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Abstract 
In this paper, we present a system that integrates computer 
vision with machine learning to enable a humanoid robot to 
accurately solve any 3 dimensional maze that has not been 
previously given to it. The robot can construct the optimum 
path policy based on previous iterations and does not require 
any specialized programming.  
The experimental setup includes a constructed 3D maze with 
a start and end point. The robot solves the maze using a red-
colored ball. The robot can physically tilt the base of the maze 
with its hand so that the ball can roll into the desired region. 
The robot would begin tilting the maze only if a path exists 
between the start and the end point. If none exists, the robot 
would remain idle. 
This work is important and novel for a couple of reasons. The 
first is to determine if constant repetition of a task leads to 
gradually increasing performance and eventual mastery of a 
skill. If yes, can that skill be adapted to a generic ability 
(Fleishman,  1972)?  Also,  can  a  robot’s  performance  match or 
exceed that of an average human in the acquired ability? 

 Introduction   
Acquiring any new skill requires various forms of learning 
that involves a mixture of imitation, self-learning and 
improvisation techniques. Robots that utilize cutting-edge 
techniques should be able to pick up new skills after being 
shown the initial steps to perform certain tasks (Begum & 
Karray, 2011). Moreover, various literature mention that 
there is a difference between skill and ability (Fleishman, 
1972). Ability refers to a more general trait of an individual, 
like having a keen ability for spatial visualization. This 
ability is helpful in diverse tasks like aerial navigation, 
blueprint reading, etc. and has been shown to be the result 
of learning and development mainly during childhood and 
adolescence. Skill, on the other hand, refers to the 
proficiency level for a particular task, like flying a jet, or 
playing baseball. The core assumption is that skills that 
comprise complex tasks can be described in terms of simple 
and basic abilities (Fleishman, 1972).  
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In this paper, we use an iCub humanoid robot to solve a 
given 3-dimensional maze using 2 different approaches, a 
standard graph-based algorithm and learning. We measure 
the performance change during various iterations of the 
experiment. The goal is to determine if repetition can 
develop an ability. Assuming it does, we benchmark the 
performance of the iCub with that of an average human 
being for a related skill and see if the iCub can beat the 
performance of the human. For the experiment, all mazes 
are built on top of a LEGO board, with the bottom of the 
board having a handle for easy grasp.  
 The entire system was designed in a modular fashion and 
each module has a full-duplex communication channel. The 
major modules have been compartmentalized, based on 
functionality, into robotic kinematics, computer vision and 
algorithms respectively.  

Robot Kinematics 
The  first  step   involved  getting   the   iCub’s right arm to the 
home position, and then to the maze solving position, which 
involves bringing the arm closer to the torso. Furthermore, 
subsequent movements of the arm are required in order to 
make adjustments to the maze. Therefore, the DH 
parameters of the right arm were computed and are given in 
table 1 below. 

Link a d α δ 
1 32 0 π/2 0 
2 0 -5.5 π/2 - π/2 
3 -23.467 -143.3 π/2 - π/2 
4 0 -107.74 π/2 - π/2 
5 0 0 - π/2 - π/2 
6 -15 -152.28 - π/2 - π/2 
7 15 0 π/2 π/2 
8 0 -137.3 π/2 - π/2 
9 0 0 π/2 π/2 
10 62.5 16 0 π 

Table 1: DH parameters of right hand at home position 
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A MATLAB simulation was performed to verify if the 
position vectors of all 10 links of the right arm were 
correctly aligned to be at the home position. The result of 
the simulation is shown in figure 1 below. The next step is 
to get the arm to the maze solving position to enable the 
greatest field of view for the robot while solving the maze. 
This required the use of transformation matrices to move all 
the joints to the appropriate position. Figure 2 shows the 
position vectors of the joints in the maze solving position, 
after the transformation matrices have been applied. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figures 1 and 2: Position vectors of joints of the 
right arm 

