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Abstract

Current autonomous bidding strategies for complex auc-
tions typically employ a two phased architecture: first, the
agent predicts a distribution over good prices, and then the
agent generates bids given those predictions, usually using
a heuristic. For computational reasons, previous state-of-the-
art methods assumed prices were independent across goods,
and then bid based on marginal price distributions. How-
ever, prices for goods are typically dependent, especially for
complements and substitutes. We develop computationally
feasible methods for predicting joint price distributions, and
employing such predictions in bidding strategies. We also
demonstrate experimentally that the state-of-the-art heuristic
for bidding in simultaneous second-price sealed-bid auctions
is outdone by the analog of this same heuristic bidding with
respect to joint instead of marginal price predictions.

1 Introduction

How should an agent bid in simultaneous auctions? One an-
swer is: according to game-theoretic equilibrium. Although
sensible in theory, this approach is rarely used in prac-
tice. First, a unique equilibrium cannot be guaranteed. Sec-
ond, and perhaps more importantly, except for relatively
simple settings (e.g., single-item auctions, or direct mech-
anisms with dominant strategies) (Krishna 2010), solved
simultaneous-auction games are few and far between (Ra-
binovich et al. 2013).

An alternative approach—predominant, for example,
in the annual Trading Agent Competition (TAC) (Well-
man, Greenwald, and Stone 2007)—is a two-step process,
whereby the agent first predicts auction prices, and second
bids based on its predictions. Bidding strategies that base
their decisions on price predictions are known as price-
prediction (PP) strategies. Optimizing PP strategies pro-
duce bids that maximize expected utility given their predic-
tions. Wellman et al. (2012) show that under standard as-
sumptions, optimizing PP strategies are sufficient for bid-
ding in simultaneous sealed-bid auctions, in the sense that
any Bayes-Nash equilibrium can be expressed as a profile
of optimizing PP strategies. This correspondence between
decision-theoretic and game-theoretic solutions obtains only
when price predictions are s elf-confirming, that is, when the
realized prices are the predictions input to the PP strategies.
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To our knowledge, all PP strategies studied in the litera-
ture that employ probabilistic price predictions do so on a
per-good basis. That is, rather than construct a joint proba-
bility distribution over the prices of all goods, they predict
marginal price distributions. This is done for computational
reasons: both the prediction and the optimization problems
are simpler when solved on a per-good basis. However, solu-
tion quality suffers when prices are not actually independent,
which in general they are not—for example, in the presence
of complementary and substitutable goods, as in the FCC
spectrum auctions (Bykowsky, Cull, and Ledyard 2000) or
the TAC market games (Collins, Ketter, and Sadeh 2010;
Wellman, Greenwald, and Stone 2007). In this paper, we
tackle the higher fidelity, but more computationally diffi-
cult problems of predicting joint price distributions, and then
bidding based on these joint predictions.

We start in the next section by introducing definitions
and notation. In Sec. 3, we develop computationally feasi-
ble methods for learning self-confirming price predictions
using Gaussian mixture models. Sec. 4 describes bidding
heuristics based on marginal and joint price predictions.
The remaining sections describe the extensive set of experi-
ments we ran to evaluate our methods, which taken together
demonstrate the plausibility and effectiveness of accounting
for price dependencies in simultaneous auctions.

2 Model

Consider a market in which n agents compete as bidders for
the set of goods X = {1,...,m}, which are sold through
simultaneous sealed-bid (one-shot) auctions. Each agent pri-
vately and simultaneously sends to the auctioneer a bid vec-
torb = (b1,...,by) € RY,, where b; is the agent’s bid
for good j. (A bid of zero is interpreted as a null bid.) The
auctioneer thus receives a matrix of bids B &€ Rgém, which
it processes to determine the winner of each good and the
payments assessed to each agent.

Let B be the set of possible B matrices. The auction out-
comes are determined collectively by (1) an allocation rule
w : B — {0,1}"*™, which maps the agents’ bids to a bi-
nary matrix specifying whether or not each agent won each
good, and (2) a payment rule ¢ : B — R™*", which maps
the agents’ bids to a matrix specifying the cost incurred by
each agent for each good. In particular, w’(B) represents the
set of goods allocated to agent 7, and cé- (B) is the payment



assessed to agent ¢ in the auction for good j.

Agent i’s valuation function vi(w?(B)) represents the
value ¢ attributes to its winnings. Since goods are allo-
cated in separate auctions, payments are additive: c¢'(B) =
doi ¢5(B). Agent i’s utility u'(B) equals its valuation
less its payment: u'(B) = v'(w'(B)) — ¢'(B).

