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Abstract 
Opponent modeling is an essential approach for building 
competitive computer agents in imperfect information 
games. This paper presents a novel approach to develop op-
ponent modeling techniques. The approach applies neural 
networks which are separately trained on different dataset to 
build K- model clustering opponent models. Kullback-
Leibler (KL) divergence is used to exploit a safety mode on 
opponent modeling. Given a parameter d that controls the 
max divergence between a model’s centre point and the 
units belong to it, the approach is proved to provide a lower 
bound of expected payoff which is above the minimax pay-
off for correctly clustered players. Even for the players that 
are incorrectly clustered, the lower bound can also be unlim-
ited approximated with sufficient history data. In our exper-
iments, agent with the novel model shows an improved clas-
sification efficiency of opponent modeling comparing with 
relative researches. And also, the new agent performs better 
when playing against poker agent HITSZ_CS_13 which 
participate Annual Computer Poker Competition of 2013. 
Keywords: poker; imperfect information; opponent model-
ing; Kullback-Leibler divergence; 

 Introduction   
Games can be classified as perfect or imperfect infor-
mation conditions, which are based on whether or not 
players have the whole information of the game (Howard 
1994). In imperfect information games, certain relevant de-
tails are withheld from the players. Poker is a typical inter-
esting test-bed for artificial intelligence research in this ar-
ea. It is a game of imperfect knowledge, where multiple 
competing agents must deal with risk management, agent 
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modeling, unreliable information and deception, much like 
decision-making applications in the real world (Billings, 
Papp and Schaeffer 1998).  
 As a recognized approach of building a competitive 
poker player, the rationality of opponent modeling is based 
on that the “optimal strategies” in imperfect information 
conditions is actually randomized strategies (Kuhn 1950).  
And also, the opponents in the game are certainly not “op-
timal player”, having idiosyncratic weaknesses like plan-
ning or execution errors (Archibald, Altman and Shoham 
2010). These can be exploited to obtain higher payoffs than 
Nash value of the game (Southey, Bowling, and Larson eds. 
2012). Approaches that discard opponent modeling usually 
follow a minimax strategy which supposes a worst case 
condition. The expected payoff is bounded by the minimax 
payoff. However, opponent modeling approaches provide 
higher expected payoffs than minimax payoff for its ex-
ploitation of opponents’ weakness and specified strategies 
based on different characterized opponents. Thus, the prob-
lem of playing game safely, which means guaranteeing the 
lower bound of expected payoff regardless of the strategy 
used by the opponent, is a very important aspect in game 
system (Ganzfried, Sandholm 2012). 
 Represented by University of Alberta research group, 
many researchers study on opponent modeling approaches. 
In 1998, D. Billings explained how they implemented both 
specific and generic opponent modeling in Loki (Billings, 
Papp and Schaeffer 1998). This computer program was the 
first successful demonstration of opponent modeling im-
proving the performance of a poker bot. In 2000, ANN (ar-
tificial neural network) method is applied on opponents 
modeling (Davidson, Billings, and Schaeffer. eds. 2000). 
In 2010, a method called group specific opponent model-
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ing is proposed which created several different opponent 
models using K-model clustering (Van der Kleij 2010).  
ANN was applied to upper method and declared better per-
formance (Fedczyszyn, Koszalka, and Pozniak-Koszalka 
2012). The characteristic of k-model clustering opponent 
modeling is less dependency on the scale and accuracy of 
history opponent data besides some decrease of prediction 
accuracy. Thus, the novel approach proposed in this paper 
is motivated on the improvement of modeling accuracy and 
a way of expect payoff’s lower bound calculation. 
 This paper is organized as following. Section 2 briefly 
introduces related works of opponent modeling in poker. 
Section 3 provides a modified opponent modeling ap-
proach recommended in this paper which is guided by KL 
divergence. Section 4 proved the safety of this approach. 
Given a parameter d that controls the max divergence of 
units in models, the algorithm is proved to provide a lower 
bound of expected payoff which is above the minimax 
payoff. To verify the performance of the new approach, 
section 5 shows the experiments results in practice. And fi-
nally, Section 6 gives our conclusions. 

