the CP search. Formally, it is shown how
Monte-Carlo Tree Search (MCTS) can be used to guide the
exploration of the CP search tree. The best-known version
of MCTS, referred to as Upper Confidence Tree (Kocsis and
Szepesvári 2006), extends the multi-armed bandit frame-
work (Lai and Robbins 1985; Auer, Cesa-Bianchi, and Fis-
cher 2002) to the field of sequential decision making. Since
its inception, MCTS has demonstrated its merits and wide
applicability in the domains of games (Ciancarini and Favini
2009) or automated planning (Nakhost and Müller 2009)
among many others.

MCTS proceeds by incrementally developing a search
tree through consecutive tree walks. In each tree-walk and
in each node, the choice of the child node to be visited
enforces a careful balance between the exploration of the
search space, and the exploitation of the best results found
so far. The choice among the child nodes relies on the statis-
tical assessment of the reward expectation attached to each
node, e.g. the frequency of winning the game after visiting
this node.

The use of MCTS within the CP search raises two main
difficulties. The first one concerns the definition of an appro-
priate reward attached to a tree node (a partial assignment
of the branching variables). The second difficulty is that
the CP search frequently involves multiple restarts (Luby,
Sinclair, and Zuckerman 1993) to enforce an optimal explo-
ration depth. Multiple restarts forbid the use of MCTS as
is, since different nodes are considered in each restart (and
memorizing them all is clearly infeasible).

The presented algorithm, called BASCOP (Bandit-based
Search for Constraint Programming), proceeds by associat-
ing to each (variable, value) assignment its relative failure
depth, averaged over all previous tree-walks. This estimate
is maintained over the sequence of restarts. It is used to
guide the search, possibly in conjunction with a left bias ac-
cording to a value-ordering heuristic.

As proof of principle, BASCOP is implemented on the
top of Gecode, and experimentally validated on the job-shop
problem (JSP) (Beck 2007), balanced incomplete block de-
sign (BIBD) (Mathon and Rosa 1985), and car-sequencing

8

Combining Constraint Solving with Mining and Learning: Papers from the AAAI 2013 Workshop



problem.
This paper is organized as follows. Section briefly re-

views the state of the art in ML applied to CP, and de-
scribes Monte-Carlo Tree-Search for the sake of complete-
ness (Sect. ). Section gives an overview of the BASCOP al-
gorithm, hybridizing MCTS and local neighborhood search
with restarts. Section presents the experimental setting for
the empirical validation of BASCOPand reports on the re-
sults. The paper concludes with some perspectives for fur-
ther research.

Machine Learning for Constraint
Programming

After briefly reviewing some ML-based approaches aimed
at the control of search algorithms, this section discusses
which one out of supervised ML, or reinforcement learning
settings, is more appropriate to search control. For the sake
of self-containedness, this section also describes the MCTS
reinforcement learning algorithm.

Supervised Machine Learning
As mentioned, most ML approaches to the control of search
algorithms exploit a set of scalar features, describing the
problem instance using static (and possibly dynamic) infor-
mation (Xu et al. 2008; Hutter et al. 2006). Specifically,
datasets associating to the feature-based representation of
each problem instance the target indicator (e.g. the runtime
of a solver) are built and exploited by supervised machine
learning to achieve portfolio algorithm selection, or hyper-
parameter tuning. In SATzilla (Xu et al. 2008), a regression
model predicting the runtime of each solver on a problem
instance is built, and used to select the algorithm with min-
imal expected run-time. CPHydra (O’Mahony et al. 2008)
uses a similarity-based approach and builds a switching pol-
icy based on the most efficient solvers for the problem in-
stance at hand. (Samulowitz and Memisevic 2007) likewise
applies ML to adjust the CP heuristics online. The Adaptive
Constraint Engine (Epstein et al. 2002) can be viewed as
an ensemble learning approach, where each heuristic votes
for a possible variable/value decision to solve a CSP. Com-
bining Multiple Heuristics Online (Streeter, Golovin, and
Smith 2007) and Portfolios with deadlines (Wu and Van
Beek 2008) are designed to build a scheduler policy in or-
der to switch the execution of black-box solvers during the
resolution process.