We focus on the standard allocation rule in which good
j is allocated to the highest bidder for that good. We fur-
ther assume that the winner of good j pays ¢(¥, "), a func-
tion of the first-highest bid &’ and second-highest bid &” for
that good, and the losers of good j do not pay. Now agent
i’s bid vector b € R together with the vector of highest
other-agent bids ¢ € R is sufficient to determine agent
1’s allocation and payment. The allocation rule reduces to
w'(b,q) = {j | bj > q;,b; > 0}, and the payment rule
0 c'(bq) = .1, ch(b,q). where ¢ (b.q) = 6(b;.q;) if
b; > q; and b; > 0, and O otherwise. Consequently, the
utility function reduces to u‘(b,q) = vi(wi(b,q)) — c'(b,q).

At a high level, the bidder’s problem is to determine
bids that maximize utility. A PP strategy s is a function
that takes as input predicted prices and a valuation func-
tion, and outputs a bid vector. More precisely, from the
point of view of agent i, let @ = (Q1,...,Qy,) de-
note a random m-vector (i.e., m random variables, one per
auction), representing predicted highest other-agent bids,
with probability density function (pdf) fg(q) and cumula-
tive distribution function (cdf) Fo(q): Fo(qi,...,qm) =
fQ(Ql S q1,---, ng qm) NOW Ul(wl(va))’ Cl(ba Q)a
and v'(b,Q) = v'(w"(b,Q)) — ¢*(b,Q) are random vari-
ables, and agent 7’s objective, when employing PP strategy
s(fg,v'), is to choose a bid vector b € R7, that maximizes
its expected utility E[u’(b, Q)].

In the remainder of the paper, as we continue to reason
from the point of view of just one agent, we drop the ¢ su-
perscripts, and write: v(w(b, Q)), ¢(b, @), and u(b, Q). Fur-
thermore, we abbreviate v(w(b,Q)) by v(b, Q). Lastly, we
refer to sets of goods as bundles.

3 Learning Joint Price Predictions

Past work on learning price predictions has been concerned
with learning marginal price predictions: making predic-
tions on a per-good basis (Stone et al. 2003). Often, such
price predictions are represented as histograms (Greenwald,
Lee, and Naroditskiy 2009; Wellman, Sodomka, and Green-
wald 2012). Assuming m goods, each with [ possible dis-
cretized prices, it take O(ml) space to represent m marginal
histograms. The corresponding joint histogram would take
space O(I™). Consequently, for large m, it is not possible
to accurately model a joint price probability distribution as
a histogram. Instead, we represent a joint distribution as a
mixture of multivariate Gaussians.

Gaussian Mixture Models

A Gaussian mixture model (GMM) represents a joint distri-
bution of dimension m as a weighted sum of K Gaussian
components. Each component k& € {1,..., K} is defined
by its mean vector p;;, € R™ and covariance matrix Xj, €
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R™>™ Tn addition, each component is weighted by a scalar
Yk - The vector = <’}/17 YK M, ,MK,Zl, . 7EK>
specifies the free parameters of a GMM with K components.

Given a GMM, the probability density p(y) =
Zkl,(zl Yy | pr,Zk), for y € R™. The likelihood of
a data set Y = {y1,...,y)y|} with respect to 6 is then

LY 1 6) =TT p(w).

A standard algorithm for estimating the free parameters
of a GMM from a dataset ) is Expectation Maximization
(EM(), K)) (Dempster, Laird, and Rubin 1977), an itera-
tive approach which guarantees that the likelihood of the
data never decreases; however, the number of components
K must be specified in advance.

Rather than guess K, we use the Akaike Information Cri-
terion (AIC) (Akaike 1974) to drive model selection. That
is, we learn models for various values of K, and then se-
lect the model that minimizes AIC score. The AIC score
is a standard measure of goodness of fit (i.e., the likeli-
hood of the data under the model) discounted by the number
of parameters x(K,m) in the model: AIC(Y,0,K,m) =
2(k(K,m) —In L(Y | 9)). To specify the mean of a single
Gaussian requires m parameters. Further, the full covariance

2 .
m-t+m parameters. So, in total, the complex-

matrix requires =
ity of our model is k(K,m) = K (m + mz%)

Alg. 1 formalizes our approach to learning the free pa-
rameters of a GMM given a data set ) and some maximum
number of components K. Next, we discuss our method of
generating the price data our GMMs represent.

ALGORITHM 1: AIC_GMM
Input : data set ), maximum number of
components K

Output: GMM parameter estimates 0
for K < 1to K do

1
2 | 6K — EM(Y, K)

3 | aic® «— AIC(Y, 0%, K, m)

4 return 0K where K* € argmin aic

K

Self-Confirming Price Predictions

There are many ways one might build probabilistic price pre-
dictions from data (Wellman et al. 2004). We employ self-
confirming price predictions (SCPPs), originally introduced
in the context of simultaneous ascending auctions (Well-
man et al. 2008), and further evaluated in SImSPSB auctions
(Wellman, Sodomka, and Greenwald 2012). We extend the
algorithms employed in these prior works to operate over a
joint price space.

