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Abstract 
With a large volume of semantic data and their fast growth 
in semantic cities, significant challenges in performing 
efficient and scalable reasoning has emerged in diverse 
domains. When dealing with large-scale ontologies, the 
performance of traditional centralized reasoning methods is 
not sufficient, distributed reasoning methods have thus 
emerged to improve the scalability and efficiency of 
inferences. In this paper, an incremental and distributed 
reasoning method for large-scale ontologies is proposed to 
realize high-performance reasoning and online query. A 
novel representation method, transfer reasoning tree and 
underived assertional triples, is presented to store the 
incremental ontologies more efficiently, based on which the 
reasoning process is accelerated and ontology inconsistency 
is recovered. Finally, a system is implemented on Hadoop 
and Amazon Cloud, and its application in healthcare 
validates the effectiveness of the proposed approach. 

 Introduction    
As we are entering a big data era, large volumes of 
semantic data have emerged and been applied in diverse 
domains such as healthcare and life sciences (Guttmann et 
al. 2013), e-marketplace (Guo et al. 2012) and Geospatial 
analysis (Zhang et al. 2013). Semantic Web was estimated 
to contain 4.4 billion triples in 2009, but now it has 
reached over 20 billion triples (W3C 2010) and the growth 
rate is still increasing. A significant computational 
challenge in performing efficient and scalable reasoning 
has emerged in nearly all aspects of semantic city, 
especially in healthcare domain. 
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The healthcare condition of a patient indicates his past 
and current medical information that corresponds to all the 
diseases, symptoms, treatments and interventions. Given 
the complexity and scale of medical data today, the use of 
ontology-based reasoning has become essential in clinical 
knowledge management for information retrieval and 
decision making.  

Resource Description Framework (RDF) is a basic 
representation of ontology used to describe the knowledge 
in Semantic Web. The reasoning on large-scale RDF files 
poses challenges in: 1) distributed data on the Web make it 
difficult to acquire appropriate triples; 2) the increasing 
data volume requires scalable computation capabilities for 
large datasets; 3) most existing reasoning methods are 
designed for static ontologies whereas data are usually 
subject to change in real world applications (Lecue 2012). 

Since the performance of centralized reasoning methods 
executed on a single machine/server is not sufficient, 
distributed reasoning approaches executed on multiple 
computing nodes have emerged to improve the scalability 
and efficiency of reasoning. However, existing distributed 
reasoning methods (Weaver and Hendler 2009, Fokoue et 
al. 2012, Urbani et al. 2012) focus on computing RDF 
closure for reasoning. Each time when new RDF files 
arrive, full re-reasoning over the entire dataset is required. 
This time-consuming process occurs at every update and 
takes much space. WebPIE (Urbani et al. 2012) 
distinguishes newly-arrived triples and old ones without 
considering the relations between them, thus resulting in 
duplicated RDF triples during the reasoning thereby 
hampering its performance. 

To address these problems, we propose an Incremental 
and Distributed Reasoning Method (IDRM) for big RDF 
datasets via MapReduce and Hadoop platform. 
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MapReduce  (Dean and Ghemawat 2008) is a 
programming model for parallel and distributed processing 
of large datasets. Hadoop (Hadoop 2014) is a Java 
implementation of MapReduce, which supports data-
intensive distributed applications on clusters of commodity 
machines. We present a novel representation method, 
Transfer Reasoning Tree (TRT) and Underived Assertional 
Triples (UAT), to store the incremental RDF triples more 
efficiently and simplify the reasoning process so that a 
user’s online query can be answered timely. The update of 
TRT/UAT needs only minimum computation since the 
relationship between new triples and existing ones is fully 
exploited. Moreover, the inconsistency of ontologies can 
be detected and recovered effectively, thus avoiding errors 
in the following reasoning process. 

To evaluate our methods, we have implemented a 
system using Hadoop and Amazon Cloud. Since Amazon 
Elastic Compute Cloud (EC2) can provide as much 
computation and storage capacity as needed in a pay-as-
you-go manner, we deployed our system on EC2 to 
provide scalable computation. The experiments performed 
on BTC (Billion Triples Challenge) data show that IDRM 
outperforms other related ones. A real-world application on 
healthcare domain is also presented to validate the 
effectiveness of our method. 

Background 
The fundamental unit of RDF is a triple <subject, predicate, 
object>. RDF Schema (RDFS) (RDF-Schema 2014) is a 
set of classes with certain properties in RDF. RDF closure 
can be computed by applying all RDFS rules (RDF-
Semantics 2004) iteratively on the input ontology until no 
new statements are derived. Fig. 1 shows 13 RDFS rules. 

