

Exploiting Incremental Reasoning in
Healthcare Based on Hadoop and Amazon Cloud

Bo Liu1, Liang Wu2, Jianqiang Li3, Ji-Jiang Yang4
1NEC Labs China, Beijing 100084, China

2Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
3Beijing University of Technology, Beijing 100022, China

4Research Institute of Information and Technology, Tsinghua University, Beijing 100084, China
liu_bo@nec.cn, wuliang211@gmail.com, lijianqiang@tsinghua.org.cn, yangjijiang@tsinghua.edu.cn

Abstract
With a large volume of semantic data and their fast growth
in semantic cities, significant challenges in performing
efficient and scalable reasoning has emerged in diverse
domains. When dealing with large-scale ontologies, the
performance of traditional centralized reasoning methods is
not sufficient, distributed reasoning methods have thus
emerged to improve the scalability and efficiency of
inferences. In this paper, an incremental and distributed
reasoning method for large-scale ontologies is proposed to
realize high-performance reasoning and online query. A
novel representation method, transfer reasoning tree and
underived assertional triples, is presented to store the
incremental ontologies more efficiently, based on which the
reasoning process is accelerated and ontology inconsistency
is recovered. Finally, a system is implemented on Hadoop
and Amazon Cloud, and its application in healthcare
validates the effectiveness of the proposed approach.

 Introduction
As we are entering a big data era, large volumes of
semantic data have emerged and been applied in diverse
domains such as healthcare and life sciences (Guttmann et
al. 2013), e-marketplace (Guo et al. 2012) and Geospatial
analysis (Zhang et al. 2013). Semantic Web was estimated
to contain 4.4 billion triples in 2009, but now it has
reached over 20 billion triples (W3C 2010) and the growth
rate is still increasing. A significant computational
challenge in performing efficient and scalable reasoning
has emerged in nearly all aspects of semantic city,
especially in healthcare domain.

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The healthcare condition of a patient indicates his past
and current medical information that corresponds to all the
diseases, symptoms, treatments and interventions. Given
the complexity and scale of medical data today, the use of
ontology-based reasoning has become essential in clinical
knowledge management for information retrieval and
decision making.

Resource Description Framework (RDF) is a basic
representation of ontology used to describe the knowledge
in Semantic Web. The reasoning on large-scale RDF files
poses challenges in: 1) distributed data on the Web make it
difficult to acquire appropriate triples; 2) the increasing
data volume requires scalable computation capabilities for
large datasets; 3) most existing reasoning methods are
designed for static ontologies whereas data are usually
subject to change in real world applications (Lecue 2012).

Since the performance of centralized reasoning methods
executed on a single machine/server is not sufficient,
distributed reasoning approaches executed on multiple
computing nodes have emerged to improve the scalability
and efficiency of reasoning. However, existing distributed
reasoning methods (Weaver and Hendler 2009, Fokoue et
al. 2012, Urbani et al. 2012) focus on computing RDF
closure for reasoning. Each time when new RDF files
arrive, full re-reasoning over the entire dataset is required.
This time-consuming process occurs at every update and
takes much space. WebPIE (Urbani et al. 2012)
distinguishes newly-arrived triples and old ones without
considering the relations between them, thus resulting in
duplicated RDF triples during the reasoning thereby
hampering its performance.

To address these problems, we propose an Incremental
and Distributed Reasoning Method (IDRM) for big RDF
datasets via MapReduce and Hadoop platform.

Semantic Cities: Beyond Open Data to Models, Standards and Reasoning: Papers from the AAAI-14 Workshop

16

MapReduce (Dean and Ghemawat 2008) is a
programming model for parallel and distributed processing
of large datasets. Hadoop (Hadoop 2014) is a Java
implementation of MapReduce, which supports data-
intensive distributed applications on clusters of commodity
machines. We present a novel representation method,
Transfer Reasoning Tree (TRT) and Underived Assertional
Triples (UAT), to store the incremental RDF triples more
efficiently and simplify the reasoning process so that a
user’s online query can be answered timely. The update of
TRT/UAT needs only minimum computation since the
relationship between new triples and existing ones is fully
exploited. Moreover, the inconsistency of ontologies can
be detected and recovered effectively, thus avoiding errors
in the following reasoning process.