Our SCPP search procedure (Alg. 2) is an iterative process
takes as input an auction environment I', a price-prediction
strategy PP, a learning algorithm LearnJoint, an initial
price prediction fg, and several parameters that control the
process. During iteration ¢, the algorithm simulates M in-
stances of I', with all agents playing strategy PP with price



prediction féﬁl. These simulations vary across sample valu-
ation vectors. Given the ensuing data set ), a new price dis-
tribution fq is learned. If that new distribution is sufficiently
close to the old, then the new distribution is returned and the
procedure terminates. Otherwise, yet another price distribu-
tion is formed by combining the new and the old distribu-
tions in some way (specified by function g), and the process
repeats. As this procedure is not guaranteed to converge, it
is forcibly terminated after Lgcpp iterations.

ALGORITHM 2: SCPP Search
Input : environment I', PP strategy PP, algorithm
LearnJoint, price prediction fg, and
parameters Lscpp, M, NKLs, g, Tscpp
Output: price prediction fg
1 fort < 1to Lycpp do
2 for u < 1 to M do
3 v < draw a sample valuation vector
4 y; <— outcome of simulating I', with each

agent playing PP(fZ{l , ;)

5 y<—{y177yM}

6 fq < Learndoint())

7 if KLS Ny s (fo, ff{l) < Tscep then return fg
s | else £+ g(fa, f57)

9 return f5

All that remains before our search procedure is fully
specified is to explain how we decide when two prob-
ability distributions are approximately equal. A standard
measure of similarity between probability distributions is
KL-divergence (Hershey and Olsen 2007): KL(p,q) =

75 p(@)In (%) dz. The KL-divergence is not a true dis-

tance metric because it is not symmetric, so we employ this
symmetric version: KLS(p, q) = KL(p, q) + KL(q, p).
Whereas there is no closed-form for the KL-divergence
between two GMMs, we can interpret KL-divergence
as an expectation, and approximate its value us-
ing Monte Carlo sampling. Drawing Nkrs samples
(twice), namely ¢* ~ fo and 7% ~ fg, we ap-

proximate KLS(fq,fg) by KLSnys(fe,fg) =
fo(d") fo(r®)

<1n (2m) +m (fg(r’“))>‘

4 Bidding wrt Joint Price Predictions

Having addressed the questions of how to represent and
make price predictions, we move on to how to bid, given
those predictions. Since bidding decisions depend pivotally
on auction rules, we focus from here on on a particular
mechanism: the second-price sealed bid (SPSB) auction.

A wide taxonomy of heuristics has been proposed for
simultaneous SPSB (SimSPSB) bidding (Wellman, Green-
wald, and Stone 2007). We discuss two classes, one based
on marginal value, and the other on local search. The for-
mer covers a large fraction of strategies previously stud-
ied in the literature, including varieties that implicitly or

1 NkLs
Nxrs &~k=1
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explicitly address the expected utility maximization objec-
tive. The latter is a flexible and computationally efficient
approach to explicit optimization. While not optimal in gen-
eral, the approach was shown effective in recent work (Well-
man, Sodomka, and Greenwald 2012), and is significantly
extended here.

Marginal Value Heuristics

When goods interdepend, the value of any individual good
is not well-defined. Only its marginal value (MV)—its value
relative to a bundle of other goods—can be quantified.

Definition 1. Given a valuation v, an agent’s marginal value
w(v, j, X) for good j with respect to a bundle of other goods
X is given by: (v, 7, X) = v (X U{j}) — v (X).

In the case of simultaneous auctions, a priori there is no
bundle of goods with which to assess the relative value of a
good. There are, however, predicted prices at which bundles
can be acquired, and it is possible to assess the value of a
good relative to the value of acquiring bundles at a cost.

Given a valuation v and a vector of prices ¢ =
(q1y---,qm), let o(v, X, q) denote the utility earned by ac-
quiring the bundle X: o(v,X,q) = v(X) — > cx q)-
Defining 0*(v,q) = maxx o(v, X, q), we extend the con-
cept of marginal value as follows.

Definition 2. Given a valuation v, an agent’s marginal value
w(v, j,q) for good j with respect to price vector ¢ is given
by: /’[‘(Uvj7Q) = U*(U7Q[qj < O]) - U*(an[qj — OO])
Here, 0*(v,q[g; < 0]) denotes the maximal utility at the
given prices, assuming good j is available for free, whereas
0*(v,qlg; < o0]) denotes the maximal utility at the given
prices, assuming good j is unavailable. The difference is pre-
cisely the marginal value of good j relative to the possibil-
ity of acquiring the other available goods at their respective
prices. Since calculating o* entails optimizing over bundles,
for general valuations, the MV-based heuristics take time ex-
ponential in the number of goods m.