This paper more specifically focuses on online algorithm
selection, where the ML component is in charge of select-
ing the appropriate heuristic/assignment at any time step
depending on the current description of the instance. The
proposed approach is based on Monte-Carlo Tree-Search
which is a particular technique of the reinforcement learn-
ing framework.

Monte Carlo Tree Search
The best known MCTS algorithm, referred to as Upper
Confidence Tree (UCT) (Kocsis and Szepesvári 2006), ex-
tends the Upper Confidence Bound algorithm (Auer, Cesa-
Bianchi, and Fischer 2002) to tree-structured spaces. UCT

simultaneously explores and builds a search tree, initially re-
stricted to its root node, along N tree-walks. Each tree-walk
involves three phases:
The bandit phase starts from the root node and iteratively
selects an action/a child node until arriving in a leaf node.
Action selection is handled as a multi-armed bandit prob-
lem. The set As of admissible actions a in node s defines
the child nodes (s, a) of s; the selected action a∗ maximizes
the Upper Confidence Bound:

r̄s,a + C
√

log(ns)/ns,a (1)

over a ranging in As, where ns stands for the number of
times node s has been visited, ns,a denotes the number of
times a has been selected in node s, and r̄s,a is the average
cumulative reward collected when selecting action a from
node s. The first (respectively the second) term in Eq. (1)
corresponds to the exploitation (resp. exploration) term, and
the exploration vs exploitation trade-off is controlled by pa-
rameter C. In a deterministic setting, the selection of the
child node (s, a) yields a single next state tr(s, a), which
replaces s as current node. The bandit phase stops upon ar-
riving at a leaf node of the tree.
The tree building phase takes place upon arriving in a leaf
node s; some action a is (randomly or heuristically) selected
and tr(s, a) is added as child node of s. Accordingly, the
number of nodes in the tree is the number of tree-walks.
The roll-out phase starts from the new leaf node tr(s, a)
and iteratively (randomly or heuristically) selects an action
until arriving in a terminal state u; at this point the reward
ru of the whole tree-walk is computed and used to update
the cumulative reward estimates in all nodes (s, a) visited
during the tree-walk:

r̄s,a ← 1
ns,a+1

(
ns,a × r̄s,a + ru

)
ns,a ← ns,a + 1; ns ← ns + 1

(2)

The Rapid Action Value Estimation (RAVE) heuristic is
meant to guide the exploration of the search space and the
tree-building phase (Gelly and Silver 2007). In its simplest
version, RAVE (a) is set to the average reward taken over
all tree-walks involving action a.

Overview of BASCOP
This section presents the BASCOP algorithm, defining the
proposed reward function and describing how the reward es-
timates are exploited to guide the search. Let us first de-
scribe the structure of the BASCOP search tree, restricting
ourselves to binary variables for the sake of readability1.

Tree structure
The complete CP search tree is structured as follows. Each
node inherits a partial assignment s (including the constraint
propagation achieved by the CP solver); it selects a variable
X to be assigned, fetched from the variable-ordering heuris-
tics; its child nodes are defined from the literals `X and `X̄ .

1The extension to n-ary variables is straightforward, and will be
considered in the experimental validation of BASCOP (section ).

9



1 0

Figure 1: Structure of the BASCOP search tree: the top-
tree (filled nodes), the DFS parts (unfilled nodes) including
closed nodes (dotted nodes).

Each branch, associated to s ∧ ` (with ` = `X or `X̄ ) is as-
sociated a status, ranging in: closed (the subtree associated
to s ∧ ` has been fully explored); open (the subtree is being
explored); or to-be-opened (not yet considered).

In the particular case of the depth-first-search (DFS) strat-
egy, one systematically selects the leftmost branch among
those that have not been closed yet. Only the tree-path from
the root node to the currently visited node has to be main-
tained: nodes in the left part of the complete tree w.r.t. the
current tree-path have been fully explored, nodes in the right
part of the tree remain to be considered.