To evaluate our methods, we have implemented a
system using Hadoop and Amazon Cloud. Since Amazon
Elastic Compute Cloud (EC2) can provide as much
computation and storage capacity as needed in a pay-as-
you-go manner, we deployed our system on EC2 to
provide scalable computation. The experiments performed
on BTC (Billion Triples Challenge) data show that IDRM
outperforms other related ones. A real-world application on
healthcare domain is also presented to validate the
effectiveness of our method.

Background
The fundamental unit of RDF is a triple <subject, predicate,
object>. RDF Schema (RDFS) (RDF-Schema 2014) is a
set of classes with certain properties in RDF. RDF closure
can be computed by applying all RDFS rules (RDF-
Semantics 2004) iteratively on the input ontology until no
new statements are derived. Fig. 1 shows 13 RDFS rules.

Fig. 1. RDFS Rules.

In order to distinguish the triples that may trigger the
inference on RDFS rules, we divide them into ontological
and assertional triples.

Definition 1. Ontological Triples are the triples from
which significant inferences can be derived, i.e., the triples
with predicate rdfs:domain, rdfs:range, rdfs:subClassOf,
rdfs:subPropertyOf, and those with predicate rdf:type and
object rdfs:Datatype, rdfs:Class or
rdfs:ContainerMembershipProperty.

Definition 2. Assertional Triples are the triples that are
not ontological triples.

Incremental Reasoning on RDF Datasets
This section presents the Incremental and Distributed
Reasoning Method (IDRM) on big RDF datasets. The main
steps of our proposed method are described in Fig. 2. The
input of the system is incremental RDF data files. As our
knowledge increases, new RDF data continuously arrive as
commonly seen in practice. Then the Dictionary Encoding
unit encodes the input triples into a unique and small
identifier to reduce the physical size of input data and
speed up the reasoning process. The encoded triples are
then separated into the incremental ontological triples and
incremental assertional triples, based on which the
TRT/UAT Construction unit generates TRT and UAT, or
the TRT/UAT Update unit updates relative TRT/UAT if
this is not the first time that we run the system. The created
or updated triples are stored in TRT and UAT storages,
then the Query Processing unit reasons over the TRT/UAT
and responses users’ queries.

Dictionary
Encoding

QueryQuery

Incremental
Ontological
/Assertional

Triples

Query
Results
Query

Results

TRT/UAT
Storage

Query
Processing

TRT/UAT
Construction

TRT/UAT
Update

Incremental
RDF Data

Incremental
RDF Data

Fig. 2. Main steps of IDRM.

Transfer Reasoning Tree
As seen in Fig. 1, some key elements are more easily to
trigger other inferences, and the triples related to these
elements have strong correlation with each other. In order
to use a more efficient method to store these triples and
minimize the changes to the entire ontology base at every
update, we construct them to transfer reasoning tree.

Definition 3. Transfer Reasoning Tree (TRT) is a set
of directed trees constructed by the triples whose
predicates are rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain and rdfs:range.

It is further divided into PTRT, CTRT and DRTT.
Definition 4. Property Transfer Reasoning Tree

(PTRT) is a set of directed trees constructed based on all
the triples that have predicate rdfs:subPropertyOf, or have

17

predicate rdf:type and object rdfs:Container-
MembershipProperty. Each node in a tree stands for a
subject or object, and the directed link between them
presents their sub-property relation.

Definition 5. Class Transfer Reasoning Tree (CTRT)
is a set of directed trees constructed based on all the triples
that have predicate rdfs:subClassOf, or have predicate
rdf:type and object rdfs:Datatype or rdfs:Class. Each node
in a tree stands for a subject or object, and the directed link
between them presents their sub-class relation.

Definition 6. Domain/Range Transfer Tree (DRTT) is
a set of directed trees constructed based on the triples that
have predicates rdfs:domain or rdfs:range, in which each
node in the tree stands for a subject or object and the
directed link presents the domain or range relation between
the node pair.

The construction of PTRT contains 2 steps:
1) Abstract the triples whose predicates are

rdfs:subPropertyOf; for each triple, build a directed graph
from nodes A to B, in which A stands for its subject and B
stands for its object.

2) Abstract the triples whose predicate is rdf:type and
object is rdfs:Container-MembershipProperty; following
the 12th RDFS rule, build a directed graph from nodes A to
B, in which A is its subject and B is rdfs:member.