The StraightMV heuristic takes as input price predic-
tions in the form of point estimates, one per good, and bids
marginal values with respect to those estimates. The related
heuristic StraightMU takes as input price predictions in the
form of (marginal) distributions, one per good, collapses the
distributions into point estimates, and bids marginal values
with respect to those estimates. Distributional price informa-
tion can be collapsed either by computing E[Q] directly—
the so-called expected value method (EVM) (Birge and Lou-
veaux 1997)—or by computing a sample average (SA) of
this expectation: > 1< g*, where ¢* ~ fq. We denote by
StraightMUa the EVM version of this heuristic (“a” stands
for analytic), and by StraightMUNq the SA version that
draws Nq samples.

It turns out that the StraightMU heuristics do not behave
any differently under joint distributions than they do under
the corresponding marginals. The reason for this is that the
expected price of good j depends only on the random vari-
able (), and not at all on the random vector () _;.

Heuristics in the average-marginal-utility family bid on
good j an estimate of E[u(v, j,q)], j’s expected marginal



value. They compute these estimates by first drawing Ngyry
samples ¢ ~ fg, and then computing: Z]kvfll‘” o*(v,q;
0,¢";) — 0*(v,q; <« o0,q¢";). For example, Aver-
ageMU64 samples 64 times from marginal distributions.
The J AverageMU128 heuristic samples 128 times from
the full joint distribution. (In general, we prepend a heuristic
name with the letter J if that heuristic was formerly studied
with marginal price predictions as input, but we feed it joint
price predictions.)

Local Search Heuristics

A local search heuristic employs a local search in pur-
suit of its bids. Starting from an initial bid vector b =
(bj,b_;), (e.g., one proposed by another heuristic such as
StraightMV), an LS heuristic updates b; for each good j in
turn, holding all other goods’ bids fixed. Each of the follow-
ing local search update rules defines a heuristic.

JointLocal sets b; to the expected marginal value of
good 7, relative to the bundles of other goods it might win,
given bid vector b_;:

bj < E[o(w(b, @) U{j})] — E[v(w(b, @)\ {j})]-

CondMVLocal also sets b; to the expected marginal
value of 7, but conditions on winning j:

bj = Efo(w(®,Q) U {j}) —v(wbd @)\ {j}) | Q; <b;].

CondMVLocal reflects dependencies between the current
bid for good j (i.e., before updating) and b_;, whereas the
JointLocal update rule ignores the current bid for good j.

The MargLocal update rule is identical to JointLocal’s,
except that the expectation is computed with respect to the
marginals, rather than the joint:

bj < Efo(w(b,Q) U{5})] - Elv(w®,Q)\ {i})]

Local search assuming independence was introduced by
Wellman et al. (2012), who found it to be the best heuris-
tic for the environments studied.

Proposition 1. When prices are independent across goods,
JointLocal and CondMVLocal reduce to MargLocal, so
all three proposed local search update rules are equivalent.

These local search update rules can be implemented
using Monte Carlo sampling. Given Np samples ¢* ~
fo, as a representation of fg, the JointLocal up-
date rule, for example, is approximated by b; <

35 2ay (v(w(d, ) U{5}) — v(w(b,g") \ {5})).

Our local search procedure is outlined in Alg. 3. Given
aset S = {q',....¢" | ¢ ~ fqo}. the bid for each
good is updated in turn, according to a local search update
(LSU) rule. The procedure terminates if the Euclidean dis-
tance between the current and the previous bid vectors falls
below a specified tolerance 7 s, or when the maximum num-
ber of iterations L, g is reached. Given sample qk, the win-
nings w(b,q") can be determined in time linear in the num-
ber of goods m. Therefore, the overall complexity of Alg. 3
is O(NBLLSm2).

MargLocal was previously studied under the assumption
that prices are independent across goods, in which case the
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ALGORITHM 3: Local Search
Input : update rule LSU, samples S, valuation v,
initial bid vector b°, parameters L, Ty s
Output: bid vector b
1 for/ =1to L5 do

2 for j = 1tomdo

3 bl LSU(S, 0,6 7)
4 | if[[p' —b'7L|| < 75 then
5 | return b’

6 return b’

expected marginal value of good 7 is in fact an optimal bid
in simultaneous SPSB auctions:

bj € argmaxy, E[v((b},b—;),Q)] (Wellman, Sodomka,
and Greenwald 2012). Further, MargLocal converges to a
locally optimal expected utility—it is not possible to change
the bid vector in one dimension only and increase expected
utility. In contrast, neither JointLocal nor CondMVLocal
are locally optimal in this sense.

5 Valuation Environments

Our experimental evaluation is conducted in a variety of si-
multaneous second-price sealed-bid (SimSPSB) auction en-
vironments, employing four distinct classes of distributions
over valuations. We denote an environment by C[m, n], with
C € {S,U,L,,H} designating the valuation class, and m
and n the numbers of goods and agents, respectively.