As mentioned (section ), MCTS maintains a subset of the
complete tree. This tree, initialized to the root node, grad-
ually deepens along consecutive tree-walks, as a child node
is added to every leaf node which is being visited, or at the
k-th visit to this leaf node; parameter k is referred to as ex-
pand rate. Within the tree, the selection of the branch to be
visited is achieved through the UCB criterion (Eq. 1). Be-
low the leaf node, branches are iteratively selected using a
default policy, referred to as roll-out policy and depending
on the problem domain.

In BASCOP, the MCTS strategy is embedded within the
CP exploration as follows. On the one hand, BASCOP main-
tains the upper-part of the tree being explored (how to ac-
commodate the multiple restarts will be discussed in sec-
tion ). On the other hand, the roll-out policy is set to the
depth-first-search strategy, thus enabling a systematic, and
ultimately exhaustive, exploration of the subtree.

Fig. 1 depicts the general structure of the BASCOP search
tree: the upper nodes (the filled nodes, referred to as top-
tree) are explored using a UCB-like decision rule (see be-
low). In the meanwhile, a depth-first-search tree-path is at-
tached to each leaf s of the top-tree, enabling the exhaustive
exploration of the sub-tree rooted in s. At each time step,
a node in the BASCOP tree is labelled as top node (respec-
tively bottom node) if it belongs to the top tree (resp. to a
DFS path). The trade-off between the respective size of the
top-tree and the DFS part is controlled from the expand rate
k.

Relative Failure Depth Reward
As mentioned, the exploration of the BASCOP top tree is
achieved using an UCB-like selection rule, based on a re-
ward which remains to be defined. The most natural op-

tion in the MCTS spirit would be to reward each top node
with some average success rate of the tree-walks visiting this
node.

However, a heuristics commonly involved in the CP
search is that of multiple restarts. Upon each restart, the
current CP search tree is erased; the memory of the search
is only reflected through some indicators (e.g. weighted de-
gree, weighted dom-degree, impact, activity, or no-goods)
maintained over the restarts. When rebuilding the CP search
tree from scratch, a new variable ordering computed from
the indicators is considered, hopefully resulting in more ef-
ficient and shorter tree-paths.

Naturally, BASCOP must accommodate the multiple
restarts if it is to define a generic CP search strategy. For
tractability reasons, BASCOP can hardly maintain all top
nodes (partial assignments) ever considered along multiple
restarts; the BASCOP search tree must thus also undergo the
multiple restarts. It then becomes irrelevant to associate to
each top node s an average reward, as this reward would be
estimated from insufficiently many samples (tree-walks).

It thus comes to associate a reward to each literal `, in the
spirit of the RAVE heuristics (section ). The statistics are
thus managed orthogonal to the tree rather than in its nodes.
On the positive side, such rewards can be maintained over
multiple restarts. On the negative side, these rewards must
measure the average impact of the literal ` on the search,
regardless of the assignment s conditionally to which ` has
been selected. Another motivation for this approach lies in
the primary goal of RAVE: reward sharing boosts the search
in its initial phase. Although this comes at the price of los-
ing asymptotic convergence guarantees in the pure MCTS
setting, this drawback is of no concern here: firstly, seeking
convergence – that is asymptotically repeating optimal tree-
walks – is not relevant since explored sub-trees are pruned;
secondly, in the context of multiple-restarts, the search is
usually restricted to such an initial phase, and a quick focus
on promising regions is required.

The proposed reward is defined as follows. The quality of
a tree-walk s is measured by its failure depth2 ds: intuitively,
a shorter tree-walk contains more bad literals than a longer
tree-walk, everything else being equal. The instant reward
of a literal ` involved in tree-walk s cannot be directly set to
ds: the depth ds,` of the literal (the depth of the node where
` has been selected) in s is bound to fluctuate with the mul-
tiple restarts and the variable orderings, thus hindering the
estimation of ` impact. Finally, the instant reward associ-
ated to literal ` over a tree-walk s is set to ds − ds,`.
RAV E(`) = Average {ds − ds,`, s tree-walk involving `}

Overall, BASCOP thus maintains for each literal ` its av-
erage reward RAV E(`) and the number n` of tree-walks
visiting ` (either as a top node or as a DFS node).