Related works 

Neural network for predicting opponents’ actions 
As a popular and sophisticated approach, artificial neural 
networks (ANN) have been adopted to guide opponent 
modeling for many years. In order to predict an opponent’s 
next action, history data are collected to train the network. 
By logging game contexts and the associated observed ac-
tions from poker games, training data was collected for a 
variety of different players. These players contain human 
players on internet game platform and computer players 
from history record of ACPC matches in past years.  
 The ANN’s output nodes represent the network’s predic-
tion that an opponent will fold, call, or raise respectively. 
An output node can give a real value from 0 to 1. So by 
normalizing the output nodes, probability distribution or 
“Probability Triple” data structure are adopted. By training 
the network on all of history data, and using back-
propagation to perform a gradient descent on the connec-
tion weights in the network, the network begins to success-
fully discover the importance of each input feature with re-
gards to the opponent’s decision process. 
 The structure of network for predicting opponent is illus-
trated in figure 1. In this network, 14 input nodes are used 
to describe current conditions and history data of the game. 
The input nodes can be classified as three types. First is 
about the actions frequency taken by players in this game. 
Second is about the current conditions of the game which 
contains the stage of game processes, the conditions of 

public cards and so on.  The third group is about the histo-
ry data statistics in our database. 

Public 
conditionsHistory data

Actions 
frequency

Input layer

Hidden layer

Output layer

raise fold

......

… … 

call
 

Figure 1. An Example ANN for opponent modeling 

Kullback-Leibler divergence 
In probability theory and information theory, Kullback–
Leibler divergence is a non-symmetric measure of the dif-
ference between two probability distributions P and Q 
(Kullback and Leibler 1951). Specifically, the Kullback–
Leibler divergence of Q from P, denoted DKL(P||Q), is a 
measure of the information lost when Q is used to approx-
imate P. Formula 1 shows the definition of DKL. 

KL
( )( ) ln ( )
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 In words, it is the expectation of the logarithmic differ-
ence between the probabilities P and Q, where the expecta-
tion is taken using the probabilities P.  
For distributions P and Q of a continuous random variable, 
KL-divergence is defined to be the integral as formula 2 
shows. 
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 In the problem of Texas Hold’em poker, the prediction 
of opponents’ strategy is based from the estimated proba-
bility of strategy triple S(r,c,f). Three terms separately do-
nate the probability of opponents’ “raise”, “call” and 
“fold”. Thus, suppose P and Q are two strategies in poker 
game, the KL divergence between them can be calculated 
as formula 3. 
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 Researchers have revealed several properties about KL 
divergence (Seldin and Tishby 2010). One of them that 
support research of this paper can be illustrated as follow-
ing. 
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 Suppose p is the exact opponent’s strategy, according to 
which the opponent’s action are drawn. p’ donates the pre-
dicted distribution based on opponent modeling result. |S| 
means the number of possible strategies that opponent may 
take, in poker it is 3. N donates the scale of empirical data. 
The KL divergence between p and p’ in bounded by for-
mula 4 with the probability at least m. 

KL
(| S | 1) ln(N 1) ln(1 )(p p ) ( ) mD m

N
ε

− + − −
≤ =‖ '        (4) 

 Formula 4 reveals the relationship between KL diver-
gences and scale of training data restricted by probability 
factor m. This guarantees the evaluable property of mod-
eled units when the model process is guided by KL diver-
gence. 

Modified approach of opponent modeling 
In this section, a novel algorithm for opponent modeling is 
presented, which is a modification of k-model clustering 
approach presented in (Van der Kleij 2010) and 
(Fedczyszyn, Koszalka, and Pozniak-Koszalka 2012). KL 
divergence is recommended and there are mainly two points 
of the advantages of novel approach. Firstly, KL divergence 
is used as a measurement that distributes units to certain 
clusters which improves the effectiveness of clustering pro-
cess. Secondly, the novel approach presents a safe model 
that certificates the theoretical lower bound of expected 
payoff based on the prediction of clustered opponents. 