Valuation classes S, U, and Ly correspond to scheduling
valuations (Reeves et al. 2005). Under scheduling valua-
tions, each agent ¢ has a job to complete that requires the
use of a common resource for A; € {1,...,m} blocks of
time. Each good j represents a time block during which the
common resource will be allocated to the winner of good j.
We write d;(j) to denote the value agent 7 receives for com-
pleting its job by time j. The earlier an agent completes its
job, the higher its value (i.e., d;(j) > d;(j + 1)). If an agent
does not complete its job, it receives no value.

Scheduling valuations are of interest because they exhibit
some form of both complements and substitutes. For ex-
ample, when \; = 2, goods 1 and 3 are complements for
agent i, since ¢ obtains no value from either good alone, but
does obtain value if it procures them both. At the same time,
if agent ¢ wins good 3, then goods 1 and 2 are perfect substi-
tutes, since all that affects 7’s value is the time block of the
latest essential good.

The valuation classes S, U, and L; differ only in how they
generate \; and d;(t) values. In valuation classes S and U,
A; is drawn uniformly from the set {1, ..., m}, whereas in
valuation class L1, A; = 1 (making all goods substitutes).
In all classes, the d;(t) are drawn uniformly from the set of
integers {0,...,50}. In environments S and Ly, the d;(t)
are sorted to ensure monotonicity in j, whereas in U, for
consistency with prior literature, the monotonicity constraint
is enforced by ironing (Reeves et al. 2005).

In addition to scheduling valuations, we also consider val-
uations with more extreme substitutability. In valuation class



H (Wellman et al. 2008), the goods are identical; agents ob-
tain value based solely on the total number they procure.
Specifically, an agent’s marginal value for the first good is
drawn uniformly from the set {0, ..., 127}, and its marginal
value for the jth good it obtains is uniform between 0 and
its marginal value for the j — 1st good.

6 Optimization Experiments

While previous sections have outlined efficient price pre-
diction methods, this section reports on experiments over
a range of bidding heuristics and valuation environments,
designed to evaluate how correlations present in self-
confirming price predictions impact optimization quality
and the expected benefit of accounting for dependencies.

Experimental Setup

Because computing an optimal bid vector is intractable, even
for small numbers of goods, and because previous work es-
tablished MarglLocal to be the best known bidder for the
SimSPSB environment, we focus our optimization experi-
ments on MarglLocal and its joint counterpart, JointLocal.

We also include in our test suite of bidding heuristics
a standard optimization routine, the Down Hill Method!
(DHM) (Nelder and Mead 1965). DHM is a function min-
imization technique that starts at an initial candidate, eval-
uates the function, and then moves to a new candidate,
making its selection from a pre-determined set of possible
moves. The function’s value is then re-evaluated at the new
candidate, and the process iterates until convergence, or un-
til a maximum number of iterations is reached. We tailored
DHM to bid in SimSPSB auctions by minimizing negative
expected utility, given price predictions. More specifically,
the PP strategy JointDownHill estimates expected utility us-
ing Monte Carlo sampling, sampling from the full joint and
using the same set of samples in all iterations. The PP strat-
egy MargDownHill does the same, but samples from the
corresponding marginals.

We compare the optimization performance of these bid-
ding heuristics across various SimSPSB environments from
valuation classes S and L;.

Our method for evaluating the performance of a bidding
heuristic in a given environment is as follows: First, to con-
trol for prediction accuracy, we generate a single SCPP for
each environment. Second, for each environment, we fix a
set of 1,000 sample valuations. For each valuation, we use J
StraightMU8 to generate an initial bid vector, which is then
passed as input to each heuristic. Other specific parameters
passed to the LS heuristics are listed in Table 2. We then es-
timate the expected utility of each output bid vector using
10,000 sample price vectors.

Using the parameters listed in Table 1, we derived SCPPs
in the form of GMM s using Alg. 2.2

We then measured the degree to which prices are cor-
related in each environment by estimating fotal correla-

"We use the SciPy implementation (Www.scipy.org).
2SCPP searches in this section use the scikit-learn implementa-
tion of EM (scikit-learn.org).
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l Parameter Meaning Value
PP PP strategy J StraightMUa
LearnJoint learning algorithm AIC_.GMM
K maximum # of components 20
1 initial prediction ulo, vi™
Lgcpp maximum # of iterations 100
M # of auctions simulated per iteration 10000
NkLs # of samples used to compute K LS 10000
g combining old and new predictions g(fo™s fgd) = 1o
TSCPP KLS threshold (distribution) 0.001

Table 1: Parameter settings for SCPP search.

l Parameter [ Meaning [ Value l
TLS convergence tolerance 1x107°
Lig maximum # of iterations 100
Np # of samples used to estimate bid 10000

Table 2: Parameter settings for local search.

tion and observing sample correlation matrices in the corre-
sponding SCPP. These two metrics are explained presently.