Selection Rules
The exploration strategy in BASCOP involves two different
selection rules, depending on whether the current node is
part of the top-tree or of the bottom-tree.

2Other measures could have been considered, and are left for
further study.

10



Depth-first-search is used for the bottom-tree. Note that
the left-preference in DFS usually implements a suitable
value ordering. In particular, a local neighborhood search
(Beck 2007) can be implemented by exploring first the
branch corresponding to the literal `which is satisfied by the
last found solution, as will be used for the job shop problem
(section ).

In the top-tree, selection rules combining the UCB rule
and the left-preference are investigated. Letting X denote
the current variable to be assigned, with `X (respectively
`X̄ ) denoting the associated left (resp. right) branch:

• Balanced SR selects alternatively `X and `X̄ ;

• ε-left SR selects `X with probability 1 − ε (thus corre-
sponding to a stochastic variant of the limited discrepancy
search (Harvey and Ginsberg 1995)) and `X̄ otherwise;

• UCB SR selects the assignment maximizing the confi-
dence bound of the RAVE estimate (Eq. 1)

select arg max
`∈{`X ,`X̄}

RAVE (`) + C

√
log(n`X + n`X̄ )

n`

• UCB-Left SR: same as UCB SR, with the difference that
different exploration constants are attached to literals `X
and `X̄ (Cleft = ρCright, ρ > 1, in order to bias the explo-
ration toward the left branch.

Note that balanced and ε-left selection rules are not adaptive;
they are considered to comparatively assess the merits of the
adaptive UCB and UCB-Left selection rules.

The pseudo-code of the BASCOP algorithm is shown in
Figure 2.

Experimental Validation
This section reports on the empirical validation of BASCOP
on three binary and n-ary CP problems: job shop scheduling
(Taillard 1993), balance incomplete block design (BIBD)
and car sequencing (the last two problems respectively cor-
respond to pbs 28 and 1 in (Gent and Walsh 1999)). BAS-
COP is integrated within the state-of-the-art Gecode frame-
work (Gecode Team 2012) and its results are comparatively
assessed, using the depth-first-search, the balanced and ε-
left (Section ) strategies as baselines. In all experiments, the
expand rate was set to 5.

Job Shop Scheduling

Ta11 Ta12 Ta13 Ta14 Ta15 Ta16 Ta17 Ta18 Ta19 Ta20
DFS 1365 1367 1343 1345 1350 1360 1463 1397 1352 1350
UCB 1357 1370 1342 1345 1339 1365 1462 1407 1332 1356

Table 2: Best makespans obtained over 11 runs of 200 000
tree-walks on second set of Taillard instances, by DFS and
UCB with parameters C = 0.05, ρ = 2. Bold numbers
indicate best-known results.

Job shop scheduling, aimed at minimizing the schedule
makespan, is modelled as a binary CP problem (Beck 2007).
Upon its discovery, a new solution is used to i) update the

Figure 2: BASCOP Algorithm
Input: number N of tree-walks, restart schedule,

variable ordering heuristic VO, selection rule SR,
expand rate k.

Data structure: a node stores
- a state : partial assignment,
- the variable to be assigned next,
- children nodes corresponding to assigning

different values to the variable,
- a top flag marking it as subject to SR or DFS.
Every time a new node must be created, its state is
computed in the solver by adding the corresponding
literal, and its variable is fetched from VO.

search tree T ← new Node(empty state)
n` ← 0 for each (variable,value) couple `
For i = 1 to N

If restart then T ← new Node(empty state)
If Tree-Walk(T ) is successful

process returned solution
EndFor
Tree-Walk(node) returns (depth, state) :
〈Check-node-state〉
If node.top = false

once every k, node.top← true
otherwise, Return DFS(node)

