
Scalable Learning for Structure in Markov Logic Networks

Zhengya Sun, Zhuoyu Wei, Jue Wang, Hongwei Hao
Institute of Automation, Chinese Academy of Sciences

{zhengya.sun, zhuoyu.wei, jue.wang, hongwei.hao}@ia.ac.cn

Abstract

Markov Logic Networks (MLNs) provide a unifying
framework that incorporates first-order logic and prob-
ability. However, learning the structure of MLNs is a
computationally hard task due to the large search space
and the intractable clause evaluation. In this paper, we
propose a random walk-based approach to learn MLN
structure in a scalable manner. It uses the interactions
existing among the objects to constrain the search space
of candidate clauses. Specifically, we obtain represen-
tative subset of simple paths by sampling from all se-
quences of distinct objects. We then transform each
sampled path into possible ground atoms, and use them
to form clauses. Based on the resulting ground network,
we finally attach a set of weights to the clauses by op-
timizing `1-constrained conditional likelihood. The ex-
perimental results demonstrate that our approach per-
forms favorably compared to previous approaches.

Introduction
Markov logic networks (MLNs) have gained wide at-
tention in recent years due to their ability to unify the
strengths of first-order logic and probabilistic graphical
models (Richardson and Domingos 2006). An MLN typi-
cally attaches weights to first-order clauses and views these
as templates for Markov network features. Learning MLN
structure is the process of generating clauses together with
their weights (Kok and Domingos 2005), which allows us
to capture uncertain dependencies underlying the relational
data. Recent advances have revealed its superiority in deal-
ing with real world data, such as biochemistry(Huynh and
Mooney 2008), social network and text (Domingos and
Lowd 2009).

The structure learning problem, although important, can
be computationally prohibitive with the continuous increase
in data size. Not only is the search space super-exponentially
large, the clause evaluation also produces an overwhelming
number of groundings. That is, the exhaustive search and full
grounding may fail to finish in a reasonable amount of time.
Most efforts are channeled towards constraining the space of
candidate structures in a top-down or bottom-up manner.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Top-down approaches (Kok and Domingos 2005; Biba,
Ferilli, and Esposito 2008) follow a generate-and-test strat-
egy in which each clause is generated recursively, requir-
ing that the newly added atom shares at least one variable
with the existing ones, and then tested for the empirical ef-
ficacy. Such approaches are inefficient as they test many po-
tential revisions with no support in the data, and are sus-
ceptible to local optima. Bottom-up approaches (Mihalkova
and Mooney 2007) overcome these limitations by using the
training data to guide their search for clause candidates.
The relational pathfinding serves this purpose, which finds
paths of true ground atoms, and then generalizes them into
first-order clauses. The number of possible paths is often
decreased by inducing high level representation (Kok and
Domingos 2009; 2010), which still do not scale well to the
ever-growing datasets. Meanwhile, evaluating each clause
requires producing a grounded Markov network with the
variables fully instantiated. This may be infeasible in the
presence of numerous objects, which prevents a scalable
structure learner.

In this paper, we present Learning via ground Network
Sampling(LNS), a novel MLN structure learning approach
based on Markov Chain Monte Carlo (MCMC) simulation.
The basic idea is to obtain representative groundings of log-
ical statements for clause generation and evaluation. LNS
starts by converting the unary atoms (i.e., an atom that in-
volves only one argument) into binary ones, so that the
already-present ground atoms can all be treated as interac-
tions between their arguments. The resulting argument pairs
that share common objects are then concatenated in order
of increasing length, hence forming a partial order graph
(POG). Every node in the POG corresponds to a simple path,
i.e., a sequence of distinct connected objects, which may de-
scribe whether or not the initial and terminal objects inter-
act with each other. Subsequently, LNS performs a random
walk on the partial order graph with a prescribed transition
probability matrix, and returns every unique simple path it
visits. Furthermore, LNS creates the ground clauses from
each sampled path by transforming the meaningful interac-
tions into ground atoms. Based on the sampled ground net-
work, LNS finally performs discriminative weight learning
with `1-norm constraint to encourage sparse solutions.