Total correlation (TC) is a multivariate extension of mu-
tual information, defined as KL(fq, fo/). This quantity is
zero when the joint distribution is equivalent to the prod-
uct of the marginals, and increases as )1, . . . , @, become
more and more correlated. Given a price prediction repre-
sented as a GMM, we approximate TC via Monte Carlo
integration. That is, given Nyc samples g¢* ~ fq, TC =
Mo DU folgh) In (4214,

TC = fQ/(‘lk)

For a given price prediction, the sample correlation (SC)
matrix can reveal further insight into the structure of price
dependencies. Drawing Ngc samples as above, the sample

. . . . _ 1 NSC k o
covariance matrix is computed as: C' = = > ;57 (g

q)" (¢* — g), where g is the vector of sample means. The el-
ements of the correlation matrix, p;;, are computed by nor-
malizing the elements of C: p;; = ¢;;/./CiiCj; .-

Experimental Results

Figs. 1(a) and 1(b) depict the sample correlation matrices for
S[5,2] than S[5, 8]. Fixing the number of goods at 5, these
figures suggest that prices are more strongly correlated in
environments with fewer agents. (Dark red indicates strong
correlation, whereas blue indicates weak correlation, or no
correlation at all.) Likewise, Fig. 1(c) shows that two joint-
exploiting heuristics (JointLocal and JointDownHill) out-
perform MarglLocal by as much as 7.5% and 12%, respec-
tively, when there are only two agents (i.e., strong price de-
pendencies). On the other hand, when there are eight agents,
and relatively weaker price dependencies, these two heuris-
tics perform on par with MargLocal.

Also plotted in Fig. 1(c) is total correlation as it varies
with n, the number of agents. This plot suggests that, given
a fixed m, total correlation can identify values of n where in-
dependence assumptions will (or will not) significantly de-
grade heuristic performance. The knee at S[5, 4] accurately
segments this space of environments into two—those where
the price independence assumption is particularly harmful
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Figure 1: Absolute value of sample correlation matrices for de-
rived SCPPs in various environments, and the average percent
change in expected utility of each heuristic as compared to Mar-
glocal. For all sample correlation matrices, a dark red square at
i, j indicates p;; ~ 1, implying g; and g; are strongly correlated,
whereas a blue square indicates p;; ~ 0, implying ¢; and g; are
uncorrelated.

(n < 4), and those where it is not (n > 4).

Figs. 1(d), 1(e), 1(g), and 1(h) also depict sample correla-
tion matrices, for the S[2,5], S[7, 5], L1[2, 5], and L,[L, 5]
environments, respectively. Here we fix the number of
agents at five, and consider either two or seven goods.

When there are only two goods, the sample correlations
are very weak off the diagonal in both of these environments.
Butin S[7, 5], where there are seven goods, the sample corre-
lation matrices exhibit stronger correlation factors off the di-
agonal. This observed increase in correlation, as the number
of goods increases, is reflected in the relative expected util-
ity estimates plotted in Fig. 1(f). When there are ten goods,
JointLocal outperforms MargLocal by roughly 3%.

Also of interest in this plot is the divergence between
JointLocal and the two downhill heuristics as the number of
goods increases. Perhaps surprisingly, the downhill heuris-
tics, which are derivatives of a generally high-performing
optimization routine, are quickly surpassed by JointLocal,
a provably suboptimal heuristic.

In the substitutes environment, the weak correlations seen
in L;[2, 5] persist, even when there are seven goods. Intu-
itively, this makes sense: in any L, [m, n] environment, each
agent requires a single good, and produces a bid for that
good independently of all others. Correspondingly, the ex-
pected utilities of the various heuristics (including MargLo-
cal) do not vary all that much with the number of goods,
as seen in Fig. 1(i). Note, however, beginning at about
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m = 5, JointLocal starts to outperform the downhill heuris-
tics. Again, we see that the downhill method struggles in
higher-dimensional spaces. This result is yet another testa-
ment to the value of designing application-specific heuristics
for complex optimization problems.

7 Empirical Game-Theoretic Analysis

To evaluate the effectiveness of bidding using joint price
predictions, we conducted an extensive computational ex-
periment, employing the methodology of empirical game-
theoretic analysis (EGTA). This effort builds on a previous
study in which we carried out an EGTA for SimSPSB over a
comprehensive set of bidding strategies that employed price
predictions, but assumed (incorrectly) that prices were in-
dependent across goods (Wellman, Sodomka, and Green-
wald 2012). To the set of strategies considered previously,
we added several that employ joint rather than marginal
SCPPs. In all three environments studied—two with com-
plement preferences and one with substitutes—we find that
one or more of the new joint-exploiting strategies invades or
completely overthrows the equilibrium of bidding strategies
identified in the previous analysis.