Use SR to select value among admissible ones
(d, s) = Tree-Walk(node’s child associated to value)
` = (node.variable, value)
n` ← n` + 1
RAVE (`)← RAVE (`) + (d− RAVE (`))/n`
Return (d+ 1, s)

DFS(node) returns (depth, state) :
〈Check-node-state〉
(d, s) = DFS(leftmost admissible child)
Return (d+ 1, s)
〈Check-node-state〉≡

If node’s state is terminal (failure,success)
close the node, and its ancestors if necessary
return (0,node.state)

model (requiring further solutions to improve on the cur-
rent one); ii) bias the search toward the neighborhood of
this solution along a local neighborhood search strategy.
The search is initialized using the solutions of randomized
Werner schedules, and the reported results are averaged over
11 independent runs. The variable ordering heuristics is
based on wdeg-max (Boussemart et al. 2004). Multiple
restarts are used, as the model involves a great many redun-
dant variables, along a Luby sequence with factor 64.

The performance indicator is the relative distance to the
best known makespan, monitored over 50 000 tree-walks
for BASCOP using a UCB-left selection rule(Section ) and
DFS.

The results over the first four series of Taillard instances
are reported in Table 1 (relative distance × 100), showing
that BASCOP robustly outperforms DFS for a wide range

11



Instances DFS Bal. ε-left UCB
ε 0.05 0.1 0.15 0.2 ρ 1 2 4 8

C 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5

1–10 0.51 0.39 0.57 0.45 0.58 0.46 0.35 0.39 0.41 0.42 0.32 0.40 0.43 0.55 0.34 0.43 0.44 0.40 0.36 0.45 0.46 0.29
averages over parameters 0.51 0.39 0.43 0.40 0.39

11–20 2.07 1.76 1.58 1.65 1.46 1.67 1.61 1.53 1.52 1.39 1.51 1.57 1.48 1.77 1.57 1.55 1.53 1.40 1.51 1.52 1.51 1.51
averages over parameters 1.59 1.51 1.58 1.51 1.51

21–30 2.31 2.00 1.58 1.74 1.63 1.88 1.59 1.51 1.65 1.71 1.47 1.49 1.48 1.67 1.60 1.68 1.63 1.42 1.62 1.59 1.62 1.65
averages over parameters 1.71 1.62 1.53 1.58 1.62

31–40 13.55 3.29 2.56 2.24 2.37 2.55 2.24 2.34 2.57 2.37 2.22 2.16 2.37 2.38 2.19 2.33 2.39 2.46 2.04 2.33 2.39 2.55
averages over parameters 2.43 2.38 2.28 2.34 2.33

Table 1: BASCOP experimental validation on the Taillard job shop problems, 100 × relative distance to the best-known
makespan, averaged over 11 runs, 50 000 tree walks.

of parameter values. Furthermore, the adaptive UCB-based
search is shown to significantly improve on the non-adaptive
balanced and ε-left strategies (except for the 1-10 series).

Further experiments, shown in Table 2, show that BAS-
COP discovers some of the current best-known makespans,
previously established using dedicated CP and local search
heuristics (Beck, Feng, and Watson 2011), at similar com-
putational cost (200 000 tree-walks, circa one hour on Intel
Xeon E5345, 2.33GHz).

Balance Incomplete Block Design (BIBD)
BIBD is a Boolean satisfaction problem. The goal of BAS-
COP is to find all solutions. Accordingly, no multiple
restarts were considered; we did neither use dynamic vari-
able ordering, nor local neighborhood search. Instances
from (Mathon and Rosa 1985), characterized from their
v, k, and λ parameters, are considered; trivial instances and
those for which no solution could be discovered by any
method within 50 000 tree-walks are omitted. Table 3 re-
ports the number of tree-walks required to find 50% of the
solutions on the instances for which all solutions were found
(top), and the number of solutions found after 50 000 tree-
walks on other instances (bottom).

Overall, BASCOP consistently outperforms DFS (though
to a lesser extent for large exploration constants, C > .5),
which itself consistently outperforms the non-adaptive bal-
anced strategy.