LNS combines the benefits of random walk and subgraph
pattern mining in formulating the problem of structure learn-

Statistical Relational AI: Papers from the AAAI-14 Workshop

111

ing for MLNs. In the clause generation stage, the approach
constrains the search space according to the connections
existing among objects. In this way, LNS only constructs
clauses that have support in the data, while retaining both
true and false instantiated clause samples. In the clause eval-
uation stage, the approach directly exploits these samples
to learn a set of weights, avoiding enumeration of every
grounding of the candidate clauses.

The remainder of this paper is organized as follows. In
the next section, we begin by providing some background
on MLNs and briefly defining some terms we use. Then we
present our structure learning approach (Section 3) and re-
port the experimental results (Section 4). Finally, we sum-
marize the conclusion of this work (Section 5).

Markov Logic Networks
This section provides some background on representation,
structure and discriminative weight learning for Markov
logic networks. Let us briefly review some basic terminol-
ogy which will be used throughout this paper. Predicates
represent relations among objects or attributes of objects.
An atom is a predicate symbol applied to a tuple of argu-
ments. A positive literal is an atom, and a negative literal is
a negated atom. A ground atom is an atom all of whose argu-
ments are constants. A formula in clausal form, also called a
clause, is a disjunction of positive/negative literals. A world
is an assignment of truth values to all possible ground atoms.

Representation

Markov logic can be viewed as a probabilistic extension of
first-order logic by attaching weights to formulas (clauses).
The magnitude of each weight reflects the relative strength
or importance of the corresponding clause. The higher
weight indicates the greater reward to a world that satis-
fies the clause, with other things being equal. In the infinite-
weight limit, Markov logic becomes equivalent to standard
first-order logic.

Definition 1. (Richardson and Domingos 2006) A Markov
logic network (MLN) L is a set of pairs (fi, wi), where fi
is a formula in first-order logic and wi is a real number. To-
gether with a finite set of constants C = {c1, c2, . . . , c|C|},
it defines a Markov network ML,C as follows:

1. ML,C contains one binary node for each possible ground-
ing of each atom appearing in L. The value of the node is
1 if the ground atom is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding
of each formula fi in L. The value of this feature is 1 if
the ground formula is true, and 0 otherwise. The weight
of the feature is the wi associated with fi in L.

More formally, let X be the set of all ground atoms, F be
the set of all first-order clauses in the MLN,wi be the weight
associated with clause fi ∈ F , Gfi be the set of all possible
groundings of clause fi with the constants in the domain.
Then, the probability of a possible world x is defined as:

Pw(X = x) =
1

Z
exp
(∑
fi∈F

wi

∑
g∈Gfi

g(x)
)

=
1

Z
exp
(∑
fi∈F

wini(x)
)

(1)

where the subscript w represents a set of clause weights,
g(x) equals 1 if g is satisfied and 0 otherwise, ni(x) de-
notes the number of true groundings of fi in x, and Z =∑

x′∈X exp
(∑

fi∈F wini(x)
)

is the normalizing constant.

Structure Learning

The main task in MLN structure learning is to find a set
of potentially good clauses. This allows us to represent
complex dependencies among atoms, avoiding the assump-
tion of i.i.d. (independent and identically distributed) data
made by most statistical learners. Current solutions pri-
marily focus on connected atoms that share common ar-
guments (e.g., variables or constants) and produce all pos-
sible clauses consistent with them. In most cases, there
is an exponential number of paths that connect the argu-
ments of the given atoms. Thus, approximate search tech-
niques are further required, including scaling down the size
of input atoms by clustering (Kok and Domingos 2009;
2010) or restricting the candidate paths to a particular mode
(Huynh and Mooney 2011). All candidate clauses are then
fully instantiated and evaluated using weighted pseudo-log-
likelihood (WPLL). Candidates that do not improve the
overall WPLL of the learned structure are discarded.

