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Abstract

As the amount of data collected from individuals in-
creases, there are more opportunities to use it to offer
personalized experiences (e.g., using electronic health
records to offer personalized treatments). We advocate
applying techniques from batch reinforcement learning
to predict the range of effectiveness that policies might
have for individuals. We identify three sources of uncer-
tainty and present a method that addresses all of them.
It handles the uncertainty caused by population mis-
match by modeling the data as a latent mixture of differ-
ent subpopulations of individuals, it explicitly quantifies
data sparsity by accounting for the limited data avail-
able about the underlying models, and incorporates in-
trinsic stochasticity to yield estimated percentile ranges
of the effectiveness of a policy for a particular new in-
dividual. Using this approach, we highlight some inter-
esting variability in policy effectiveness amongst HIV
patients given a prior patient treatment dataset. Our ap-
proach highlights the potential benefit of taking into ac-
count individual variability and data limitations when
performing batch policy evaluation for new individuals.

Introduction
Domains like medicine, education, and marketing involve
sequential interventions with individuals: treating patients,
teaching students and advertising to consumers. In these
high-stake domains, there is a huge need and opportunity
to create personalized predictions of the effectiveness of
these interventions. Such information could be crucial to in-
form which strategy/treatment regime/policy to employ for
a given individual.

Creating such personalized predictions of a policy using
prior sequential intervention data (e.g., previous treatment
regimes) is challenging because such estimates should ac-
count for a number of different sources of uncertainty that
arise from the following factors:

1. Data sparsity. If there is a limited amount of data that is
relevant to the policy of interest, it will yield significant
uncertainty in the resulting policy-return estimates.

2. Population mismatch. When the population of individu-
als in the observed dataset is quite different from the new
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individual for which we want to evaluate a policy, the re-
sulting predictions will be uncertain.

3. Intrinsic stochasticity. Inherent uncertainty in resulting
outcomes, even if the true probabilities of each outcome
are precisely known, also makes a significant contribution
to the uncertainty over the result of executing a policy.

There has been limited attention in the batch RL litera-
ture to personalizing the uncertainty evaluation over the pre-
dicted effectiveness of policies given past data. Algorithms
like LSPI (Lagoudakis and Parr 2003) estimate the expected
return of a new policy, but do not quantify uncertainty over
the resulting estimate. In the online model-based RL litera-
ture, Strehl and Littman (2005) estimate model-based inter-
vals that guide learning but do not evaluate policies. Mannor
et al. (2007) quantify uncertainty of a policy by estimating
the bias and variance of the expected value of a policy using
estimated discrete transition and reward functions. Shortreed
et al. (2011) introduced an approach to learn the optimal
policy estimate and its uncertainty in continuous states from
clinical trials (not observational data). Though some of these
approaches address uncertainty due to data sparsity, they do
not incorporate stochasticity uncertainty or population mis-
match uncertainty. In our high stakes domains, it is impor-
tant to take all three sources of uncertainty into account to
create personalized policy-evaluation estimates.

In this work, we introduce an approach that produces
personalized assessments of an input policy’s effective-
ness given batch data. To our knowledge, our model-based
reinforcement-learning algorithm is the first approach that
addresses all three important sources of uncertainty over pre-
dictive payoff. It handles population mismatch by modeling
the data as a latent mixture of subpopulations of individ-
uals instead of one homogeneous population; it explicitly
quantifies data sparsity by accounting for the uncertainty
in the estimated model parameters; and it incorporates in-
trinsic stochasticity by computing percentile ranges of the
effectiveness of a policy instead of only the policy’s ex-
pected effectiveness. Using this approach we highlight in-
teresting variability in policy effectiveness amongst HIV pa-
tients given a prior patient treatment dataset. Our approach
highlights the potential benefit of taking into account in-
dividual variability and data limitations when performing
batch policy evaluation for new individuals.
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Problem Setup
We are interested in predicting a personalized range of re-
turns when executing a particular policy, taking into account
the three sources of uncertainty discussed earlier. To do so,
we extend the classic MDP model in two key ways: We in-
troduce latent class MDPs to capture subpopulations that
vary in their underlying dynamics models; and an interval
loss function to capture the inherent stochasticity in policy
outcomes.

To define a latent class MDP, we augment the standard
model, 〈S,A, P,R, γ〉, with a set of classes C. The transi-
tion function becomes conditioned on the class: Pc(s′ | a, s)
is the probability that state s will transition to state s′ given
action a for agents in class c ∈ C. In addition, these latent
classes are partially observable via a set of d-dimensional
feature vectors (e.g., demographic features), one for each
class. We assume that each feature vector, of d independent
variables, is drawn from a multivariate normal with meanµc
and diagonal covariance matrix Σc. Implicitly, we assume
that there will be a small finite number of latent classes. We
test this assumption later on when exploring an HIV dataset.