 
Fig. 1.  RDFS Rules. 

In order to distinguish the triples that may trigger the 
inference on RDFS rules, we divide them into ontological 
and assertional triples. 

Definition 1. Ontological Triples are the triples from 
which significant inferences can be derived, i.e., the triples 
with predicate rdfs:domain, rdfs:range, rdfs:subClassOf, 
rdfs:subPropertyOf, and those with predicate rdf:type and 
object rdfs:Datatype, rdfs:Class or 
rdfs:ContainerMembershipProperty. 

Definition 2. Assertional Triples are the triples that are 
not ontological triples. 

Incremental Reasoning on RDF Datasets 
This section presents the Incremental and Distributed 
Reasoning Method (IDRM) on big RDF datasets. The main 
steps of our proposed method are described in Fig. 2. The 
input of the system is incremental RDF data files. As our 
knowledge increases, new RDF data continuously arrive as 
commonly seen in practice. Then the Dictionary Encoding 
unit encodes the input triples into a unique and small 
identifier to reduce the physical size of input data and 
speed up the reasoning process. The encoded triples are 
then separated into the incremental ontological triples and 
incremental assertional triples, based on which the 
TRT/UAT Construction unit generates TRT and UAT, or 
the TRT/UAT Update unit updates relative TRT/UAT if 
this is not the first time that we run the system. The created 
or updated triples are stored in TRT and UAT storages, 
then the Query Processing unit reasons over the TRT/UAT 
and responses users’ queries.  
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Fig. 2.  Main steps of IDRM. 

Transfer Reasoning Tree 
As seen in Fig. 1, some key elements are more easily to 
trigger other inferences, and the triples related to these 
elements have strong correlation with each other. In order 
to use a more efficient method to store these triples and 
minimize the changes to the entire ontology base at every 
update, we construct them to transfer reasoning tree. 

Definition 3. Transfer Reasoning Tree (TRT) is a set 
of directed trees constructed by the triples whose 
predicates are rdfs:subClassOf, rdfs:subPropertyOf, 
rdfs:domain and rdfs:range. 

It is further divided into PTRT, CTRT and DRTT. 
Definition 4. Property Transfer Reasoning Tree 

(PTRT) is a set of directed trees constructed based on all 
the triples that have predicate rdfs:subPropertyOf, or have 
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predicate rdf:type and object rdfs:Container-
MembershipProperty. Each node in a tree stands for a 
subject or object, and the directed link between them 
presents their sub-property relation. 

Definition 5. Class Transfer Reasoning Tree (CTRT) 
is a set of directed trees constructed based on all the triples 
that have predicate rdfs:subClassOf, or have predicate 
rdf:type and object rdfs:Datatype or rdfs:Class. Each node 
in a tree stands for a subject or object, and the directed link 
between them presents their sub-class relation.  

Definition 6. Domain/Range Transfer Tree (DRTT) is 
a set of directed trees constructed based on the triples that 
have predicates rdfs:domain or rdfs:range, in which each 
node in the tree stands for a subject or object and the 
directed link presents the domain or range relation between 
the node pair. 

The construction of PTRT contains 2 steps:  
1) Abstract the triples whose predicates are 

rdfs:subPropertyOf; for each triple, build a directed graph 
from nodes A to B, in which A stands for its subject and B 
stands for its object.  

2) Abstract the triples whose predicate is rdf:type and 
object is rdfs:Container-MembershipProperty; following 
the 12th RDFS rule, build a directed graph from nodes A to 
B, in which A is its subject and B is rdfs:member.  

Similarly, the construction of CTRT is as follows: 
1) Abstract the triples whose predicates are 

rdfs:subClassOf; for each triple, build a directed graph 
from nodes A to B, in which A stands for its subject and B 
stands for its object. 

2) Abstract the triples whose predicate is rdf:type and 
object is rdfs:class; following the 8th RDFS rule, build a 
directed graph from nodes A to B, in which A is its subject 
and B is rdfs:Resource. 

3) Abstract the triples whose predicate is rdf:type and 
object is rdfs:Datatype; following the 13th RDFS rule, build 
a directed graph from nodes A to B, in which A is its 
subject and B is rdfs:Literal. 

The construction of DRTT has 2 steps: 
1) Abstract the triples whose predicate is rdfs:range; for 

each triple, build a directed graph from nodes A to B, in 
which A stands for its subject and B stands for its object. 

2) Abstract the triples whose predicate is rdfs:domain; 
for each triple, build a directed graph from nodes A to B, in 
which A stands for its subject and B stands for its object. 
The arrow connecting A and B is dotted line. 