Discriminative Weight Learning

In discriminative learning, we know a priori which atoms
will be evidence and which ones will be queried, and the
goal is to correctly predict the latter given the former. Given
a set of clauses, weight learners try to maximize the condi-
tional likelihood of query atoms Y given evidence ones X ,

Pw(Y = y|X = x) =
1

Zx
exp(

∑
i∈FY

wini(x, y)) (2)

where FY denotes the set of all MLN clauses with at
least one grounding involving a query atom, ni(x, y) is
the number of true groundings of the ith clause involving
query atoms. When non-recursive clauses are considered,
the query atoms become independent given the evidence.
The conditional log-likelihood (CLL) in this case becomes

logPw(Y = y|X = x) = log
n∏

j=1

Pw(Yj = yj |X = x)

=
n∑

j=1

logPw(Yj = yj |X = x)

(3)

112

and,

Pw(Yj = yj |X = x) =

exp(
∑

i∈FYj
wini(x, y[Yj=yj]))

exp(
∑

i∈FYj

wini(x, y[Yj=0])) + exp(
∑

i∈FYj

wini(x, y[Yj=1]))

(4)

where ni(x, y[Yj=yj]) is the number of true groundings of
the ith clause when all the evidence atoms in X and the
query atom Yj are set to their truth values, and similarly for
ni(x, y[Yj=0]) and ni(x, y[Yj=1]) when Yj is set to 0 and 1
respectively. Then the derivative of the CLL with respect to
the ith clause is

∂

∂wi
logPw(Y = y|X = x) =

n∑
j=1

[ni(x, y[Yj=yj])− Pw(Yj = 0|X = x)ni(x, y[Yj=0])

− Pw(Yj = 1|X = x)ni(x, y[yj=1])]

Notice that the ith component of the gradient is simply the
difference between the total count of true groundings of the
ith clause and the expected count according to the current
model. When the closed world assumption is made, all the
counts can be computed exactly without approximate infer-
ence, since there is no evidence atom with unknown value.

Learning via Network Sampling
We now describe LNS (Learning via ground Network
Sampling), a scalable approach for MLN structure learning.
LNS performs a random walk search by starting with each
observed ground atom as interactions between its arguments.
It then creates a clause to match the sequence of connected
objects by labeling predicates. In this paper, we only con-
sider definite clauses containing exactly one positive atom,
but the extension to more general case is straightforward.

The four crucial components of LNS, introduced in the
next subsections, are: (i) how to construct the state space
for random walks, (ii) how to obtain simple path samples,
(iii) how to generalize the clauses, and (iv) how the overall
approach operates.

State Space of the Random Walk
The partial order graph (POG) of simple paths works as the
state space of the Markov Chain on which LNS runs its sim-
ulation. We do this by first converting unary atoms (e.g.,
Student(Bob)) into binary ones augmented by new predi-
cates (e.g., IsA(Bob, Student)). These transformations allow
already-present ground atoms to be formulated as interac-
tions between their arguments. Let I denote the set of all the
possible pairwise interactions from the training data. Intu-
itively, the pairwise interactions that share common objects
could be concatenated into paths describing whether or not
the initial and terminal objects interact with each other. In
our case, we are only interested in simple paths, i.e., a se-
quence of distinct connected objects, which are also used to
restrict every node in the POG. This restriction is actually

reasonable to avoid the propagation of redundant informa-
tion. The length of a simple path is the number of edges in it.
We then construct the partial order graphs locally around the
current node. If the current node represents the simple path
p(s, t) joining the vertex s to t, its neighbors consist of nodes
corresponding to all simple super-paths that expand p(s, t)
with one more vertex t′ such that (t′, s) or (t, t′) ∈ I, and
sub-paths that removes the initial vertex s or the terminal
one t from p(s, t). The random walker chooses one neigh-
bor (super- or sub- path) according to its transition proba-
bility (see below for details). If the current node is a new
simple path that was not visited before, LNS returns the cor-
responding simple path for ground clause generation. The
local construction of POG is essential as it circumvents the
construction of the entire POG, which would require finding
all the simple paths.