In the learning problem, we assume that we are given data
in the form of observational samples, O = {ζ1, . . . , ζN}.
Each sample ζi has an associated feature vector and a trajec-
tory of Ti steps. The i-th sample xi can be written as

ζi = {fi}{(s1i , a1i , r1i ), . . . , (s
Ti
i , a

Ti
i , r

Ti
i )},

where fi is the d-dimensional feature vector. The reward rti
is assumed to be a function of the state or state-action pair.
We define the returns that we receive for an observation sam-
ple ζ as R(ζ) =

∑Ti

t=1 γ
t−1rt.

We also introduce an α ∈ (0, 1] interval loss function.
The α interval loss function captures the uncertainty over
the returns of a policy for a particular individual in the class.
We define this loss function with a lower range bound ` and
the upper range bound u, as

J(u, `|ζ, α) =


α
2 (u− `), if` ≤R(ζ)≤u
R(ζ)− α

2 `− (1− α
2 )u, if R(ζ) > u

α
2 u+ (1− α

2 )`−R(ζ), if R(ζ) < `

(1)

The penalties are defined so that the expected loss is min-
imized by setting the bounds so that, on average, a α/2 frac-
tion of the observations fall below the interval and a α/2
fraction of the observations fall above the interval.

Indeed, let

E[J(u, `|O, α)] =
α

2

∫ u

`

(u− l)p(R|O)dR

+

∫ `

−∞
[
α

2
u+ (1− α

2
)`−R]p(R|O)dR

+

∫ ∞
u

[−α
2
`− (1− α

2
)u+R]p(R|O)dR. (2)

It is minimized by the roots `? and u? of ∂E[J]
∂` and ∂E[J]

∂u ,
respectively. It is easy to show that they are solutions to:

P (R < `?) =
α

2
and P (R > u?) =

α

2
. (3)

Modeling Uncertainty in Latent Class MDPs
In this section, we present how to estimate our augmented
MDP from a set of observational data. Then, we discuss how
to quantify the different types of uncertainty to produce per-
sonalized ranges of a policy’s returns.

Finding a Latent Class MDP
We present an expectation-maximization algo-
rithm for estimating the parameters, ΨM =
(ρ1, · · · , ρM , µ1, · · · , µM ,Σ1, · · · ,ΣM , P1, · · · , PM ),
of a latent class MDP with C = {1, . . . ,M} (a priori
unknown) classes, given observational data. We name this
approach the Latent Class Search (LCS) algorithm. Our
goal is to maximize the likelihood of observing a set of
N observational samples O = {ζ1, . . . , ζN} (i.e., agent
features and associated trajectories). The probability of
observing features fi, associated with ζi, given that they
are drawn from model c is LN (ζi|c) = N (fi|µc,Σc).
Similarly, the probability of observing a transition to state
st+1 from st after action at given that it is drawn from
class c is Pc(st+1 | at, st) for all s ∈ S, a ∈ A and
c ∈ C. Therefore, the probability of observing the trajectory
(s1i , a

1
i ), . . . (s

T
i , a

T
i ) associated with ζi given that it is

drawn from class c is:

LT (ζi|m) =
T∏
t=1

Pc(s
t+1
i | ati, sti).

Defining ρic as the prior probability of assigning observa-
tion i to class c, the log likelihood of our samples is

L(O|ΨM ) = log
N∏
i=1

∑
c∈C

ρicLN (ζi|µc,Σc)LT (ζi|Pc).

(4)
From these building blocks, the LCS EM algorithm is:

1. In the E-step of the h-th iteration of the EM, calculate

τic =
LN (ζi|µcΣc)LT (ζi|Pc)ρic∑

c′∈C LN (ζi|µc′ ,Σc′)LT (ζi|Pc′)ρic′
(5)

as the probability that observation i belongs to class c.

2. In the M-step, iterate Ψh
M → Ψh+1

M by finding the max-
imum likelihood estimates for the Gaussian and multino-
mial mixture models separately1. Since we can split the
likelihood function into two, the EM algorithm uses the
standard EM maximization step for the Gaussian mixture
models representing features (Bilmes and others 1998) as
well as that for the multinomial mixture model represent-
ing the transition functions.