An example of building PTRT and DRTT is shown in 
Fig. 3 and 4, respectively.  

The forward and reverse paths are then defined for 
reasoning over TRT. In each tree, the Forward Path of 
node n or edge r is a route starting from n or r to an 
endpoint following the sequence of the directed links. An 
endpoint means a node that has no links starting from it. 
E.g., in Fig. 3, the forward path of edge p5Æp6 in PTRT is: 

p6Æp8; while the forward path of node p5 is: p5Æp7 and 
p5Æp6Æp8. 

 
Fig. 3. PTRT construction. 

   
Fig. 4. DRTT construction. 

In each tree, the Reverse Path of node n or edge r is a 
route starting from n or r to an endpoint following the 
reverse sequence of the directed links. In Fig. 3, the reverse 
path of edge p2Æp3 in PTRT is: p1Æ p2; while the 
reverse path of node p7 is: p7Æp5. 

Given an assertional triple <s,p,o> and TRT, Algorithms 
1-3 are given for reasoning over PTRT, DRTT and CTRT. 

 
Because Algorithm 2 may generate new triples with 

predicate rdf:type, which may influence the reasoning of 
CTRT, the three algorithms should be run from 1 to 2 to 3. 
Fig. 5 shows an example of PTRT reasoning. 

  

Fig. 5. Reasoning of PTRT. 
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Underived Assertional Triple 
Since some assertional triples can be derived by the others, 
not all of them need to be stored. 

Definition 7. Underived Assertional Triple (UAT) 
refers to the assertional triples that cannot be derived from 
others. UAT is separated into PUAT and CUAT according 
to the type of TRT. 

Definition 8. Property Underived Assertional Triple 
(PUAT): Given PTRT and a set of assertional triples with 
the same subject and object but different predicates {<si, p1, 
oi>,< si, p2, oi>……},  if  triple  <si, pj, oi> cannot be derived 
from any others, we name it a PUAT for subject-object 
pair <si, oi>. 

Definition 9. Class Underived Assertional Triple 
(CUAT): Given CTRT and a set of assertional triples with 
the same subject and predicate rdf:type {<si, rdf:type, o1>, 
<si, rdf:type, o2>……},  if  triple  <si, rdf:type, oj> cannot be 
derived from any others, we name it a CUAT for subject si. 

To compute PUAT and CUAT, Algorithms 4 and 5 are 
proposed as follows. 

 

Incremental Update of TRT and UAT 
The advantages of constructing TRT/UAT focus on two 
aspects, one is to reduce the storage as we only store the 
core and minimum information that cannot be derived, the 
other and more important one is to provide an efficient way 
for updating the knowledge base since updating TRT/UAT 
takes much fewer efforts than changing the entire ontology 
and re-computing RDF closure.   

When new RDF files arrive, new edges are added to the 
existing TRT. Basically, there are two kinds of edges: 
Existing Edges refer to the triples that exist in the original 

TRT, and Incremental Edges refer to those whose subject 
or object or both do not exist.  

The process of updating PTRT is shown in Fig. 6. The 
update of CTRT and DRTT is similar to that of PTRT. The 
process of updating UAT is presented as below. 

(1) Generate new PTRT by adding incremental edges to 
the existing PTRT. (2) Generate incremental PUAT based 
on the incremental ontological triples, add the incremental 
PUAT to existing PUAT, and execute Algorithm 4 to 
obtain new PUAT. (3) Generate incremental DRTT based 
on the incremental ontological triples and add incremental 
DRTT to the existing DRTT. (4) For the PUAT with a 
predicate in the reverse path of the incremental edges while 
the forward path of the incremental edge contains nodes in 
DRTT, generate the assertional triples by executing 
Algorithm 2. (5) Generate new CTRT by adding 
incremental edges to the existing CTRT. (6) Generate the 
incremental CUAT based on the incremental assertional 
triples and the triples generated in Step 4, add the 
incremental CUAT to the existing CUAT, and execute 
Algorithm 5 to compute new CUAT.  

 
Fig. 6. Update of PTRT. 

Query Strategy 
In this section, 6 operators and 8 searching strategies are 
defined to support the query based on TRT and UAT. 

Operator 1: Given subject-object pair <s, o> to search a 
predicate list. First, search <s, o> in PUAT to obtain its 
predicate list, then for each p in the predicate list, output 
the nodes in the forward path of p in PTRT. 

Operator 2: Given the subject s and the predicate 
rdf:type, to search an object list. First, search s in CUAT to 
obtain its object list, then for each c in the object list, 
output the nodes in the forward path of c in CTRT. 

Operator 3: Given predicate p to search subject-object 
pairs. In PTRT, for each node q in the reverse path of node 
p including p itself, output the subject-object pairs that 
have predicate q in PUAT. 