Car Sequencing
Car sequencing is a CP problem involving circa 200 n-ary
variables, with n ranging over [20, 30]. As mentioned, the
UCB decision rule straightforwardly extends beyond the bi-
nary case; Multiple restarts were not considered eventually
as they did not bring improvements; variable ordering based
on activity (Michel and Van Hentenryck 2012) was used to-
gether with a static value ordering. 70 instances (ranging
in 60-01 to 90-10 from (Gent and Walsh 1999)) are consid-
ered; the algorithm performance is the violation of the ca-
pacity constraint (number of extra stalls) averaged over the
solutions found during 10 000 tree-walks.

The experimental results (Table 4) shows that CP solvers
are still far from reaching state-of-the-art performance on

v k λ DFS bal. UCB 0.05 UCB 0.1 UCB 0.2 UCB 0.5 UCB 1
number of iterations for half of solutions

9 3 2 8654 8000 8862 8860 7473 7317 7264
9 4 3 13291 15144 12821 12824 12794 13524 13753

10 4 2 156 215 153 153 153 153 181
11 5 2 45 45 45 45 45 45 45
13 4 1 40 40 40 40 40 40 40
15 7 3 5007 5254 1877 1878 1877 1961 2773
16 4 1 322 394 377 379 378 392 340
16 6 2 1677 1947 1130 1131 1133 1139 1270
21 5 1 507 799 484 484 484 495 537
average 3300 3538 2865 2866 2709 2785 2911

number of solutions after 50K iterations
10 3 2 19925 11136 17145 17172 17031 18309 22672
10 5 4 1454 1517 1552 1554 1550 1556 1558
13 4 2 824 1457 16597 16654 16596 2063 1898
15 3 1 21884 2443 22496 22505 22497 23142 15273
16 4 2 190 6 4726 4727 4725 247 392
16 6 3 180 - 416 416 425 306 64
19 3 1 18912 - 19952 19952 19952 15794 10190
19 9 4 - - 18 18 18 36 -
21 3 1 - - 16307 16289 16329 14764 9058
25 5 1 416 260 460 460 460 460 420
25 9 3 - - - 12 - 8 -
31 6 1 253 34 347 342 347 347 342
average 7388 3279 9173 8473 9166 6684 6516

Table 3: BASCOP experimental validation on BIBD: num-
ber of instances needed to find 50% of the solutions if all
solutions are found in 50 000 tree-walks (top) or number of
solutions found after 50 000 tree-walks (bottom).

these problems, especially when using the classical relax-
ation of the capacity constraint (Perron and Shaw 2004).
Still, while DFS and balanced exploration yield the same re-
sults, BASCOP (with UCB selection rule) modestly but sig-
nificantly (after a Wilcoxon signed-rank test) improves on
DFS; the improvement is robust over a range of parameter
settings, with C ranging in [.05, .5].

Discussion and Perspectives
The paper introduces BASCOP as a generic hybridization of
MCTS and CP, and demonstrates its ability to provide good
and robust results. BASCOP adapts MCTS to the specifics

12



DFS bal. UCB 0.05 UCB 0.1 UCB 0.2 UCB 0.5
average gap 17.1 17.1 16.6 16.7 16.6 16.5
z-score vs DFS - 0 3.21 2.59 3.44 3.20

Table 4: BASCOP experimental validation on car-
sequencing: average violation after 10 000 tree-walks and
significance of the improvement over DFS after Wilcoxon
signed-rank test.

of CP tree search while preserving the generality of the un-
derlying constraint engine and the applicability to any CP
model. It is evaluated on three different domains, show-
ing significant improvements over an efficient DFS base-
line augmented with up-to-date dynamic variable ordering
heuristics.

This work opens several perspectives for further research.
A first perspective is to build and exploit node-based rewards
in the no-restart context. Another potential source of im-
provements lies in the use of progressive-widening (Coulom
2006) to deal with many-valued variables.