Simple Path Sampling
To achieve uniform distribution for all the simple paths, LNS
exploits ideas from Metropolis-Hastings (MH) algorithm to
perform random walks on the graph (Al Hasan and Zaki
2009). Consider a partial order graph G = (N , E), with a
set of nodes N corresponding to distinct simple paths and a
set of edges E indicating possible extensions of simple paths
to larger simple paths. Let N(u) = {v ∈ N|(u, v) ∈ E}
denote the set of neighbors adjacent to the node u ∈ N , and
d(u) = |N(u)| denote the degree of the node u. For any ar-
bitrarily given target stationary distribution π = (π(u), u ∈
N), the Metropolis-Hastings random walk (MHRW) {Xt ∈
N , t = 0, 1, . . . } on the graph G operates as follows. At the
current state u of Xt, the next state Xt+1 is proposed with a
proposal probability Q(u, v)(u 6= v). Then, the proposed
transition to v is accepted with an acceptance probability
A(u, v), that is,

A(u, v) = min

{
1,
π(v)Q(v, u)

π(u)Q(u, v)

}
, (5)

and rejected with probability 1 − A(u, v) in which case the
state Xt+1 remains unchanged. Thus, the transition proba-
bility P (u, v) becomes, for u 6= v,

P (u, v) = Q(u, v)A(u, v)

= min

{
Q(u, v), Q(v, u)

π(v)

π(u)

}
, (6)

with P (u, u) = 1−
∑

u 6=v P (u, v).
For unbiased graph sampling, the target stationary dis-

tribution should be set to the uniform distribution π =
(1/n, 1/n, . . . , 1/n), where n = |N | represents the number
of possible states. Assuming that N+(u) and N−(u) denote
the set of super- and sub- path neighbors of the node u, with
d+(u) = |N+(u)| and d−(u) = |N−(u)| being the set size
correspondingly, LNS then chooses the proposal probabili-
ties for all (u, v) ∈ E as follows:

Q(u, v) =

{
1

2d+(u) , if v ∈ N+(u)
1

2d−(u)
, if v ∈ N−(u)

(7)

Observe that any node in the POG as defined earlier has
no more than two sub-path neighbors, while with a larger

113

number of super-path neighbors in most cases. For this, the
proposal probability given by (7) can reduce the bias towards
the nodes with longer simple paths, and increase the conver-
gence rate of the sampling procedure. The resulting transi-
tion probability is thus given as follows::

P (u, v) =


min{ 1

2d+(u)
, 1
2d−(v)

}, if (u, v) ∈ E , v ∈ N+(u),

min{ 1
2d−(u)

, 1
2d+(v)

}, if (u, v) ∈ E , v ∈ N−(u),

0, if (u, v) /∈ E , u 6= v.

This ensures that P = {P (u, v)}(u,v)∈E is reversible with
respect to π, i.e., π(u)P (u, v) = π(v)P (v, u) for any u, v.
Since there exists a positive probability to reach from one
simple path to another via the ∅ path, P is irreducible. In
this way, the uniqueness of π is granted due to the finite
state space.

Note that when the POG of sampling simple path gen-
erators is large, the random walker may get stuck in local
regions of the graph. Following the strategy validated by (Li
and Zaki 2012), we set a non-zero probability that makes the
walker jump back to the root node (empty path) at each step.

Clause Creation and Pruning
LNS constructs the ground clauses from each sampled path
by transforming the meaningful interactions into ground
atoms. Note the fact that a definite clause is logically equiv-
alent to an implication where the antecedents are a conjunc-
tion of positive literals, and the conclusion is a single posi-
tive literal (e.g., the clause ¬R ∨ ¬S ∨ T can be rewritten
as the implication R ∧ S ⇒ T). By analogy, a path here can
be interpreted as a statement about whether a conjunction
of interactions between two adjacent objects logically im-
plies the interaction between the initial and terminal objects.
In addition, as already pointed out, the pairwise interaction
corresponds to a set of ground atoms which share the two
interacting objects in their arguments. Here we assume that
the ground atom contains at least two arguments. It is thus
intuitive to convert a path into a set of ground clauses. More
specifically, the antecedents are formed as a conjunction of
ground atoms that sequentially connect adjacent objects, the
ground atom connecting the initial and terminal objects be-
comes the conclusion.