Operator 4: Given predicate rdf:type and object c to 
search subjects. In CTRT, for each node d in the reverse 
path of node c including c itself, output the subjects that 
have object d in CUAT. 
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Operator 5: Given subject s and predicate 
rdfs:subPropertyOf, to search an object list. If s exists in 
PTRT, output the nodes in the forward path of s in PTRT. 

Operator 6: Given subject s and predicate 
rdfs:subClassOf, to search an object list. If s exists in 
CTRT, output the nodes in the forward path of s in CTRT. 

Here we take SPARQL query language as an example, 
to introduce the searching strategy for 8 basic query 
statements. More complicated queries can be decomposed 
into basic query types. 

1) <?x ?y ?z>: For each subject-object pair in PUAT, 
run Operator 1, and for each subject in CUAT, run 
Operator 2. 

2) <?x p ?z>: search for all the subject-object pairs that 
have the specified predicate p. If p is in PTRT, run 
Operator 3; if p is rdf:type, run Operator 2; if p is 
rdfs:subPropertyOf, run Operator 5; if p is rdfs:subClassOf, 
then run Operator 6. 

3) <s ?y ?z>: search all the predicate-object pairs with 
specified subject s. First, obtain all the subject-object pairs 
in PUAT with subject s, and then for each returned subject-
object pair <s, o>, search <s ?p o> according to the 7th 
query type. If s exists in CUAT, obtain the object list 
corresponding to s in CUAT, and for each object in the 
object list, run Operator 2 and record the results as set O, 
and output <s rdf:type O>. 

4) <?x ?y o>: search all the subject-predicate pairs with 
specified object o. First, obtain all the subject-object pairs 
in PUAT with o, and then for each returned subject-object 
pair <s, o>, search <s ?p o> according to the 7th query type. 
If o exists in CTRT, run Operator 4 to obtain a subject list 
S, and output <S rdf:type o>. 

5) <?x p o>: search <?x p ?z> as the 2nd query type, and 
then filter the results by object o. 

6) <s p ?z>: search <?x p ?z> as the 2nd query type, and 
then filter the results by subject s. 

7) <s ?y o>: search all the predicates for the given 
subject s and object o. If <s, o> exists in PUAT, then run 
Operator 1. If o exists in CTRT, then run Operator 4 to 
check whether s is in the result. If so, then the predicate 
rdf:type should also be included in the results. 

8) <s p o>: search <?x p ?z> according to the 2nd query 
type, and then filter the results by subject s and object o. If 
no results are left, return empty to the user. 

Inconsistency Detection and Recovery 
An additional benefit of our proposed method is to detect 
and recover the inconsistency of the ontologies. Based on 
the tree structure of TRT, it is convenient to discover 
inconsistencies by following the strategies as below. 

1) In PTRT, if a closed loop including more than 2 
nodes is detected according to the directions of the links 

between nodes, a PTRT inconsistency occurs. To resolve it, 
the oldest triple in this circle is deleted by default. Each 
triple has a timestamp, and generally newly-arrived triples 
are more confident than old ones. However, users can also 
decide which one to be deleted manually.  

E.g., in Fig. 7, a new triple <p4 rdfs:subPropertyOf p1> 
is added to the ontology base, then p1Æp2Æp3Æp4Æp1 
forms a closed loop, which is unreasonable in practice. 
Therefore one triple in this loop is deleted to recover the 
consistency of PTRT. In CTRT, the method for dealing 
with inconsistencies is similar to that in PTRT. 

2) In DRTT, when a new triple indicates a different 
domain/range for an existing predicate, we detect whether 
the two have sub-class relation in CTRT. If yes, the one 
who is sub-class is retained. If not, the new one is retained 
by default. However the users can also configure the 
system to retain the old domain/range. In Fig. 7, the new 
triple <p1 rdfs:domain c6> indicates a new domain c6 for 
p1, so we delete the old edge from p1 to c2. 

   
Fig. 7. Inconsistency in PTRT (left) and DRTT (right) 

Notably, if the ontology has certainty degree for each 
triple, which indicates the probability that the triple is 
correct, we can delete the one with lowest certainty degree 
in the closed loop in PTRT/CTRT, and the domain/range 
edge with lower certainty degree in DRTT as well. 