Strategies and valuation environments

The original study evaluated a broad set of bidding strategies
representative of prior literature, as well as the new (for that
paper) MarglLocal strategy. The mix included an array of
MYV strategies (see Sec. 4), using SC point-price predictions
or marginally SC distributional-price predictions. It also in-
cluded several varieties of BidEval, a meta-heuristic bidder
that generates candidates using other (e.g., MV) strategies,
and selects the one yielding greatest expected utility with re-
spect to the input PP. The MargLocal heuristic rounds out
the list of major strategy classes considered.> All of these
strategies represent price distributions using m histograms,
and assume the prices for respective goods are probabilisti-
cally independent. The procedure for deriving price predic-
tions sought to find only marginally self-confirming PPs.

For the present study, we added to that baseline set three
strategies that are direct joint-based counterparts of repre-
sentative strategies from the original study:*

e J StraightMUa: A version of StraightMU (applies EVM
to StraightMV, as described in Sec. 4), using the mean of
the input PP.

e J AverageMUG64: The strategy AverageMU, using 64
samples to estimate expected MV.

e J SCBidEvaluatorMixA_K16: A version of BidEval,
employing 16 candidates generated by a mix of Aver-

3Space limits preclude a full recapitulation of the setup and re-
sults of the prior analysis. Whereas we provide here a complete
description of our new experiments and findings, we rely on refer-
ence to the original study for detailed definitions of strategies and
environments defined for that work.

“The strategy names in the report of the original study (Well-
man, Sodomka, and Greenwald 2012) include a suffix “_HB” to
indicate that the PP was derived using highest bids of other agents.
In the current work this holds throughout, so we omit the suffix.



ageMU, StraightMU, and TargetMU. The bid candidates
are evaluated using 32 samples from the input PP.

As observed in Sec. 4, EVM strategies like StraightMU be-
have no differently assuming independence or not. The im-
plemented strategy J StraightMUa may nonetheless differ
from StraightMUa, as the former’s approximate SCPP was
derived using the GMM representation, whereas the latter’s
used a histogram representation. In contrast, AverageMU
and BidEval strategies behave differently under the inde-
pendence assumption (unless of course the joint distribution
actually exhibits independence).

We further added the joint-exploiting versions of the Mar-
glocal strategy introduced in Sec. 4: JointLocal and Cond-
MVLocal. We included a third LS variation as well, but
this performed poorly and is not discussed further here. In
our implementation, a run of a local search adjusts a bid
vector until convergence, or 16 cycles through the goods,
whichever comes first. Each strategy carries out four such
local searches, initialized by a mix of different MV heuris-
tics (as described for SCBidEvaluatorMixA_K16 above). It
then employs the same 64 samples to estimate the expected
utility of those four bid vectors, and selects the best one. If
none yield positive expected utility, the strategy produces a
null bid. With the exception of J StraightMUa, which uses
the weighted component mean, all the new strategies sample
from a GMM representation of a joint price prediction. Any
negative prices drawn in these samples are treated as zeros.

We evaluated the six new strategies along with the base-
line set in three environments: U[5, 5], U[5, 8], and H[5, 5].
As described in Sec. 5, U valuations reflect complementary
preferences, and H valuations perfect substitutes.

Deriving joint SCPPs

For each of the six new strategies in each of the three test
environments, we derived a joint SCPP represented as a
multivariate GMM. The procedure we employed follows
the basic approach of Alg. 2, but differs in several partic-
ulars due to differences in the software environment em-
ployed for the EGTA portion of our study. We adopted a
fixed number of GMM components for the PP representation
(K = 10), and a fixed number of iterations of main search
loop (L = 50, with no testing for earlier convergence).
To damp potential oscillations in the search, the number of
game samples M taken on iteration ¢ is a decreasing func-
tion, M; = G(L —t+1)/L, where G (20,000 in our exper-
iments) is the number of samples employed to fit a GMM.
On each iteration we use the most recent G samples for this
purpose.

Our GMM representation and EM algorithm for fitting the
models to simulation data are implemented by the jMEF
package’ developed by Vincent Garcia and Frank Nielsen.
To avoid degenerate GMM components, we represent each
price point by a cloud of m 4+ m(m+ 1) /2 points with small
random perturbations.

>www.lix.polytechnique.fr/ nielsen/MEF
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EGTA process and results

To describe our EGTA procedure, we need first to define
some terminology. The regret €(s) of a strategy profile s =
(81,...,5n) (pure or mixed) is the maximum gain avail-
able to any player for deviating to an alternative strategy.
A Nash equilibrium (NE) has regret zero. For an empirical
game, payoffs are estimated by sample means, and a regret
bound is defined with respect to the payoffs for strategy pro-
files that have estimates given the available simulation data.
We say that a profile has confirmed regret € iff € is its re-
gret bound and all possible deviations have been evaluated
in simulation. We further define the NE regret of a strategy
s with respect to a symmetric NE sVZ to be the loss due
to playing that strategy relative to playing s™%, when all
other agents are playing s”. Note that since our empirical
games are symmetric and finite, symmetric mixed equilib-
ria are guaranteed to exist, and we focus attention on such
equilibria in our analysis. To identify candidate equilibria in
an empirical game, we first identify all complete subgames:
subsets of strategies for which all profiles have been evalu-
ated. We then apply replicator dynamics from several start-
ing points to compute equilibria within these subgames, and
test for overall equilibrium candidacy by calculating their
regret bound with respect to the full strategy set.