Modified K-model clustering opponent modeling 
The result mode of K-model approach can be realized by 
decision tree or neural network algorithm. Take neural net-
work for example, the clustering system will build a series 
of neural networks matches each special group of oppo-
nents. Attention that the training data are pre-clustered for 
certain game states and the following cluster process are 
corresponded to one of them. In another word, if we treat 
the game for n different states and initial models number is 
k, a total of n*k networks, each for different clusters will be 
build in the whole process. 

The clustering process can be processed as 4 steps in 
which d is fore assigned as the safety parameter. 

Step 1: Random Assignment 
In this step, each opponent in train data set is assigned to 

a random cluster. 
Step 2: Training Neural Networks 
In this step, k neural networks are trained based on the 

data of their matching cluster. 

 
Figure 2. Random assignment and training steps 

 
Step 3: Cluster rearrangement 
This is the core step of the whole process. The opponents 

are re-assigned based on their KL divergence from the clus-
ters.  

Generally speaking, most effective clustering result is to 
form a similar distribution between clusters and units that 
clustered. For the purpose, player q is re-arranged based on 
following rules. 

1. Choosing the cluster which has the minimum KL di-
vergence from q as the candidate cluster. 

The new assignment for a player is found by calculating 
the minimum KL divergence between the cluster’s strategy 
distribution and the player’s. That is, the new cluster for 
player q can be determined as follows: 

{0,...k 1}
(j) argmin (C i || P | m)KL j q

i
Cluster D

∈ −
= =            (5) 

Where Cj and Pq are the strategy distribution triples of 
cluster j and player q under condition m. k is the clusters’ 
number built clusters in former step. 

2. If the KL divergence between q and candidate cluster 
smaller than d, arrange q to candidate cluster. Oth-
erwise, a new cluster is created and arranged q to it. 
Attention that the new cluster is only created once in 
one loop. 

3.  

 
Figure 3. Rearrange player q to a new cluster 
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Figure 4. Rearrangement result of player q 
 

Step 4: End condition judgment 
In this step, the players’ arrangements are compared with 

the initial conditions in step 2. If there is new cluster created 
in step 3 or exits player that is arranged differently from 
step 2’s clusters, the system will go back to step 2 and all of 
the neural networks will be retrained with their new cluster. 
Otherwise, the clustering process is ended. 

 
 

 
 

Figure 5. Example results after middle period iteration 
 
 

 
 

Figure 6. Example results in the end 

Lower bound of expected payoffs 
In the clustering process, safety parameter d is used as one 
of the criterion that decides to which cluster the opponents 
will be arranged. This section proves the theoretical mean-
ing of d which provides the lower bound of expected pay-
offs when playing against opponents in certain cluster. 
Table 1 shows a typical payoff matrix of a zero-sum game. 
Suppose the strategy set of player 1 and 2 is S {A, B}. The 
payoffs of the player 1 are listed in table based on different 
strategies of the two players.  
 

Table 1. An example game’s payoff matrix 
game  player 2 

player 1 
 A B 
A VAA  VAB 
B VBA  VBB 

 
EA and EB donate the player 1’s expected payoffs of A 

and B strategy. Approaches that discard opponent model-
ing usually need to make worst-case assumptions, e.g. fol-
lowing a minimax strategy. Such approaches are consid-
ered safe as their expected payoff is lower-bounded by the 
minimax payoff and EA and EB are calculated as following. 

min{ , }A AA ABE V V=                                          

min{ , }B BA BBE V V=                                    (6) 
In opponent modeling system, they are calculated based 

on the prediction of opponent’s behavior. Suppose player 2 
are modeled by player 1 to have the strategy probability 
distribution as P(pA, pB) in which pA and pB means the 
probability of player 2 adopts strategy A and B. EA and EB 
are calculated as following. 

A A AA B ABE p V p V= +                                      (7) 

B A BA B BBE p V p V= +                                      (8) 
Generally speaking, opponent modeling system provides 

a higher expect payoff then minimax payoff. However, the 
safety of these expected payoffs cannot be evaluated with 
the uncertainty of the modeling precise.  
However, the modified approach provided in this paper can 
be proved to keep a safety expect payoff which is higher 
than minimax payoff. Suppose player 2 is modeled as 
probability distribution P (pA, pB) and P’ (p’A, p’B) is his 
exact distribution. Besides that the sum of p’A and p’B is 1, 
P’ is also bounded safety parameter d and P (pA, pB). 
Suppose c is the probability that player 2 is assigned in the 
correct cluster which is with distribution P. The KL diver-
gence between player 2’s real and modeled distributions is 
no more than d when he is correctly modeled, as formula 7 
shows. 