System Implementation 
We have implemented a system on Hadoop platform and 
Amazon Cloud. As seen in Fig. 8, the core of the system is 
the IDRM units, which receive the input incremental RDF 
datasets, perform the reasoning by a set of MapReduce 
programs, detect and recover ontology inconsistencies, 
interact with HBase and return the query results to end-
users. HBase (HBase 2014) is a distributed and scalable 
data store for Hadoop. We have designed 6 HBase tables to 
store the encoded ID, PTRT, CTRT, DRTT, PUAT and 
CUAT. We use Hadoop 1.2.1 and HBase 0.94.12, which 
are built on 1-16 m1.medium EC2 instances, each with 2 
EC2 Compute Units, 3.75GB memory and 410GB storage. 

BTC (BTC 2012) is a public dataset crawled from the 
Web. It contains 5 large datasets as seen in Table 1. To 
show the performance of our method, we compare IDRM 
with WebPIE (Urbani et al. 2012) on BTC dataset. We use 
WebPIE to generate the RDF closure and then search the 
related triples as the output of the query. 
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Each method is executed three times on each dataset to 
calculate the number of the output triples and the average 
processing time for reasoning (see Table 2). For IDRM, the 
output triples are the ones in TRT/UAT. For WebPIE, the 
output triples are the ones in RDF closure. We can see that 
the reasoning time for IDRM is less than WebPIE (70% of 
WebPIE in total time) and the output triples for IDRM is 
much fewer than WebPIE (61.9% of WebPIE).  
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Fig. 8. System architecture. 

Table 1. Basic Information of BTC Dataset  

Dataset      Space 
      (GB)   # of triples Sub-Class Sub-

Property 
Domain 

& Range 
Datahub 215.8 910078982 26146 15068 36338 
DBpedia 48.2 198090024 275 0 1136 
Freebase 38.9 101241556 0 0 1 
Rest 17.8 22328242 30373 746 2905 
Timbl 4.7 204806751 291095 24431 55086 
Overall 325.4 1436545555 347889 40245 95466 

Table 2. Result for the Reasoning (16 Nodes) 

Dataset No. of Triples 
in TRT/UAT 

Time of 
IDRM(min) 

No. of Triples 
in RDF closure 

Time of 
WebPIE(min) 

Datahub 713574291 26.3 1079343655 43.1 
DBpedia 133242743 13.4 198091689 17.6 
Freebase 94134030 7.2 101241556 9.1 

Rest 17073633 6.5 26287842 8.3 
Timbl 114130464 15.2 326688386 19.8 

Overall 1072155161 68.6 1731653128 97.9 

To validate the scalable performance, we take the 
Datahub dataset as an example and report the reasoning 
time when the number of EC2 nodes increases from 1 to 16 
(see Fig. 9). When more nodes are deployed, the execution 
time continues dropping. The cost of each medium 
instance is $0.078/hour, and the total cost varies along with 
the increase of nodes.  

To further compare the performance when the input data 
are incremental, the whole dataset is divided into 4 parts 
and input to the system gradually. As seen in Table 3, the 
reasoning time of IDRM drastically reduced in comparison 
with WebPIE as input size grows. Then we input 50 
queries to Datahub dataset, and the average response time 
is 53ms for IDRM and 57ms for WebPIE. 

Application Scenario 
Then we collaborate with a Chinese hospital to validate our 
method in real-world healthcare data. For confidentiality 
reasons, we cannot reveal the name of the hospital. Our 
target is to assist the retrieval of Electronic Medical Record 
(EMR) in the hospital’s information system. An EMR is a 
digital  version  of  a  patient’s  medical records including all 
the medical history, medication and allergies, and personal 
statistics like age and weight.  

We first build a medical ontology based on 1.5 million 
EMRs, using an ontology learning tool. 0.59 billion triples 
are learned and added to the ontology. New EMRs are 
generated and new RDF triples are added to the ontology 
base periodically. Then our IDRM method is performed on 
a Hadoop cluster with 16 computing nodes for parallel 
computating. The queries from doctors and nurses with 
respect to patients, illnesses and drugs are then executed to 
assist their diagnosis and treatment.  

 

 
Fig. 9. Processing time and cost on different nodes. 

Table 3. Update Time with Incremental Input (16 nodes) 
Input Size (billions of triples) 0.1 0.5 1 1.44 

Time of IDRM (min) 7.4 21.3 25.7 24.2 
Time of WebPIE(min) 8.1 30.2 61.8 96.5 

Conclusions and Future Work 
This work proposes an incremental and distributed 
reasoning method to deal with large-scale ontologies. The 
construction of TRT/UAT significantly reduces the re-
computation time as well as the storage. Users can execute 
online queries and detect ontology inconsistency 
effectively. A system is implemented using Hadoop on 
Amazon Cloud. The application in healthcare validates the 
feasibility of our method. In future, we will validate IDRM 
on more datasets and extend it to other ontology languages. 
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