To control the size of the ground network, LNS imposes
restrictions on the search space. On one side, the algorithm
starts with the already-present ground atoms, and creates the
true antecedents for each clause. Note that any false an-
tecedents alone can make a clause trivially satisfied, and
need not to be considered here. On the other side, the al-
gorithm draws conclusions from all the possible atoms with
both true and false groundings provided. Also note that the
majority of conclusions are false due to the sparseness of
relational data (i.e., the great majority of atoms are false),
leading to the severe imbalance between the true and false
clauses. The algorithm then tackles the imbalance ratio by
randomly sampling a predefined number of false clauses.
When discriminative learning is concerned, the algorithm
variabilizes the resulting ground clauses that have specific
query atoms, and discards those without any support in their
groundings (i.e., there is at least one true grounding in the

network). In our case, the query atom may appear in the an-
tecedents or the conclusion of a clause. Following Kok and
Domingos (2009), the clauses containing variables that ap-
pear only once are ignored, since they might not be useful.

Given a set of clauses and a sampled ground network, one
can easily find a set of weights that maximizes the CLL
of query atoms. More precisely, the query atoms here are
the sampled groundings of the target predicate. However, to
prevent overfitting and enforce sparsity, LNS performs the
optimization subject to an `1 constraint on the norm of the
solution. The final objective function can be written as

min
w

n∑
i=1

− logPw(Yi = yi|X = x), (8)

subject to ‖w‖1 ≤ β.

where β > 0 is a tunable parameter and need to be fixed in
advance. In order to solve (8), LNS applies a state-of-the-art
`1-ball projection algorithm (Duchi et al. 2008) which im-
plements the first-order projected gradient descent update.
The clauses with zero weights are finally pruned away.

LNS Overview

The LNS approach proceeds in two phases. The first step,
summarized in Algorithm 1, samples a set of simple paths.
The relational database D is converted to the state space for
random walks. Then a simple path limited to l is randomly
selected. The procedure terminates after KT iterations.

Algorithm 1 Simple Path Sampling(D,K, l, γ)
Input: D, a relational database

K, the number of initial paths
l, maximal length of each path
γ, restart probability to the empty path

Repeat for k = 1, 2, . . . ,K
Start with any simple path pk0 as the current state
Repeat for iteration t = 1, 2, . . . , T
· Construct the neighbor paths of pkt−1, with

each path no longer than l
· Propose the next path pkcand ∼ Q(pkt−1, p

k
t)

· Generate q ∼ U(0, 1)
· Compute the acceptance probability

α = min
{
1,

Q(pk
cand,p

k
t−1)

Q(pk
t−1,p

k
cand)

}
· Set the next path pkt as

(a) if q ≤ α, then pkt = pkcand
(b) else if α < q ≤ 1− γ, then pkt = pkt−1
(c) else pkt = ∅

Output: Set of simple paths PS

The second step, summarized in Algorithm 2, creates a
set of weighted clauses. Under certain constraints, the PS
is translated into a set of clauses together with their ground-
ings. The time-complexity in the worst case is O(mKT).
LNS finally attaches a set of sparse weights to the clauses
based on `1-constrained optimization.

114

Algorithm 2 Clause Creation(D, PS,m)
Input: D, a relational database

PS, a set of simple paths
m, maximal number of sampled false clauses

for a certain path
Initialize a set of ground clauses GS = ∅
Repeat for all simple paths p in PS
· GS′ ← CreateTrueClauses(D, p)
· if GS′ = ∅, then

GS′ ← SampleFalseClauses(D, p,m)
· Remove clauses without query atoms GS′
· Add GS′ to GS

V S ← V ariabilize(GS)
CS ← LearnSparseWeights(V S,GS)
Output: Set of weighted clauses CS

Experimental Evaluation
Datasets
We use three publicly available datasets to evaluate the pro-
posed approach. Table 1 shows the statistics of each dataset.
The UW-CSE dataset, used by Richardson and Domingos
(2006), describes facts about people in an academic depart-
ment (e.g., Student, Professor) and their relationships (e.g.,
AdvisedBy, hasPosition). It is divided into five folds based
on the areas of computer science. The WebKB dataset, pro-
cessed by Mihalkova and Mooney (2007), contains informa-
tion about the webpage categories and links between these
pages. It includes four folds, each of which corresponds
to one university. The Wordnet dataset, filtered by Richard
Socher et al. (2013), provides ontological and lexical knowl-
edge in common domains. It is given in one predefined split
into training and test triplets.