' '( ' || ) ' ln ' lnA B
KL A B

A B

p pd D p p p p
p p

≥ = +           (7) 

There are two pre-conditions for following derivation. 
First, the probability of the two strategies satisfies pA+pB 
=1. For the problems that have more than two strategies 
like poker, the strategies are integrated as two to satisfy 
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this condition. One donates the opponent’s optimal strate-
gies which led worst payoffs for us. The other is integrated 
by all left strategies. In another word, all strategies can be 
treated as two, which may lead the worst case or it may not.  

Another precondition is the natural logarithm satisfies 
lnx<x-1for all x > 0 with equality if and only if x=1. Based 
these, the bound of P’ can be deduced from formula 7 as 
following. 

2
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Solving the final result of formula 8, we can get the 
bound of probabilities in P’.  

      
2

max

2
max

1' ( ( ) 4 ) '
2
1' ( ( ) 4 ) '
2

A A B A A B A A B A

B A B B A B B A B B

p p p p p p p dp p p
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≤ + + + + =

≤ + + + + =

   

(9) 
Thus we can get EBKL as the lower bound of expected 

payoffs of player 2 when he is modeled as probability dis-
tribution P (pA, pB).  

max max

max max

max max

max max

min{ ' (1 ' ) ,
(1 ' ) ' }

min{ ' (1 ' ) ,
(1 ' ) ' }

A BKL A AA A AB

B AA B AB

B BKL A BA A BB

B BA B BB

E E p V p V
p V p V

E E p V p V
p V p V

≥ = + −

− +

≥ = + −

− +

      (10) 

Thus far we can get the lower bound payoff when player 
2 is correctly clustered. When he is assigned to a wrong 
cluster, the inequation 4 can be fit with a probability no less 
than m. In another word, the lower bound payoff EBKL is al-
so reliable with the probability no less than m which can be 
calculated based on formula 4: 

2ln(N 1) ln(1 )( )

11
10Nd

md m
N

Nm

ε
+ − −

= =

+
=> = −

               (11) 

Thus, the probability that EBKL is the expect payoff lower 
bound can be considered as: 

BKLlim (lowerbound E )

lim[ (1 c)m]

1lim[ (1 c)(1 )]
10

c (1 c) 1

N

N

NdN

P

c
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→∞
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=

= + −
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= + − −

= + − =                        (12) 
As formula 12 shows, when players are incorrectly clus-

tered, the lower expected payoff bound is also reliable if 
there are sufficient history data.  The only exception is 
when a player is absolutely new appeared and differs to all 
built clusters, the lower bound cannot be guaranteed any 
more. 

Experiments 
In our experiments, Texas Hold’em game is chosen as the 
experiments domain. This game is known as one of the 
most complex imperfect information games and good test 
bed for opponent modeling.  

Clustering performance of new approach is tested based 
on a big data set of different player’s strategies. The train-
ing and testing data are collected from human internet 
game platform and former matches of ACPC (Annual 
Computer Poker Competition). About 50 million rounds of 
game data are used and each of them contains strategies of 
different opponents under different game conditions.  

All networks were trained using back propagation learn-
ing algorithm with learning rate set to 0.35. The training 
set is used 90% for training and the least 10% for testing. 
The initial number of clusters in K-model clustering pro-
cess was set to divide players into 12 clusters (K=12). The 
safety parameter d is set as a changing variable to explore 
its influence on clustering efficiency. Attention that when d 
is set as a relative big value like 1, its influence is weak-
ened and the modeling process will change to classical 
mode as research (Fedczyszyn, Koszalka, and Pozniak-
Koszalka 2012) provides. 

In related researches, there are three quality measures 
are popularly used to measure the performance of cluster-
ing approach (Van der Kleij 2010) (Fedczyszyn, Koszalka, 
and Pozniak-Koszalka 2012). 