Additionally, for each latent class c, calculate the maximum
likelihood estimate of the reward function R̂c(s, a, s′) for all
s, s′ ∈ S, a ∈ A and c ∈ C. This estimate helps quantify
uncertainty.

We do not know the number of models M a priori so we
run EM with several values ofM and pick the best one using
cross-validation (Smyth 2000): We vary the number of latent

1We omit the equations due to space limitations.
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classes and evaluate the likelihood of the validation set. We
choose the M for which the likelihood of the validation data
is no longer increasing.

Computing an Interval of Possible Returns
The output of the LCS algorithm is a latent class MDP with
M classes as well as membership probabilities of each train-
ing trajectory to each of the latent classes. We use these
classes in two ways to estimate the return ranges.

First, we explicitly represent the uncertainty we have over
the latent class MDP parameters due to the limited data2

by not treating the resulting estimates from the EM proce-
dure as point estimates, but instead creating a Bayesian pos-
terior probability over the latent class MDPs. We take all
the trajectories and use their soft assignments to each class
to produce a Dirichlet posterior distribution over the multi-
nomial transition model probabilities associated with each
latent class MDP. In more detail, for each class, for each
state–action pair (s, a), we define Dir(λ(s,a)), where λ(s,a)
is a count vector for each next state s′. This vector is set as
the number of occurrences of (s, a, s′) triples experienced
in the training observation data, weighted by the probability
that each trajectory was assigned to model c.

We also want to handle the population mismatch uncer-
tainty that can occur for a new individual. In particular, we
do not know which latent class the individual falls into. As
such, for a new individual i, we can calculate the probability
that they are associated with latent class c using only their
features fi. The algorithm calculates the value of an aug-
mented Equation 5 that functions without trajectories:

wic =
N (fi|µcΣc)ρic∑

c′∈C N (fi|µc′ ,Σc′)ρic′
, (6)

and
∑
c∈C wic = 1. We can expand Equation 6 as we get

partial transition information from the individual.
We now describe how we generate a range of the policy

returns for a new individual i. We first compute wic and then
repeat the following procedure many times: We first sample
a latent class c given the individual’s probability weight vec-
tor wi. We then sample a transition model for each state–
action pair P̄c from class c’s associated Dirichlet distribu-
tions. We then perform a trajectory rollout, using the policy
of interest to select actions for the states encountered, and
the sampled transition model to generate the simulated tran-
sitions. We record the resulting reward obtained during this
rollout, and then repeat this whole process. We then report an
upper and lower range of the resulting values, as described
in the loss function (1). We refer to the complete algorithm,
LCS + Interval Estimation, as the Latent Structure and Un-
certainty (LSU) algorithm.

Personalized Treatment Uncertainty
In this section, we detail the application of our approach to
a real-life observational collection. We used an HIV (Hu-
man Immunodeficiency Virus) dataset from the EUResist

2We do not model uncertainty due to the local EM search, but
we can later assess how well our approach performs in terms of
capturing real individuals’ returns.

project (Zazzi et al. 2012). This data differs from that of
clinical trials in that it is an amalgamation of observational
datasets from different patients, hospitals, and European
countries. Our experiment is not a rigorous evaluation of the
efficacy of HIV treatments or EUResist, but serves to illus-
trate the potential use of our approach with actual observa-
tional data from important areas such as medicine.

EuResist Dataset

The EuResist dataset consists of 18467 patients undergoing
HIV treatment therapies. The dataset was previously used to
build models that predict whether a drug would be effective
or not for a patient. Current literature in the area predicts the
response between 4–12 weeks. For a drug to be classified as
being effective, it must reduce the viral load 100-fold from
baseline or result in the virus being undetectable. We used
the dataset to evaluate the effectiveness of sequential ther-
apies, similar to the approach of Shortreed et al. (2011). A
significant difference is that we used observational data in-
stead of clinical trial data. Our approach potentially makes
it possible to bring a larger amount of data to bear on policy
evaluation.

In the analysis, we considered the patients who underwent
at most 2 different treatment therapies over a 24-month pe-
riod. The periods took place between January 2000 and De-
cember 2010. The viral load is the state variable and we
tracked its changes monthly over 24 months. We interpo-
lated the viral loads for months in which there was no data.
Similar to Shortreed et al. (2011), we further encoded pa-
tient’s treatment stage. We labeled their first treatment ther-
apy as Stage 0 with any further treatment switches numbered
consecutively (i.e., si,j is state i in Stage j).