Table 1: Statistics on datasets.
Dataset Predicates True literals Total literals

UW-CSE 12 2112 260,254
WebKB 6 2065 688,193
Wordnet 11 133,669 1, 488, 146, 352

Methodology
We performed two sets of experiments. The first experiment
compared our approach with two baseline approaches, i.e.,
LSM-S and LSM-L, which provide the state-of-the-art solu-
tions on relatively large datasets. The suffix ’-S’ and ’-L’ in-
dicate the approaches with the short and long limit on clause
length. We set the short limit to 5, and the long to 10. In
the second experiment, we examined the influence of several
sampling parameters on the overall performance of LNS.

The LNS parameter values were: K = 20000, T =
50, γ = 0.1,m = 5, β = 10. For LSM, we used the pa-
rameter settings provided by Kok and Domingos (2010). We
run all the experiments on the identically configured servers
(2.0GHz, 1T RAM, 18432KB CPU cache) for a maximum
of 24-hour time limit during training.

To evaluate the performance of different structure learn-
ers, we implemented Alchemy’s MC-SAT inference in

MLNs over the groundings of each query predicate in the
test set, using the groundings of all other predicates as ev-
idence. Note that one MLN is tailored to each prediction
task. We then chose the AUC-PR (Area under the Precision-
Recall curve), CLL and runtime as the evaluation criteria.
Since the CLL can be misleading when the number of neg-
ative examples overwhelms the number of positives (which
happens in most cases), we kept twice the number of neg-
ative examples as positives in each test fold. For the calcu-
lation of AUC we used the package of (Davis and Goadrich
2006).

Results
Table 2 and 3 report the AUCs, CLLs and runtimes for dif-
ferent query predicates: advisedBy and tempAdvisedBy for
the UW-CSE dataset, courseProf and courseTA for WebKB.
The AUC and CLL results are averaged over all atoms in the
test sets, while the runtimes are averaged over all the folds.

The tables below show that LNS consistently outperforms
LSM in terms of the runtime when learning both short and
long clauses. Specifically, the improved efficiency of LNS
over LSM is by at least two orders of magnitude, and is
independent of the clause length. As can be seen, LNS-S
(with short clause limit) and LNS-L (with long clause limit)
have similar runtimes on both datasets, with the latter even
marginally faster than the former.

In addition to the runtime benefits, LNS also obtains com-
petitive (often the best) AUC and CLL values. Comparing
LNS-S to LNS-L, we see that long clauses are effective
in lifting both evaluation criteria for most query predicates
(with the exception of slightly lower CLL for advisedBy).
This is not surprising because long clauses can capture more
complex dependencies than short ones. By comparison with
the LNS, LSM shows no better performance on all the pred-
icates. For advisedBy, LSM-S has comparable AUC values
to our structure learning approaches, while it is significantly
worse on all the other predicates.

We examine the influence of the sampling parameters K
and m for LNS on Wordnet, a much larger scale dataset. We
do not report LSM on this testbed as its runtime exceeds the
maximal time limit. Figure 1 plots the curves on AUC and
runtime versus logarithmic number of initial paths K. As
can be seen, the AUC values increase quickly within a cer-
tain interval, and then seem to attain a local optimum. Figure
2 plots the curves on CLL and runtime versus logarithmic
number of false clauses m. This shows that the CLL values
improve as the maximal number of sampled false clauses in-
creases. The two figures both validate the fact that the time-
complexity of LNS is linear related to either K or m.

Conclusion
In this paper, we developed a scalable MLN structure learn-
ing approach by combining the random walk with sub-
graph pattern mining. LNS restricts its search for clauses to
within the sampled ground network. LNS then learns a set
of sparse weights discriminatively. Our empirical studies on
three datasets justified the effectiveness of LNS. Directions
for future work include: sampling simple paths discrimina-
tively, integrating more general clause forms, extending the

115

Table 2: Results on the UW-CSE datasets.
AUC-PR CLL Runtime

Approach advisedBy tempAdvisedBy advisedBy tempAdvisedBy advisedBy tempAdvisedBy
LNS-S 0.745±0.159 0.746±0.164 -0.602±0.015 -0.665±0.075 37.960±0.838 sec 38.960±0.783 sec
LNS-L 0.752±0.152 0.749±0.166 -0.606±0.015 -0.639±0.040 35.380±0.217 sec 33.680±0.572 sec
LSM-S 0.685±0.070 0.398±0.112 -1.590±0.017 -2.438±0.509 1.532±0.461 hr 1.532±0.461 hr
LSM-L 0.585±0.196 0.398±0.112 -1.676±0.181 -2.438±0.509 8.540±0.900 hr 8.540±0.900 hr