VPIP - Voluntary Put money Into Pot which tells us 
how often player plays a game preflop (does not fold pre-
flop). 

PFR - PreFlop Raise which informs how often player 
raises pre-flop. 

AF - Aggression Factor which informs how aggressive 
player is. 

The statistics results of experiment system with different 
set of d are shown in figure. 
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Figure 7 Average VPIP in clusters with d=1. 
 
 

 
 

Figure 8 Average VPIP in clusters with d=0.15. 
 
 

 
 

Figure 9 Average PFR in clusters with d=1. 

 
Figure 10 Average PFR in clusters with d=0.15. 

 

 
Figure 11 Average AF in clusters with d=1. 

 

 
Figure 12 Average AF in clusters with d=0.15. 

 
Figure 7 to figure 12 shows the modeling performance 

of the system with different d. the x axis shows the itera-
tion times of clustering process and y axis shows the aver-
age value. The distinction degree among clusters is influ-
enced by d based on a visual observation of VPIP, PFR and 
AF curves. When d is set too big, it will lose its restriction 
function in clustering process and the system will regress 
to normal k-model clustering process. However, when d is 
set too small, the training process will circulate for an un-

55



acceptable period for that there are exists units that cannot 
re-arranged in clustering step 3. When d is set to a proper 
value like 0.15, the opponents will be modeled into distin-
guished clustered as figure shows. 

Another criterion of the effectiveness of opponent mod-
eling is confusion matrix which shows the prediction pre-
cise of the modeled opponent’s actions. Table 2 and table 3 
show the confusion matrix of different d value where AC 
means the expected actions and TC means the true actions. 

Each row in tables contains percentage value of correct 
or incorrect expectation of opponents’ actions. The last 
column denoted as ‘Total’ contains percentage values of 
how many objects there were in a testing set while ‘Total’ 
row informs of how many objects were classified as ob-
jects of a given class. The cell, where ‘Total’ row and ‘To-
tal’ column are crossed, contains percentage of correct 
classifications. 

 
Table 2 Prediction accuracy of HITSZ_CS_13 

 

AC\TC Fold Call  Raise % 

Fold 12.25 0.16 0.41 12.82 

Call 3.50 47.65 10.28 61.43 

Raise 2.37 7.15 16.22 25.74 

% 18.12 54.96 26.91 76.12 

 
 

Table 3 Prediction accuracy with d =0.15 
 

AC\TC Fold Call  Raise % 

Fold 19.66 0.25 0.20 20.11 

Call 1.96 52.31 11.39 65.66 

Raise 0.05 2.18 12.00 14.23 

% 21.67 54.74 23.59 83.97 

 

Table 2 shows the prediction precise accuracy of our for-
mer system HITSZ_CS_13, which was participated in 
ACPC 13 and get the fourth rank in 3-player Limit Texas 
Hold'em .  The total prediction correct rate without KL di-
vergence’s restriction is 76.12% which is also coordinate 
with relative research (Fedczyszyn, Koszalka, and Pozni-
ak-Koszalka 2012). In another side, the recommend system 
guided by KL divergence shows an improved prediction 
performance which strictly contributes the game competi-
tiveness of our poker system. 

Conclusions 
In this paper, a novel approach of k-model clustering oppo-
nent modeling guided by KL divergence is introduced. 
Based on the analysis and experiments, the modified ap-
proach shows an improved performance in opponent mod-
eling process and further enhances the prediction precise of 
poker game system. 

As a classic measure of the difference between two prob-
ability distributions, KL divergence effectively depicts the 
characters poker players. The effectiveness of k-model clus-
ter opponent modeling is improved based on safety parame-
ter d which is also provides the lower bound of expected 
payoffs. This conclusion can be established by the changing 
curve of different clusters’ players in experiment’s analysis. 

However, there are also some problems in the new sys-
tem. One of them is the application of KL divergence pro-
longs the period of k-model clustering approach. Especially 
when safety parameter d is set a too small, the clustering 
process cannot convergence in acceptable iteration times. 
This is the point that our further work will mainly focus on. 
And also, the neural network will be further studied. Classi-
fication characters that used for building more specified op-
ponent models are also important for our research. 
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