The patients’ continuous features in our latent class MDP
were: baseline viral load, baseline CD4 count, baseline CD4
percentage, age and number of previous treatments.3 The
features were standardized via a linear re-scaling of the fea-
tures so that each of the features had zero mean and standard
deviation of 1. With assistance from HIV health-care ex-
perts, we identified the top 10 therapy/drug cocktail groups
occurring in the reduced data set, discarding data that used
therapies outside these groups. Each unique therapy was
taken as an action. The state space was discretized by bin-
ning the values of the viral load. The bins for the viral load,
in copies/mL, were [0.0,50,100,1K,100K]. State s0,0 and
state s0,4 are thus viral loads between 0 and 50.0 copies/mL
and 1K and 100K copies/mL, respectively. The reward func-
tion was the negation of the Area Under Curve (AUC), cal-
culated monthly, of the viral load over the period being stud-
ied. This reward function favors a patient having a lower vi-
ral load over a long period of time. We calculated the return
with γ = 1.0 but with a maximum of 24 steps (24 months).

3The dataset includes virus genomic information for only some
of the patients, so we did not use it as a feature. Including genomic
information is a great opportunity for future work as it is a valuable
marker for resistance and mutations.
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Figure 1: Likelihood and loss functions for the LSU algo-
rithm with mixed observational data from the HIV dataset.

Discovering Latent Classes
An initial step to validating our approach is to determine if
there is indeed latent structure. To find the number of latent
classes into which the HIV patient data should be split, we
again randomly partitioned the data into a training set (for
EM) and validation set. The training set, after standardiza-
tion and removing outliers, consisted of 6552 samples while
the validation set had 200 samples. To calculate the interval
loss function for the dataset, we sought out the most com-
mon two-stage treatment policies that were observed in the
dataset. From the subpopulation that followed these top poli-
cies, we sampled 50 patients and made them part of the val-
idation set of 200. We plot the results of running our LSU
algorithm on the observational HIV data in Figure 1.

The likelihood of observing the data increases as we in-
crease the number of latent classes. Similarly, the α-interval
loss (a measure of the uncertainty returns of a policy) drops,
indicating that our interval estimates improve as well (at
least up to M = 3). The plot indicates that the HIV data
indeed has latent structure—there appear to be at least 3 dif-
ferent subpopulations of patients in the data. We use inter-
val loss instead of likelihood to choose the number of la-
tent classes because it is a more direct measure of prediction
quality.

With M = 3, we ran an additional experiment to uncover
what the LSU algorithm does when presented with individ-
uals from different latent classes. We drew a subsample of
200 patients from the original dataset and used their fea-
tures to compute individual latent class membership prob-
abilities (6). We plot the probability of a patient falling into
the dominant latent class, the class that has the highest es-
timated prior probability, vs. the predicted returns of a pol-
icy.4 As our algorithm computes ranges, we present the 80%
ranges of returns and do this for two different treatment poli-
cies. The interval range estimates are shown in Figure 2. The
results have several noteworthy properties. First, for patients
with a high probability of falling into the dominant latent
class, policy π2 seems to have a distinct advantage. Not only

4To improve comparability, the graph includes only patients
that had a baseline viral load of between 50–100 copies/mL (start
state of s0,1). The latent class visualized has an estimated prior
probability of 0.62, while the two other classes have 0.24 and 0.14.
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Figure 2: LSU intervals for 2 HIV therapy polices vs. prob-
ability of an individual being in dominant latent class

does it result in higher overall returns, but the ranges of re-
turns are more tightly clustered. Second, for patients who
clearly are not in the dominant class, probability close to
zero, the opposite is true: π2 now has extremely large ranges
of possible returns, whereas π1 seems to do quite well and
have fairly tight ranges. There is substantially more uncer-
tainty over the return of π2 for patients who do not fall into
the dominant class. The source of this high uncertainty is
partly due to a lack of data for the other 2 latent classes as
compared to the dominant class, resulting in wider variabil-
ity in the sampled transition functions. Finally, note that this
plot provides evidence that ignoring latent classes results in
less accurate evaluation predictions. In particular, a single
class model will either evaluate π1 or π2 as superior. In fact,
each is superior, but under different circumstances.

There are still further opportunities to delve into datasets
such as this one, but our modest goal here was to show that
the LSU algorithm can find latent classes that improve pre-
dictions.

Conclusion
We presented a method for using batch observational data
to provide personalized estimates of the effectiveness of
policies. The approach first searches for latent structure,
and then quantifies uncertainty within and across the latent
classes to compute effectiveness ranges for new individuals.
We also show that there is an opportunity to apply this ap-
proach to critical domains such as healthcare, where data is
becoming more plentiful.
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