Another perspective concerns the parallelization of BAS-
COP. Parallelization of MCTS has been studied in the con-
text of games (Chaslot, Winands, and van den Herik 2008).
Further work will consider how these approaches can be
adapted within BASCOP, and assess their merits compar-
atively to parallel tree search based on work stealing (Chu,
Schulte, and Stuckey 2009). In particular, parallel BASCOP
might alleviate a current limitation of work stealing, that is,
being blind to the most promising parts of the tree.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235–256.
Beck, J.; Feng, T.; and Watson, J.-P. 2011. Combining con-
straint programming and local search for job-shop schedul-
ing. INFORMS Journal on Computing 23(1):1–14.
Beck, J. C. 2007. Solution-guided multi-point constructive
search for job shop scheduling. JAIR 29:49–77.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting systematic search by weighting constraints. In
ECAI, 146–150.
Chaslot, G.; Winands, M. H. M.; and van den Herik, H. J.
2008. Parallel monte-carlo tree search. In Computers and
Games, 60–71.
Chu, G.; Schulte, C.; and Stuckey, P. 2009. Confidence-
based work stealing in parallel constraint programming. In
CP, 226–241.
Ciancarini, P., and Favini, G. 2009. Monte-Carlo Tree
Search techniques in the game of Kriegspiel. In IJCAI, 474–
479.
Coulom, R. 2006. Efficient selectivity and backup operators
in Monte-Carlo Tree Search. In Computers and Games, 72–
83.
Epstein, S.; Freuder, E.; Wallace, R.; Morozov, A.; and
Samuels, B. 2002. The adaptive constraint engine. In CP,
525–542.

Gecode Team. 2012. Gecode: Generic constraint develop-
ment environment. Available from www.gecode.org.
Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in UCT. In ICML, 273–280. ACM.
Gent, I., and Walsh, T. 1999. CSPLIB: A benchmark library
for constraints. In CP, 480–481.
Harvey, W., and Ginsberg, M. 1995. Limited discrepancy
search. In IJCAI, 607–615.
Hutter, F.; Hamadi, Y.; Hoos, H.; and Leyton-Brown, K.
2006. Performance prediction and automated tuning of ran-
domized and parametric algorithms. In CP, 213–228.
Hutter, F.; Hoos, H.; and Stützle, T. 2007. Automatic algo-
rithm configuration based on local search. In AAAI, 1152–
1157.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In ECML, 282–293.
Lai, T., and Robbins, H. 1985. Asymptotically efficient
adaptive allocation rules*1. Advances in Applied Mathemat-
ics 6:4–22.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of las vegas algorithms. IPL 47:173–180.
Mathon, R., and Rosa, A. 1985. Tables of parameters for
BIBD’s with r ≤ 41 including existence, enumeration, and
resolvability results. Ann. Discrete Math 26:275–308.
Michel, L., and Van Hentenryck, P. 2012. Activity-based
search for black-box constraint programming solvers. In
CPAIOR, 228–243.
Nakhost, H., and Müller, M. 2009. Monte-Carlo explo-
ration for deterministic planning. In Boutilier, C., ed., IJ-
CAI, 1766–1771.
O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using case-based reasoning in an al-
gorithm portfolio for constraint solving. In AICS.
Perron, L., and Shaw, P. 2004. Combining forces to solve
the car sequencing problem. In CPAIOR, 225–239.
Rice, J. 1976. The algorithm selection problem. Advances
in Computers 65–118.
Samulowitz, H., and Memisevic, R. 2007. Learning to solve
QBF. In AAAI, 255–260.
Streeter, M.; Golovin, D.; and Smith, S. 2007. Combining
multiple heuristics online. In AAAI, 1197–1203.
Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. MIT Press.
Taillard, E. 1993. Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research 64(2):278
– 285.
van Beek, P. 2006. Backtracking search algorithms. In
Handbook of Constraint Programming. chapter 4, 85–134.
Wu, H., and Van Beek, P. 2008. Portfolios with deadlines
for backtracking search. In IJAIT, volume 17, 835–856.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2008.
Satzilla: Portfolio-based algorithm selection for SAT. JAIR
32:565–606.

13