Similarly, the construction of CTRT is as follows:
1) Abstract the triples whose predicates are

rdfs:subClassOf; for each triple, build a directed graph
from nodes A to B, in which A stands for its subject and B
stands for its object.

2) Abstract the triples whose predicate is rdf:type and
object is rdfs:class; following the 8th RDFS rule, build a
directed graph from nodes A to B, in which A is its subject
and B is rdfs:Resource.

3) Abstract the triples whose predicate is rdf:type and
object is rdfs:Datatype; following the 13th RDFS rule, build
a directed graph from nodes A to B, in which A is its
subject and B is rdfs:Literal.

The construction of DRTT has 2 steps:
1) Abstract the triples whose predicate is rdfs:range; for

each triple, build a directed graph from nodes A to B, in
which A stands for its subject and B stands for its object.

2) Abstract the triples whose predicate is rdfs:domain;
for each triple, build a directed graph from nodes A to B, in
which A stands for its subject and B stands for its object.
The arrow connecting A and B is dotted line.

An example of building PTRT and DRTT is shown in
Fig. 3 and 4, respectively.

The forward and reverse paths are then defined for
reasoning over TRT. In each tree, the Forward Path of
node n or edge r is a route starting from n or r to an
endpoint following the sequence of the directed links. An
endpoint means a node that has no links starting from it.
E.g., in Fig. 3, the forward path of edge p5Æp6 in PTRT is:

p6Æp8; while the forward path of node p5 is: p5Æp7 and
p5Æp6Æp8.

Fig. 3. PTRT construction.

Fig. 4. DRTT construction.

In each tree, the Reverse Path of node n or edge r is a
route starting from n or r to an endpoint following the
reverse sequence of the directed links. In Fig. 3, the reverse
path of edge p2Æp3 in PTRT is: p1Æ p2; while the
reverse path of node p7 is: p7Æp5.

Given an assertional triple <s,p,o> and TRT, Algorithms
1-3 are given for reasoning over PTRT, DRTT and CTRT.

Because Algorithm 2 may generate new triples with

predicate rdf:type, which may influence the reasoning of
CTRT, the three algorithms should be run from 1 to 2 to 3.
Fig. 5 shows an example of PTRT reasoning.

Fig. 5. Reasoning of PTRT.

18

Underived Assertional Triple
Since some assertional triples can be derived by the others,
not all of them need to be stored.

Definition 7. Underived Assertional Triple (UAT)
refers to the assertional triples that cannot be derived from
others. UAT is separated into PUAT and CUAT according
to the type of TRT.

Definition 8. Property Underived Assertional Triple
(PUAT): Given PTRT and a set of assertional triples with
the same subject and object but different predicates {<si, p1,
oi>,< si, p2, oi>……}, if triple <si, pj, oi> cannot be derived
from any others, we name it a PUAT for subject-object
pair <si, oi>.

Definition 9. Class Underived Assertional Triple
(CUAT): Given CTRT and a set of assertional triples with
the same subject and predicate rdf:type {<si, rdf:type, o1>,
<si, rdf:type, o2>……}, if triple <si, rdf:type, oj> cannot be
derived from any others, we name it a CUAT for subject si.

To compute PUAT and CUAT, Algorithms 4 and 5 are
proposed as follows.

Incremental Update of TRT and UAT
The advantages of constructing TRT/UAT focus on two
aspects, one is to reduce the storage as we only store the
core and minimum information that cannot be derived, the
other and more important one is to provide an efficient way
for updating the knowledge base since updating TRT/UAT
takes much fewer efforts than changing the entire ontology
and re-computing RDF closure.

When new RDF files arrive, new edges are added to the
existing TRT. Basically, there are two kinds of edges:
Existing Edges refer to the triples that exist in the original

TRT, and Incremental Edges refer to those whose subject
or object or both do not exist.

The process of updating PTRT is shown in Fig. 6. The
update of CTRT and DRTT is similar to that of PTRT. The
process of updating UAT is presented as below.