To extend the earlier EGTA study, we started with the
equilibrium found among baseline strategies, and simulated
profiles for all one-player deviations to strategies in the set
of new joint-exploiting strategies. We further simulated the
six new strategies in self-play, and then executed the follow-
ing two rules for generating new profile simulations, until
quiescence:

1. Identify a symmetric mixed profile with unconfirmed re-
gret bound less than a given threshold, and simulate all
deviations from that profile.

2. Identify a subgame equilibrium s with positive regret

bound, and simulate all profiles required to complete the
subgame comprising the support of s plus its best known
response among strategies outside that support.

The first rule ensures that at quiescence, any evaluated mixed
profile either has a positive regret bound, or is a confirmed
equilibrium. The second broadens exploration based on ob-
served beneficial deviations.

Table 3 summarizes the extent of simulations covered cu-
mulatively in this EGTA study, for the three subject envi-
ronments. Each profile evaluated was simulated at least one
million and typically two million times. As shown, the pro-
files evaluated represent only 0.08% to 1.51% of the possible
profiles of their respective environments.

Environment | # Strategies | # Profiles | % Profiles | simulations (millions)
U[5,5 36 5917 0.90 12573
Ul5,8 35 9554 0.08 18576
H[5,5 40 16384 1.51 38364

Table 3: Numbers of strategies and profiles simulated for the
environments addressed in our EGTA study.

As it happens, following the process above to extend the
EGTA yielded exactly one confirmed equilibrium for each



environment. In both U[5,5] and U[5, 8], playing Joint-
Local is a pure-strategy NE. For the substitutes environ-
ment H[5, 5], the equilibrium is a mixture of five strate-
gies: [ BidXEvaluatorMix3_K16, 0.0625; SCLocalBid-
SearchS5K6, 0.0809; SCLocalBidSearch_K16Z, 0.1333;
CondMVLocal, 0.6550; JointLocal, 0.0682]. While some
of the independence-assuming strategies from the baseline
set remain in equilibrium in H[5, 5], joint-exploiting strate-
gies constitute over 70% of the support.

These equilibrium results confirm the value of exploiting
joint distributions under both complements and substitutes,
particularly given the breadth of coverage and strategy tun-
ing employed in the predecessor EGTA study. Further evi-
dence can be seen in the NE regret values presented in Ta-
ble 4. In the complements environments, joint versions of
AverageMU and BidEval outperform their marginal coun-
terparts. The opposite is true for the substitutes environment,
where these strategies are far from competitive anyway.
Among the joint local search variants, we see that JointLo-
cal and CondMVLocal are effective across the board.

Joint PP ©
U5.5]

LocalBid ~ BidEval +

U5.8]

MV-Based x
H[5.5]

J JointLocal | ©

J CondMVLocal | o

J SCBidEvaluatorMixA_K16

J AverageMU64

J StraightMUa

SCLocalBidSearchS5K6 a a a
SCLocalBidSearch K16Z a a a
LocalBidSearch K16 a a a
SCBIdXEvaluatorMixA_K16 + + +
BidXEvaluatorMix3_K16 + + +
BidXEvaluatorMixA_K16 + + +

SCBidEvaluatorMixA_K16 + + +

AverageMUB4 x * x
StraightMUa x x x
UN— U T T
00 02 04 06 08 10 00 02 04 06 0
NE Regret

Table 4: NE regret for representative strategies.

8 Conclusion

In this study, we measure the benefits of accounting for price
dependencies, compared to assuming prices are indepen-
dent. These benefits can indeed be large, yet due to complex-
ity concerns, prior research in trading strategy for simulta-
neous auctions has tended to assume independence.

Our main contribution is a set of techniques that en-
able trading agent designers to get beyond the independence
assumption. We develop a general representation for joint
price predictions based on Gaussian mixture models, and
general computational techniques for constructing such pre-
dictions. We evaluate these techniques by generating self-
confirming price predictions for a range of environments,
and then measurin g the optimization quality of various
bidding strategies that make decisions based on joint pre-
dictions. In an extensive empirical game-theoretic analysis
comprehensively covering leading independence-assuming
strategies from pr ior literature, we find that joint-exploiting
strategies rise to the top. In particular, new local search
heuristics that account for dependencies overthrow previous
empirical equilibria to become reigning champion bidding
strategies for these environments.
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