Computer Vision 
The constructed maze is 3 dimensional in nature. This 
means that the maze can contain not just multiple paths and 
dead ends, but also cliffs and troughs that need depth 
perception as well. There are two algorithmic approaches 
being considered in this experiment. The first one is to use 
Dijkrasta’s  graph  traversal  algorithm,  and  the  other  is  to  use  
learning. They are discussed in detail in the algorithms 
section. The given maze must be studied in order to perform 
a graph-traversal based maze solving algorithm, as well as 
obtain an accurate control policy. However, it would be 
difficult to obtain a perfect orthographic view of the maze at 
all times, especially when the maze is tilted away along the 
line of axis of the view of the robot. In order to overcome 
this difficulty, an inverse homography must be performed so 
that the iCub will have an orthographic image of the maze 
at all times, for analysis purposes (Forsyth & Ponce, 2011). 
Given the rectangular shape of the base of the maze, the 
minimum number of identifiable geometric features with a 
known relationship to each other is four. The easiest way to 
accomplish this was to place high contrast color markers on 
each corner of the maze. The color red was selected, and so 
a resulting condition while building the maze was that no 
block must be red in color. The ball was also chosen to be 
red in color. While inverse homography would remove any 
depth information, the dual cameras of the iCub were used 
to maintain depth variations as metadata, which would be 
fed to the algorithm. Although multiple mazes were used in 

the experimental analysis, for the description of this module, 
only 1 maze is taken to be analyzed in depth. Figure 3 shows 
the unprojected coordinates of the maze after computing the 
inverse homography. 
 
 
 
 
 
 
 
 

Figure 3: Unprojected coordinates of the maze after 
inverse homography 

 In the initial top down analysis of the maze, no ball was 
put on the board. To begin the entire experiment, the video 
feed that needs to be analyzed requires preparatory work. 
Thresholding by color would provide a binary image 
indicating where high concentrations of red are present. We 
decided to determine the RGB values of various points in 
the image to determine if raw RGB values would be suitable 
for thresholding. However, the variation of unmapped RGB 
values was too large for seemingly similar colors to be of 
any practical use, and we decided to use HSV values instead  
(Forsyth & Ponce, 2011). The resultant image is shown in 
figure 4 below. 
 
 
 
 
 
 
 
 
 

Figure 4: The maze (with markers) after HSV 
 A segmentation algorithm, like RasterScan, was used to 
label contiguous regions and sort them by size. The four 
largest regions are expected to be the four corner markers. 
The markers are assumed to be related in a square manner 
(from the shape of the base of the maze board) from a top 
down perspective. Using this information, all video 
information, outside the maze, can be cropped off after the 
inverse homography. As a result, the maze and its external 
maze walls are the only things that remain after this step. At 
this step, performing a RasterScan once again will provide 
the open contiguous path of the maze (Forsyth & Ponce, 
2011). Figure 5 shows the resultant path that is obtained 
after the second RasterScan operation has been performed. 
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Figure 5: Resultant path after RasterScan 
 Once a path has been obtained, it can be discretized into 
a grid. This discretization is important for two reasons, 
depending on the algorithm being followed. For learning, 
this discretization would make it easier to derive the 
optimum rules for controlling the motion of the ball, on a 
regional  basis.  For  graph  traversal,  the  Dijkstra’s  algorithm  
was used. For this algorithm, each corner of the maze was 
identified and labelled a vertex. The cost of each path 
between two vertices was determined by a scaled factor of 
the distance between them. If a 3-dimensional path was 
involved, the cost was computed in the same way, no extra 
points/cost was added. The robot could be run in one or the 
other mode.  
 It is imperative to find the correct resolution for sampling 
the video feed. Sampling below the threshold would cause 
degradation in the maze and may result in open segments of 
the maze when there might be none in reality. As a result, 
the resulting learned policy would fail. Vertices might be 
missed and therefore, possible edges, thus leading to an 
incomplete maze. On the other hand, sampling above the 
threshold would produce an extremely fine resolution which 
would cause an exponential increase in the time taken by the 
learning algorithm to converge upon a solution. This issue 
is   referred   to  as   the   ‘curse  of  dimensionality’   in   literature  
and is present in all uniformed dynamic programming 
schemes (Begum & Karray, 2011). 
 In order to solve this problem, we experimented with 
several resolutions and eliminated several of them on a trial-
and-error basis. Eventually, we decided to choose from 
amongst three resolutions, namely 16x16, 32x32 and 50x50. 
The resultant images are shown below in figure 6. 
 