(1) Generate new PTRT by adding incremental edges to
the existing PTRT. (2) Generate incremental PUAT based
on the incremental ontological triples, add the incremental
PUAT to existing PUAT, and execute Algorithm 4 to
obtain new PUAT. (3) Generate incremental DRTT based
on the incremental ontological triples and add incremental
DRTT to the existing DRTT. (4) For the PUAT with a
predicate in the reverse path of the incremental edges while
the forward path of the incremental edge contains nodes in
DRTT, generate the assertional triples by executing
Algorithm 2. (5) Generate new CTRT by adding
incremental edges to the existing CTRT. (6) Generate the
incremental CUAT based on the incremental assertional
triples and the triples generated in Step 4, add the
incremental CUAT to the existing CUAT, and execute
Algorithm 5 to compute new CUAT.

Fig. 6. Update of PTRT.

Query Strategy
In this section, 6 operators and 8 searching strategies are
defined to support the query based on TRT and UAT.

Operator 1: Given subject-object pair <s, o> to search a
predicate list. First, search <s, o> in PUAT to obtain its
predicate list, then for each p in the predicate list, output
the nodes in the forward path of p in PTRT.

Operator 2: Given the subject s and the predicate
rdf:type, to search an object list. First, search s in CUAT to
obtain its object list, then for each c in the object list,
output the nodes in the forward path of c in CTRT.

Operator 3: Given predicate p to search subject-object
pairs. In PTRT, for each node q in the reverse path of node
p including p itself, output the subject-object pairs that
have predicate q in PUAT.

Operator 4: Given predicate rdf:type and object c to
search subjects. In CTRT, for each node d in the reverse
path of node c including c itself, output the subjects that
have object d in CUAT.

19

Operator 5: Given subject s and predicate
rdfs:subPropertyOf, to search an object list. If s exists in
PTRT, output the nodes in the forward path of s in PTRT.

Operator 6: Given subject s and predicate
rdfs:subClassOf, to search an object list. If s exists in
CTRT, output the nodes in the forward path of s in CTRT.

Here we take SPARQL query language as an example,
to introduce the searching strategy for 8 basic query
statements. More complicated queries can be decomposed
into basic query types.

1) <?x ?y ?z>: For each subject-object pair in PUAT,
run Operator 1, and for each subject in CUAT, run
Operator 2.

2) <?x p ?z>: search for all the subject-object pairs that
have the specified predicate p. If p is in PTRT, run
Operator 3; if p is rdf:type, run Operator 2; if p is
rdfs:subPropertyOf, run Operator 5; if p is rdfs:subClassOf,
then run Operator 6.

3) <s ?y ?z>: search all the predicate-object pairs with
specified subject s. First, obtain all the subject-object pairs
in PUAT with subject s, and then for each returned subject-
object pair <s, o>, search <s ?p o> according to the 7th
query type. If s exists in CUAT, obtain the object list
corresponding to s in CUAT, and for each object in the
object list, run Operator 2 and record the results as set O,
and output <s rdf:type O>.

4) <?x ?y o>: search all the subject-predicate pairs with
specified object o. First, obtain all the subject-object pairs
in PUAT with o, and then for each returned subject-object
pair <s, o>, search <s ?p o> according to the 7th query type.
If o exists in CTRT, run Operator 4 to obtain a subject list
S, and output <S rdf:type o>.

5) <?x p o>: search <?x p ?z> as the 2nd query type, and
then filter the results by object o.

6) <s p ?z>: search <?x p ?z> as the 2nd query type, and
then filter the results by subject s.

7) <s ?y o>: search all the predicates for the given
subject s and object o. If <s, o> exists in PUAT, then run
Operator 1. If o exists in CTRT, then run Operator 4 to
check whether s is in the result. If so, then the predicate
rdf:type should also be included in the results.

8) <s p o>: search <?x p ?z> according to the 2nd query
type, and then filter the results by subject s and object o. If
no results are left, return empty to the user.

Inconsistency Detection and Recovery
An additional benefit of our proposed method is to detect
and recover the inconsistency of the ontologies. Based on
the tree structure of TRT, it is convenient to discover
inconsistencies by following the strategies as below.

1) In PTRT, if a closed loop including more than 2
nodes is detected according to the directions of the links

between nodes, a PTRT inconsistency occurs. To resolve it,
the oldest triple in this circle is deleted by default. Each
triple has a timestamp, and generally newly-arrived triples
are more confident than old ones. However, users can also
decide which one to be deleted manually.