Table 3: Results on the WebKB datasets.
AUC-PR CLL Runtime

Approach courseProf courseTA courseProf courseTA courseProf courseTA
LNS-S 0.447±0.070 0.467±0.219 -0.919±0.168 -1.675±1.047 25.525±0.126 sec 26.450±0.507 sec
LNS-L 0.506±0.125 0.497±0.291 -0.837±0.133 -0.700±0.069 22.950±0.404 sec 23.500±1.065 sec
LSM-S 0.379±0.039 0.338±0.042 -2.315±0.007 -2.320±0.020 1.008±0.145 hr 1.008±0.145 hr
LSM-L 0.379±0.039 0.338±0.042 -2.315±0.007 -2.320±0.020 1.008±0.145 hr 1.008±0.145 hr

0 1 2 3 4 5 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C
−

P
R

0

450

900

1350

1800

2250

T
im

e
(s

)

number of initial paths (log10)

AUC−PR

Time(s)

Figure 1: The curves of AUC-PR and runtime versus number
of initial paths K on the Wordnet dataset

sampling framework to scalable inference, and further ap-
plying LNS to larger domains.

Acknowledgments
The authors thank the anonymous reviewers for their valu-
able comments. This research work was funded by the Na-
tional Natural Science Foundation of China under Grant No.
61303179 and No. U1135005.

References
Al Hasan, M., and Zaki, M. J. 2009. Output space sampling
for graph patterns. 2(1):730–741.
Biba, M.; Ferilli, S.; and Esposito, F. 2008. Discriminative
structure learning of markov logic networks. In Inductive
Logic Programming. Springer. 59–76.
Davis, J., and Goadrich, M. 2006. The relationship between
precision-recall and roc curves. In Proceedings of the 23rd
International Conference on Machine Learning, 233–240.
ACM.

−0.7

−0.65

−0.6

−0.55

−0.5

maximum number of sampled false clauses (log10)

C
LL

0 0.4 0.8 1.2 1.6 2 2.4 2.8
0

110

220

330

440

550

T
im

e
(s

)

CLL

Time(s)

Figure 2: The curves of CLL and runtime versus maximal
number of sampled false clauses m on the Wordnet dataset

Domingos, P., and Lowd, D. 2009. Markov logic: an inter-
face layer for artificial intelligence. Synthesis Lectures on
Artificial Intelligence and Machine Learning 3(1):1–155.

Duchi, J.; Shalev-Shwartz, S.; Singer, Y.; and Chandra, T.
2008. Efficient projections onto the `1-ball for learning in
high dimensions. In Proceedings of the 25th International
Conference on Machine Learning, 272–279. ACM.

Huynh, T. N., and Mooney, R. J. 2008. Discriminative struc-
ture and parameter learning for markov logic networks. In
Proceedings of the 25th International Conference on Ma-
chine Learning, 416–423. ACM.

Huynh, T. N., and Mooney, R. J. 2011. Online structure
learning for markov logic networks. In Machine Learning
and Knowledge Discovery in Databases. Springer. 81–96.

Kok, S., and Domingos, P. 2005. Learning the structure of
markov logic networks. In Proceedings of the 22 Interna-
tional Conference on Machine Learning, 441–448. ACM.

Kok, S., and Domingos, P. 2009. Learning markov logic
network structure via hypergraph lifting. In Proceedings of

116

the 26 International Conference on Machine Learning, 505–
512. ACM.
Kok, S., and Domingos, P. 2010. Learning markov logic
networks using structural motifs. In Proceedings of the 27
International Conference on Machine Learning, 551–558.
Li, G., and Zaki, M. J. 2012. Sampling minimal frequent
boolean (dnf) patterns. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 87–95. ACM.
Mihalkova, L., and Mooney, R. J. 2007. Bottom-up learning
of markov logic network structure. In Proceedings of the
24th International Conference on Machine Learning, 625–
632. ACM.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62(1-2):107–136.

117