 
 
 
 
 
 
 
 
 

Figure 6: 16x16, 32x32 and 50x50 grids respectively 

 From figure 6, we inferred that the 16x16 resolution is 
inadequate since information about the ball on the grid 
would be lost. The iCub would be able to identify the 
location of the ball only in terms of 4 quadrants which would 
result in several errors. Emperically, we determined that the 
50x50 resolution will definitely determine the live location 
of the ball at any instant. However, the convergence of the 
learning algorithm takes an unacceptable amount of time to 
take place in a live manner. We also determined that the 
32x32 resolution strikes a compromise between the two 
resolutions. It can be used to determine the location of the 
ball with respect to the grid with sufficient accuracy and 
converges within a satisfactory running time. 
  

Algorithms 
There were two approaches used to enable the iCub to solve 
mazes. One was the graph traversal based approach, using 
Dijkstra’s  algorithm.  The  other  was  the  usage  of  learning  to  
obtain an optimum control policy. The implementation of 
Dijkstra’s  algorithm  was  done  using  a  min-priority queue, 
using a Fibonacci heap. The reason for using this method 
instead of the original algorithm was because of 
performance issues. The Fibonacci heap gives a worst –case 
run time of O(|E| + |V|log|V|), where |E| is the number of 
edges and |V| is the number of vertices. This was a major 
improvement of the original worst-case run time of 
O(|V|2),since the number of vertices would increase rapidly 
based on the complexity of the maze.  
 It needs to be noted that the original algorithm had to be 
modified because of the problem of cyclic graphs. During 
our test runs, we observed in certain cases that the ball 
would keep moving in an infinite loop, because the resultant 
graph would be cyclic. If the weights of the edges that would 
enable the ball to continue along its path is equal to the 
weight that would take it back to a previously visited vertex, 
the algorithm favors the latter in this race condition. So, we 
had to add logic for a tie-break scenario wherein the ball 
would take the unexplored territory, over the familiar, 
making it adventurous! The results are given in the section 
for experimental results. 
 For the learning approach, the fundamental approach that 
we used to enable the iCub to determine the shortest path of 
any maze that was presented to it was to use reinforcement 
learning, drawing upon previous experiences (Nath & 
Levinson, 2013).The update equation for temporal 
difference Q-Learning is given by equation (1) below. 
Q(s, a) ← Q(s, a) +   α  (R(s) +   γ  max Q(s , a ) −   Q(s, a))   (1) 
where Q(s,a) is the Q-value  of  action  ‘a’  at  state  ‘s’,  R(s)  

is  the  reward  function  of  the  state  ‘s’,  α  is  the  learning  rate  
and  γ  is  the  discount factor. Each state is defined as the state 
of the maze when the ball has come to a stop at one of the 
corners of the maze. Each action is defined as the tilting of 
the maze along one of the principal axes. An examination of 
(1) shows that Q-learning backs up the best Q-value from 
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the state reached in the observed transition. It pays no 
attention to the actual policy being followed, being an off-
policy learning algorithm (Russell & Norvig, 2010). 
Clearly, there was a need to come up with a learning 
algorithm that utilizes a policy that would maximize the 
probability of the robot solving the maze. Such an algorithm 
is of the on-policy type algorithm and is called the SARSA 
algorithm. SARSA stands for State-Action-Reward-State-
Action and utilizes the optimum policy for updating the Q-
values. The update equation for SARSA is given by 

Q(s, a) ← Q(s, a) +   α  (R(s) +   γ  Q(s , a ) −   Q(s, a))   (2) 
The difference between (1) and (2) is the omission of the 

‘max’ term of the new Q-value. This means that SARSA 
actually waits until an action is taken and backs up the Q-
value for that action (Nath & Levinson, 2013), making it 
excellent for exploration. For the objective of finding the 
shortest path to solve a maze, heavy exploration (or at least 
the consideration) of all possible paths is mandatory. Q-
learning is more flexible than SARSA, i.e. an agent that 
learns by Q-learning can behave well even when guided by 
a random or adversarial exploration policy. However, 
SARSA is more realistic than Q-learning. For example, if 
the overall policy is even partly controlled by other agents, 
it is better to learn a Q-value function for what will actually 
happen rather than what the agent would like to happen. This 
is possible in certain scenarios like the ball getting stuck in 
a particular nook. So, we felt it is better to use the SARSA 
approach. The optimum policy for SARSA is given by 
equation (3). 
 
    π∗ = argmax ∑ P(h| e)u     (3) 
 

In equation (3), the posterior probability P(h|e) is obtained 
in   the   standard   way,   by   applying   Bayes’   rule on the 
observations till date, where u   is the expected utility 
averaged over all possible start states. This is how the 
feedback loop is created that would allow constant 
improvisation. 
  Furthermore, we performed a value iteration of a discrete 
state-action space, and the algorithm used a sample based 
quality  space.  Here,  φ  is  an  index  of  discretized  space  and  θ  
is the value at that index. The control space was U = 
{0,1,2,3,4} where 0 is a random action and {1,2,3,4} is a 
wrist tilt in the direction {North East, North West, South 
West, South East} respectively. The state space corresponds 
to the location in the n x n discretized path space of the maze. 
The  value  of  α  and  γ  were   set   to  0.99  and  an  exploration  
function  of  Ɛ  =  𝑄 .  was used. 
 

 
 
 
 
 
 

Interaction of Modules 
Figure 7 above shows the interaction of all the various 
modules, both hardware and software, that take place in 
order to successfully solve any 3 dimensional maze given 
to the iCub robot. 

Figure 7: Interaction of Modules 
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Importance and Experimental Results 
Abilities are defined by empirically determined relations 
among observed separate performances. For example, that 
individuals do not do well on task A, as well as, B and C, 
but not on tasks D, E and F implies that there is some 
common process involved in performing the first three tasks 
(Fleishman, 1972). In our study, we first wanted to 
determine the change in performance of similar tasks over 
time, and then determine if a learned ability in a robot can 
beat that of a human. In order to achieve this, we setup the 
experiment so that the iCub would first solve 23 different 
mazes, using both graph traversal and learning. Whichever 
method performs empirically better would then be used to 
perform a similar task in conjunction with a human. For our 
experiment, the similar task was to solve a variation of 
PacMan in the shortest amount of time possible. In this 
version, there are no spiders, so PacMan simply has to eat 
all dots in the smallest amount of time. The PacMan is 
controlled by a joystick, whose handle is very similar to the 
handle at the base of the maze board, and the game had to 
be slowed down to a rate of eating 1 dot per second in order 
to allow the iCub sufficient time to move the joystick. This 
was required because the motor capabilities of the iCub do 
not allow it to operate a joystick, or any other machinery, 
with the same dexterity as an average human. The same type 
of joystick was used by both the iCub and the human. In 
order to do this, the goal had to be changed in the program, 
and an additional round of training was required. Also, the 
grasping of the stick for the robot was performed manually, 
and should not have any impact in the outcome of the 
experiment. The details of the experiment are given below. 
 Initially, we decided to benchmark the two algorithms. 
We used a variety of mazes, some of which had a 2 
dimensional path and some had a 3 dimensional path. Also, 
some mazes have a cyclical path in them that may or may 
not be part of the actual shortest path of the maze. Therefore, 
getting stuck in one of these loops would affect the total run 
time of the maze for that approach. The results are 
summarized in table 2 below. Note that those iterations that 
failed do not feature in the calculation of the average time to 
solve the type of maze. 

Approach Maze 
Type 

Iterations Averag
e Time 

    Pass Fail Pass 
% 

(secs) 

Dijkrista 
algorithm 

Simple 
2-D 

23 0 100
% 

43 

2-D with 
cycles 

14 9 61% 62 

Simple 
3-D 

12 11 52% 81 

3-D with 
cycles 

6 17 26% 95 

Learning Simple 
2-D 

23 0 100
% 

67 

2-D with 
cycles 

22 1 96% 71 

Simple 
3-D 

18 5 78% 74 

3-D with 
cycles 

16 7 70% 75 

Table 2: Time to solve successful mazes 
 
From table 2, we can see that the learning algorithm is a lot 
more resilient to variations in the maze and the variation in 
the   response   time   is  much   smaller   than   that   of  Dijkstra’s  
algorithm. Also, the pass% is significantly higher for the 
learning algorithm, rather than the graph traversal 
algorithm. Therefore, we decided to benchmark the 
performance of the iCub with an average human using the 
learning algorithm discussed above. Figures 8 and 9 show 
the normalized log value function of the maze during one 
iteration, and the optimal control policy respectively. 
 
 
 
 
 
 
 
 

Figure 8: Normalized log value function of maze 
 
 
 
 
 
 

 
Figure 9: After application of optimal control policy 
Based on prior work (Fleishman, 1972), there are eleven 
types of perceptual-motor functions and nine factors in the 
area of physical proficiency. Of these, the ones that are at 
play in this experiment are (i) Control Precision (ii) 
Response Orientation (iii) Reaction Time. Studies indicate 
that systematic changes in the abilities required to perform 
a task are observed when the display-control relations in the 
task were varied systematically. Furthermore, the frequent 
repetition of a task leads to a skill being developed, thus 
leading to a variation in the abilities being measured 
(Fleishman, 1972). These research works were the 
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motivation for us to make the iCub solve both 2-dimensional 
and 3-dimensional mazes. In the benchmark test, we 
perform a test on the same configurations after the iCub has 
performed the maze solving and has all the associated info 
in memory, and when it performs a fresh explorative 
iteration. The goal for this experiment was set to consume 
all the dots in the maze, and the reward function was for the 
smallest amount of time possible. In all cases, both the robot 
and the human were allowed one explorative iteration of the 
game, before the benchmarking test took place. The results 
are tabulated below, in table 3.  
  

Agent Maze Size Time (seconds) 
    After maze 

training 
No maze 
training 

Robot 10 x 10 61 87 
20 x 20 84 117 
30 x 30 101 161 

Human 10 x 10 n/a 96 
20 x 20 119 
30 x 30 173 

Table 3: Benchmarking results 
 
 From the benchmark test, there are a couple of 
observations that can be made. Firstly, there is a marked 
difference in the response time before and after the maze 
training phase. This implies that by learning a common 
ability, different skills that make use of the ability are 
improved, as aforementioned. Furthermore, skills are 
developed by repetition of tasks, not exactly similar but 
more of an assorted fashion. This validates the claims made 
by Fleishman (Fleishman, 1972), not just in humans, but 
also in robots. In humans, the ability to move objects and 
observe its consequences are part of the developing neuro-
motor skills of the human as an infant. More importantly, it 
shows that humans are better at predicting a maze path when 
the resolutions are small, but as the complexity increases, 
we essentially follow a random walk approach to solving 
problems. That is perhaps why the solving time of the maze 
of  the  human  is  in  closer  proximity  to  the  “no  maze  training”  
set,  than  the  “after  training”  set. 

Conclusion and Future Work 
While standard maze solving algorithms involve a graph 
traversal approach, the performance of such algorithms was 
found to be lacking in comparison to a learning algorithm. 
Furthermore, it was empirically observed that improving a 
particular skill has a direct impact on the ability to perform 
other tasks that make use of the same skillset. In other 
words, the result of several psychological studies that claim 

that complex tasks are a subset of simpler tasks hold true not 
just for neural models created by the human brain, but also 
hold true for computer generated models. In other words, it 
would not be a stretch to say that skills can be quantified and 
can be numerically analyzed each step along the way.  
 There is still a lot more work to be done in this field of 
work, and within this experiment in general. One area would 
be to benchmark other tasks that make use of learned 
skillsets and confirm if the trend takes place across all 
eleven types of perceptual-motor functions (Fleishman, 
1972) and how much cross skillset development can take 
place in a robot (Begum & Karray, 2011). Furthermore, the 
sample size representing humans was too small (just 1). This 
needs to be vastly expanded to see how much variations take 
place amongst humans with varying skill sets and abilities. 
There are certain expected variables like learning ability, 
motor dexterity, etc. that will impact the results of these 
experiments. However, there are bound to be hidden random 
variables,  “hidden”  meaning  that  they  are  not  immediately  
intuitive to have an effect on performance. Uncovering these 
hidden random variables could be the key to enabling human 
beings to achieve the mathematically maximum possible 
level of efficiency. It would also allow researchers the 
ability to consider these random variables while designing 
future experiments, as well as while incorporating learning 
or other dynamic algorithms to achieve required tasks.  
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