E.g., in Fig. 7, a new triple <p4 rdfs:subPropertyOf p1>
is added to the ontology base, then p1Æp2Æp3Æp4Æp1
forms a closed loop, which is unreasonable in practice.
Therefore one triple in this loop is deleted to recover the
consistency of PTRT. In CTRT, the method for dealing
with inconsistencies is similar to that in PTRT.

2) In DRTT, when a new triple indicates a different
domain/range for an existing predicate, we detect whether
the two have sub-class relation in CTRT. If yes, the one
who is sub-class is retained. If not, the new one is retained
by default. However the users can also configure the
system to retain the old domain/range. In Fig. 7, the new
triple <p1 rdfs:domain c6> indicates a new domain c6 for
p1, so we delete the old edge from p1 to c2.

Fig. 7. Inconsistency in PTRT (left) and DRTT (right)

Notably, if the ontology has certainty degree for each
triple, which indicates the probability that the triple is
correct, we can delete the one with lowest certainty degree
in the closed loop in PTRT/CTRT, and the domain/range
edge with lower certainty degree in DRTT as well.

System Implementation
We have implemented a system on Hadoop platform and
Amazon Cloud. As seen in Fig. 8, the core of the system is
the IDRM units, which receive the input incremental RDF
datasets, perform the reasoning by a set of MapReduce
programs, detect and recover ontology inconsistencies,
interact with HBase and return the query results to end-
users. HBase (HBase 2014) is a distributed and scalable
data store for Hadoop. We have designed 6 HBase tables to
store the encoded ID, PTRT, CTRT, DRTT, PUAT and
CUAT. We use Hadoop 1.2.1 and HBase 0.94.12, which
are built on 1-16 m1.medium EC2 instances, each with 2
EC2 Compute Units, 3.75GB memory and 410GB storage.

BTC (BTC 2012) is a public dataset crawled from the
Web. It contains 5 large datasets as seen in Table 1. To
show the performance of our method, we compare IDRM
with WebPIE (Urbani et al. 2012) on BTC dataset. We use
WebPIE to generate the RDF closure and then search the
related triples as the output of the query.

20

Each method is executed three times on each dataset to
calculate the number of the output triples and the average
processing time for reasoning (see Table 2). For IDRM, the
output triples are the ones in TRT/UAT. For WebPIE, the
output triples are the ones in RDF closure. We can see that
the reasoning time for IDRM is less than WebPIE (70% of
WebPIE in total time) and the output triples for IDRM is
much fewer than WebPIE (61.9% of WebPIE).

QueryQuery

IDRMIncremental
RDF Data

Dictionary Encoding Unit

Query Processing Unit

TRT/UAT
Construction

Unit

TRT/UAT
Update

Unit

ResultsResults

Inconsistency
Detection

Unit

Amazon Cloud
Hadoop
Platform …………

EC2
Node 1

EC2
Node 2

EC2
Node n

EncodeHBase PTRT CTRT DRTT PUAT CUAT

Fig. 8. System architecture.

Table 1. Basic Information of BTC Dataset

Dataset Space
 (GB) # of triples Sub-Class Sub-

Property
Domain

& Range
Datahub 215.8 910078982 26146 15068 36338
DBpedia 48.2 198090024 275 0 1136
Freebase 38.9 101241556 0 0 1
Rest 17.8 22328242 30373 746 2905
Timbl 4.7 204806751 291095 24431 55086
Overall 325.4 1436545555 347889 40245 95466

Table 2. Result for the Reasoning (16 Nodes)

Dataset No. of Triples
in TRT/UAT

Time of
IDRM(min)

No. of Triples
in RDF closure

Time of
WebPIE(min)

Datahub 713574291 26.3 1079343655 43.1
DBpedia 133242743 13.4 198091689 17.6
Freebase 94134030 7.2 101241556 9.1

Rest 17073633 6.5 26287842 8.3
Timbl 114130464 15.2 326688386 19.8

Overall 1072155161 68.6 1731653128 97.9

To validate the scalable performance, we take the
Datahub dataset as an example and report the reasoning
time when the number of EC2 nodes increases from 1 to 16
(see Fig. 9). When more nodes are deployed, the execution
time continues dropping. The cost of each medium
instance is $0.078/hour, and the total cost varies along with
the increase of nodes.

To further compare the performance when the input data
are incremental, the whole dataset is divided into 4 parts
and input to the system gradually. As seen in Table 3, the
reasoning time of IDRM drastically reduced in comparison
with WebPIE as input size grows. Then we input 50
queries to Datahub dataset, and the average response time
is 53ms for IDRM and 57ms for WebPIE.

Application Scenario
Then we collaborate with a Chinese hospital to validate our
method in real-world healthcare data. For confidentiality
reasons, we cannot reveal the name of the hospital. Our
target is to assist the retrieval of Electronic Medical Record
(EMR) in the hospital’s information system. An EMR is a
digital version of a patient’s medical records including all
the medical history, medication and allergies, and personal
statistics like age and weight.

We first build a medical ontology based on 1.5 million
EMRs, using an ontology learning tool. 0.59 billion triples
are learned and added to the ontology. New EMRs are
generated and new RDF triples are added to the ontology
base periodically. Then our IDRM method is performed on
a Hadoop cluster with 16 computing nodes for parallel
computating. The queries from doctors and nurses with
respect to patients, illnesses and drugs are then executed to
assist their diagnosis and treatment.

Fig. 9. Processing time and cost on different nodes.

Table 3. Update Time with Incremental Input (16 nodes)
Input Size (billions of triples) 0.1 0.5 1 1.44

Time of IDRM (min) 7.4 21.3 25.7 24.2
Time of WebPIE(min) 8.1 30.2 61.8 96.5

Conclusions and Future Work
This work proposes an incremental and distributed
reasoning method to deal with large-scale ontologies. The
construction of TRT/UAT significantly reduces the re-
computation time as well as the storage. Users can execute
online queries and detect ontology inconsistency
effectively. A system is implemented using Hadoop on
Amazon Cloud. The application in healthcare validates the
feasibility of our method. In future, we will validate IDRM
on more datasets and extend it to other ontology languages.

21

References
BTC 2012. Billion Triples Challenge 2012 Dataset. from
http://km.aifb.kit.edu/projects/btc-2012/.
Dean, J. and Ghemawat, S. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51(1): 107-113.
Fokoue, A., et al. 2012. Querying Linked Ontological Data
Through Distributed Summarization. Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence: 31-37.
Guo, J., et al. 2012. Semantic Inference on Heterogeneous E-
Marketplace Activities. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans 42(2): 316-330.
Guttmann, C., et al. 2013. On the challenges of balancing privacy
and utility of open health data. Joint Proceedings of the
Workshop on AI Problems and Approaches for Intelligent
Environments and Workshop on Semantic Cities: 43-47.
Hadoop 2014. Hadoop. from http://hadoop.apache.org/.
HBase 2014. HBase. from http://hbase.apache.org/.
Lecue, F. 2012. Diagnosing Changes in An Ontology Stream: A
DL Reasoning Approach. Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence: 80-86.
McCreadie, et al. 2009. On Single-Pass Indexing with
MapReduce. SIGIR Forum: 742-743.
RDF-Schema 2014. RDF Schema. from
http://en.wikipedia.org/wiki/RDFS.
RDF-Semantics 2004. RDF Semantics. from
http://www.w3.org/TR/rdf-mt/.
SPARQL 2013. SPARQL 1.1 Overview. from
http://www.w3.org/TR/sparql11-overview/.
Urbani, J., et al. 2012. WebPIE: A Web-scale Parallel Inference
Engine using MapReduce. Web Semantics: Science, Services and
Agents on the World Wide Web 10: 59 - 75.
W3C 2010. Linking Open Data on the Semantic Web. from
http://www.w3.org/wiki/TaskForces/CommunityProjects/Linking
OpenData/DataSets/Statistics.
Weaver, J. and Hendler, J. 2009. Parallel Materialization of the
Finite RDFS Closure for Hundreds of Millions of Triples. The
Semantic Web - ISWC 2009, Lecture Notes in Computer Science
5823: 682-697.
Zhang, Y., et al. 2013. A Semantic Approach to Retrieving,
Linking, and Integrating Heterogeneous Geospatial Data. Joint
Proceedings of the Workshop on AI Problems and Approaches
for Intelligent Environments and Workshop on Semantic Cities:
31-37.

22

http://km.aifb.kit.edu/projects/btc-2012/
http://hadoop.apache.org/
http://hbase.apache.org/
http://en.wikipedia.org/wiki/RDFS
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics

