

Solving 3D Mazes with Machine Learning and Humanoid Robots

Vishnu K. Nath and Stephen E. Levinson
University of Illinois at Urbana-Champaign

405 North Mathews Avenue
Urbana, IL 61801

Abstract
In this paper, we present a system that integrates computer
vision with machine learning to enable a humanoid robot to
accurately solve any 3 dimensional maze that has not been
previously given to it. The robot can construct the optimum
path policy based on previous iterations and does not require
any specialized programming.
The experimental setup includes a constructed 3D maze with
a start and end point. The robot solves the maze using a red-
colored ball. The robot can physically tilt the base of the maze
with its hand so that the ball can roll into the desired region.
The robot would begin tilting the maze only if a path exists
between the start and the end point. If none exists, the robot
would remain idle.
This work is important and novel for a couple of reasons. The
first is to determine if constant repetition of a task leads to
gradually increasing performance and eventual mastery of a
skill. If yes, can that skill be adapted to a generic ability
(Fleishman, 1972)? Also, can a robot’s performance match or
exceed that of an average human in the acquired ability?

 Introduction
Acquiring any new skill requires various forms of learning
that involves a mixture of imitation, self-learning and
improvisation techniques. Robots that utilize cutting-edge
techniques should be able to pick up new skills after being
shown the initial steps to perform certain tasks (Begum &
Karray, 2011). Moreover, various literature mention that
there is a difference between skill and ability (Fleishman,
1972). Ability refers to a more general trait of an individual,
like having a keen ability for spatial visualization. This
ability is helpful in diverse tasks like aerial navigation,
blueprint reading, etc. and has been shown to be the result
of learning and development mainly during childhood and
adolescence. Skill, on the other hand, refers to the
proficiency level for a particular task, like flying a jet, or
playing baseball. The core assumption is that skills that
comprise complex tasks can be described in terms of simple
and basic abilities (Fleishman, 1972).

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we use an iCub humanoid robot to solve a
given 3-dimensional maze using 2 different approaches, a
standard graph-based algorithm and learning. We measure
the performance change during various iterations of the
experiment. The goal is to determine if repetition can
develop an ability. Assuming it does, we benchmark the
performance of the iCub with that of an average human
being for a related skill and see if the iCub can beat the
performance of the human. For the experiment, all mazes
are built on top of a LEGO board, with the bottom of the
board having a handle for easy grasp.
 The entire system was designed in a modular fashion and
each module has a full-duplex communication channel. The
major modules have been compartmentalized, based on
functionality, into robotic kinematics, computer vision and
algorithms respectively.

Robot Kinematics
The first step involved getting the iCub’s right arm to the
home position, and then to the maze solving position, which
involves bringing the arm closer to the torso. Furthermore,
subsequent movements of the arm are required in order to
make adjustments to the maze. Therefore, the DH
parameters of the right arm were computed and are given in
table 1 below.

Link a d α δ
1 32 0 π/2 0
2 0 -5.5 π/2 - π/2
3 -23.467 -143.3 π/2 - π/2
4 0 -107.74 π/2 - π/2
5 0 0 - π/2 - π/2
6 -15 -152.28 - π/2 - π/2
7 15 0 π/2 π/2
8 0 -137.3 π/2 - π/2
9 0 0 π/2 π/2
10 62.5 16 0 π

Table 1: DH parameters of right hand at home position

Machine Learning for Interactive Systems: Papers from the AAAI-14 Workshop

20

A MATLAB simulation was performed to verify if the
position vectors of all 10 links of the right arm were
correctly aligned to be at the home position. The result of
the simulation is shown in figure 1 below. The next step is
to get the arm to the maze solving position to enable the
greatest field of view for the robot while solving the maze.
This required the use of transformation matrices to move all
the joints to the appropriate position. Figure 2 shows the
position vectors of the joints in the maze solving position,
after the transformation matrices have been applied.

 Figures 1 and 2: Position vectors of joints of the
right arm

Computer Vision
The constructed maze is 3 dimensional in nature. This
means that the maze can contain not just multiple paths and
dead ends, but also cliffs and troughs that need depth
perception as well. There are two algorithmic approaches
being considered in this experiment. The first one is to use
Dijkrasta’s graph traversal algorithm, and the other is to use
learning. They are discussed in detail in the algorithms
section. The given maze must be studied in order to perform
a graph-traversal based maze solving algorithm, as well as
obtain an accurate control policy. However, it would be
difficult to obtain a perfect orthographic view of the maze at
all times, especially when the maze is tilted away along the
line of axis of the view of the robot. In order to overcome
this difficulty, an inverse homography must be performed so
that the iCub will have an orthographic image of the maze
at all times, for analysis purposes (Forsyth & Ponce, 2011).
Given the rectangular shape of the base of the maze, the
minimum number of identifiable geometric features with a
known relationship to each other is four. The easiest way to
accomplish this was to place high contrast color markers on
each corner of the maze. The color red was selected, and so
a resulting condition while building the maze was that no
block must be red in color. The ball was also chosen to be
red in color. While inverse homography would remove any
depth information, the dual cameras of the iCub were used
to maintain depth variations as metadata, which would be
fed to the algorithm. Although multiple mazes were used in

the experimental analysis, for the description of this module,
only 1 maze is taken to be analyzed in depth. Figure 3 shows
the unprojected coordinates of the maze after computing the
inverse homography.

Figure 3: Unprojected coordinates of the maze after
inverse homography

 In the initial top down analysis of the maze, no ball was
put on the board. To begin the entire experiment, the video
feed that needs to be analyzed requires preparatory work.
Thresholding by color would provide a binary image
indicating where high concentrations of red are present. We
decided to determine the RGB values of various points in
the image to determine if raw RGB values would be suitable
for thresholding. However, the variation of unmapped RGB
values was too large for seemingly similar colors to be of
any practical use, and we decided to use HSV values instead
(Forsyth & Ponce, 2011). The resultant image is shown in
figure 4 below.

Figure 4: The maze (with markers) after HSV
 A segmentation algorithm, like RasterScan, was used to
label contiguous regions and sort them by size. The four
largest regions are expected to be the four corner markers.
The markers are assumed to be related in a square manner
(from the shape of the base of the maze board) from a top
down perspective. Using this information, all video
information, outside the maze, can be cropped off after the
inverse homography. As a result, the maze and its external
maze walls are the only things that remain after this step. At
this step, performing a RasterScan once again will provide
the open contiguous path of the maze (Forsyth & Ponce,
2011). Figure 5 shows the resultant path that is obtained
after the second RasterScan operation has been performed.

21

Figure 5: Resultant path after RasterScan
 Once a path has been obtained, it can be discretized into
a grid. This discretization is important for two reasons,
depending on the algorithm being followed. For learning,
this discretization would make it easier to derive the
optimum rules for controlling the motion of the ball, on a
regional basis. For graph traversal, the Dijkstra’s algorithm
was used. For this algorithm, each corner of the maze was
identified and labelled a vertex. The cost of each path
between two vertices was determined by a scaled factor of
the distance between them. If a 3-dimensional path was
involved, the cost was computed in the same way, no extra
points/cost was added. The robot could be run in one or the
other mode.
 It is imperative to find the correct resolution for sampling
the video feed. Sampling below the threshold would cause
degradation in the maze and may result in open segments of
the maze when there might be none in reality. As a result,
the resulting learned policy would fail. Vertices might be
missed and therefore, possible edges, thus leading to an
incomplete maze. On the other hand, sampling above the
threshold would produce an extremely fine resolution which
would cause an exponential increase in the time taken by the
learning algorithm to converge upon a solution. This issue
is referred to as the ‘curse of dimensionality’ in literature
and is present in all uniformed dynamic programming
schemes (Begum & Karray, 2011).
 In order to solve this problem, we experimented with
several resolutions and eliminated several of them on a trial-
and-error basis. Eventually, we decided to choose from
amongst three resolutions, namely 16x16, 32x32 and 50x50.
The resultant images are shown below in figure 6.

Figure 6: 16x16, 32x32 and 50x50 grids respectively

 From figure 6, we inferred that the 16x16 resolution is
inadequate since information about the ball on the grid
would be lost. The iCub would be able to identify the
location of the ball only in terms of 4 quadrants which would
result in several errors. Emperically, we determined that the
50x50 resolution will definitely determine the live location
of the ball at any instant. However, the convergence of the
learning algorithm takes an unacceptable amount of time to
take place in a live manner. We also determined that the
32x32 resolution strikes a compromise between the two
resolutions. It can be used to determine the location of the
ball with respect to the grid with sufficient accuracy and
converges within a satisfactory running time.

Algorithms
There were two approaches used to enable the iCub to solve
mazes. One was the graph traversal based approach, using
Dijkstra’s algorithm. The other was the usage of learning to
obtain an optimum control policy. The implementation of
Dijkstra’s algorithm was done using a min-priority queue,
using a Fibonacci heap. The reason for using this method
instead of the original algorithm was because of
performance issues. The Fibonacci heap gives a worst –case
run time of O(|E| + |V|log|V|), where |E| is the number of
edges and |V| is the number of vertices. This was a major
improvement of the original worst-case run time of
O(|V|2),since the number of vertices would increase rapidly
based on the complexity of the maze.
 It needs to be noted that the original algorithm had to be
modified because of the problem of cyclic graphs. During
our test runs, we observed in certain cases that the ball
would keep moving in an infinite loop, because the resultant
graph would be cyclic. If the weights of the edges that would
enable the ball to continue along its path is equal to the
weight that would take it back to a previously visited vertex,
the algorithm favors the latter in this race condition. So, we
had to add logic for a tie-break scenario wherein the ball
would take the unexplored territory, over the familiar,
making it adventurous! The results are given in the section
for experimental results.
 For the learning approach, the fundamental approach that
we used to enable the iCub to determine the shortest path of
any maze that was presented to it was to use reinforcement
learning, drawing upon previous experiences (Nath &
Levinson, 2013).The update equation for temporal
difference Q-Learning is given by equation (1) below.
Q(s, a) ← Q(s, a) + α (R(s) + γ max Q(s , a) − Q(s, a)) (1)
where Q(s,a) is the Q-value of action ‘a’ at state ‘s’, R(s)

is the reward function of the state ‘s’, α is the learning rate
and γ is the discount factor. Each state is defined as the state
of the maze when the ball has come to a stop at one of the
corners of the maze. Each action is defined as the tilting of
the maze along one of the principal axes. An examination of
(1) shows that Q-learning backs up the best Q-value from

22

the state reached in the observed transition. It pays no
attention to the actual policy being followed, being an off-
policy learning algorithm (Russell & Norvig, 2010).
Clearly, there was a need to come up with a learning
algorithm that utilizes a policy that would maximize the
probability of the robot solving the maze. Such an algorithm
is of the on-policy type algorithm and is called the SARSA
algorithm. SARSA stands for State-Action-Reward-State-
Action and utilizes the optimum policy for updating the Q-
values. The update equation for SARSA is given by

Q(s, a) ← Q(s, a) + α (R(s) + γ Q(s , a) − Q(s, a)) (2)
The difference between (1) and (2) is the omission of the

‘max’ term of the new Q-value. This means that SARSA
actually waits until an action is taken and backs up the Q-
value for that action (Nath & Levinson, 2013), making it
excellent for exploration. For the objective of finding the
shortest path to solve a maze, heavy exploration (or at least
the consideration) of all possible paths is mandatory. Q-
learning is more flexible than SARSA, i.e. an agent that
learns by Q-learning can behave well even when guided by
a random or adversarial exploration policy. However,
SARSA is more realistic than Q-learning. For example, if
the overall policy is even partly controlled by other agents,
it is better to learn a Q-value function for what will actually
happen rather than what the agent would like to happen. This
is possible in certain scenarios like the ball getting stuck in
a particular nook. So, we felt it is better to use the SARSA
approach. The optimum policy for SARSA is given by
equation (3).

 π∗ = argmax ∑ P(h| e)u (3)

In equation (3), the posterior probability P(h|e) is obtained
in the standard way, by applying Bayes’ rule on the
observations till date, where u is the expected utility
averaged over all possible start states. This is how the
feedback loop is created that would allow constant
improvisation.
 Furthermore, we performed a value iteration of a discrete
state-action space, and the algorithm used a sample based
quality space. Here, φ is an index of discretized space and θ
is the value at that index. The control space was U =
{0,1,2,3,4} where 0 is a random action and {1,2,3,4} is a
wrist tilt in the direction {North East, North West, South
West, South East} respectively. The state space corresponds
to the location in the n x n discretized path space of the maze.
The value of α and γ were set to 0.99 and an exploration
function of Ɛ = 𝑄 . was used.

Interaction of Modules
Figure 7 above shows the interaction of all the various
modules, both hardware and software, that take place in
order to successfully solve any 3 dimensional maze given
to the iCub robot.

Figure 7: Interaction of Modules

23

Importance and Experimental Results
Abilities are defined by empirically determined relations
among observed separate performances. For example, that
individuals do not do well on task A, as well as, B and C,
but not on tasks D, E and F implies that there is some
common process involved in performing the first three tasks
(Fleishman, 1972). In our study, we first wanted to
determine the change in performance of similar tasks over
time, and then determine if a learned ability in a robot can
beat that of a human. In order to achieve this, we setup the
experiment so that the iCub would first solve 23 different
mazes, using both graph traversal and learning. Whichever
method performs empirically better would then be used to
perform a similar task in conjunction with a human. For our
experiment, the similar task was to solve a variation of
PacMan in the shortest amount of time possible. In this
version, there are no spiders, so PacMan simply has to eat
all dots in the smallest amount of time. The PacMan is
controlled by a joystick, whose handle is very similar to the
handle at the base of the maze board, and the game had to
be slowed down to a rate of eating 1 dot per second in order
to allow the iCub sufficient time to move the joystick. This
was required because the motor capabilities of the iCub do
not allow it to operate a joystick, or any other machinery,
with the same dexterity as an average human. The same type
of joystick was used by both the iCub and the human. In
order to do this, the goal had to be changed in the program,
and an additional round of training was required. Also, the
grasping of the stick for the robot was performed manually,
and should not have any impact in the outcome of the
experiment. The details of the experiment are given below.
 Initially, we decided to benchmark the two algorithms.
We used a variety of mazes, some of which had a 2
dimensional path and some had a 3 dimensional path. Also,
some mazes have a cyclical path in them that may or may
not be part of the actual shortest path of the maze. Therefore,
getting stuck in one of these loops would affect the total run
time of the maze for that approach. The results are
summarized in table 2 below. Note that those iterations that
failed do not feature in the calculation of the average time to
solve the type of maze.

Approach Maze
Type

Iterations Averag
e Time

 Pass Fail Pass
%

(secs)

Dijkrista
algorithm

Simple
2-D

23 0 100
%

43

2-D with
cycles

14 9 61% 62

Simple
3-D

12 11 52% 81

3-D with
cycles

6 17 26% 95

Learning Simple
2-D

23 0 100
%

67

2-D with
cycles

22 1 96% 71

Simple
3-D

18 5 78% 74

3-D with
cycles

16 7 70% 75

Table 2: Time to solve successful mazes

From table 2, we can see that the learning algorithm is a lot
more resilient to variations in the maze and the variation in
the response time is much smaller than that of Dijkstra’s
algorithm. Also, the pass% is significantly higher for the
learning algorithm, rather than the graph traversal
algorithm. Therefore, we decided to benchmark the
performance of the iCub with an average human using the
learning algorithm discussed above. Figures 8 and 9 show
the normalized log value function of the maze during one
iteration, and the optimal control policy respectively.

Figure 8: Normalized log value function of maze

Figure 9: After application of optimal control policy
Based on prior work (Fleishman, 1972), there are eleven
types of perceptual-motor functions and nine factors in the
area of physical proficiency. Of these, the ones that are at
play in this experiment are (i) Control Precision (ii)
Response Orientation (iii) Reaction Time. Studies indicate
that systematic changes in the abilities required to perform
a task are observed when the display-control relations in the
task were varied systematically. Furthermore, the frequent
repetition of a task leads to a skill being developed, thus
leading to a variation in the abilities being measured
(Fleishman, 1972). These research works were the

24

motivation for us to make the iCub solve both 2-dimensional
and 3-dimensional mazes. In the benchmark test, we
perform a test on the same configurations after the iCub has
performed the maze solving and has all the associated info
in memory, and when it performs a fresh explorative
iteration. The goal for this experiment was set to consume
all the dots in the maze, and the reward function was for the
smallest amount of time possible. In all cases, both the robot
and the human were allowed one explorative iteration of the
game, before the benchmarking test took place. The results
are tabulated below, in table 3.

Agent Maze Size Time (seconds)
 After maze

training
No maze
training

Robot 10 x 10 61 87
20 x 20 84 117
30 x 30 101 161

Human 10 x 10 n/a 96
20 x 20 119
30 x 30 173

Table 3: Benchmarking results

 From the benchmark test, there are a couple of
observations that can be made. Firstly, there is a marked
difference in the response time before and after the maze
training phase. This implies that by learning a common
ability, different skills that make use of the ability are
improved, as aforementioned. Furthermore, skills are
developed by repetition of tasks, not exactly similar but
more of an assorted fashion. This validates the claims made
by Fleishman (Fleishman, 1972), not just in humans, but
also in robots. In humans, the ability to move objects and
observe its consequences are part of the developing neuro-
motor skills of the human as an infant. More importantly, it
shows that humans are better at predicting a maze path when
the resolutions are small, but as the complexity increases,
we essentially follow a random walk approach to solving
problems. That is perhaps why the solving time of the maze
of the human is in closer proximity to the “no maze training”
set, than the “after training” set.

Conclusion and Future Work
While standard maze solving algorithms involve a graph
traversal approach, the performance of such algorithms was
found to be lacking in comparison to a learning algorithm.
Furthermore, it was empirically observed that improving a
particular skill has a direct impact on the ability to perform
other tasks that make use of the same skillset. In other
words, the result of several psychological studies that claim

that complex tasks are a subset of simpler tasks hold true not
just for neural models created by the human brain, but also
hold true for computer generated models. In other words, it
would not be a stretch to say that skills can be quantified and
can be numerically analyzed each step along the way.
 There is still a lot more work to be done in this field of
work, and within this experiment in general. One area would
be to benchmark other tasks that make use of learned
skillsets and confirm if the trend takes place across all
eleven types of perceptual-motor functions (Fleishman,
1972) and how much cross skillset development can take
place in a robot (Begum & Karray, 2011). Furthermore, the
sample size representing humans was too small (just 1). This
needs to be vastly expanded to see how much variations take
place amongst humans with varying skill sets and abilities.
There are certain expected variables like learning ability,
motor dexterity, etc. that will impact the results of these
experiments. However, there are bound to be hidden random
variables, “hidden” meaning that they are not immediately
intuitive to have an effect on performance. Uncovering these
hidden random variables could be the key to enabling human
beings to achieve the mathematically maximum possible
level of efficiency. It would also allow researchers the
ability to consider these random variables while designing
future experiments, as well as while incorporating learning
or other dynamic algorithms to achieve required tasks.

References

Barber, D. (2012). Bayesian Reasoning and Machine Learning.
Cambridge: University Press.
Begum, M., & Karray, F. (2011). Visual Attention for Robotic
Cognition: A Survey. IEEE Transactions on Autonomous Mental
Development.
Breazeal, C., Wang, A., & Picard, R. (2007). Experiments with a
Robotic Computer: Body, Affect and Cognition Interactions.
HRI'07 (pp. 153-160). Arlington, Virginia: ACM.
Buşoniu, L., Babuška, R., De Schutter, B., & Ernst, D. (2010).
Reinforcement Learning and Dynamic Programming Using
Function Approximators. CRC Press.
Fleishman, Edwin A. Little, Kenneth B. (1972). On the relation
between abilities, learning, and human performance: American
Psychologist.
Forsyth, D., & Ponce. (2011). Computer Vision: A Modern
Approach. Prentice Hall.
Harnad, S. (1995). Grounding Symbolic Capacity in Robotic
Capacity. New Haven: Lawrence Erlbaum.
iCub Robot Wiki. (n.d.). Retrieved 02 2012
Kormushev, P., Calinon, S., Saegusa, R., & Metta, G. (2010).
Learning the skill of archery by a humanoid iCub. 2010 IEEE-RAS
International Conference on Humanoid Robotics. Nashville.
Metta, G., Sandini, G., Vernon, D., & Natale, L. (2008). The iCub
humanoid robot: an open platform for research in embodied

25

cognition. 8th Workshop on performance metrics for intelligent
systems. ACM.
Michalski, Carbonell, & Mitchell, T. (1983). Machine Learning.
Palo Alto: Tioga Publishing Company.
Michie, D. (1986). On Machine Intelligence. New York: John
Wiley & Sons.
Nath, V., & Levinson, S. (2013). Learning to Fire at Targets by an
iCub Humanoid Robot. AAAI Spring Symposium. Palo Alto:
AAAI.
Nath, V.(2013).Usage of Computer Vision and Machine Learning
to Solve 3D Mazes, MS thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL.
Nath, V. & Levinson, S. (2014). Autonomous Military Robotics.
New York: Springer New York.
Nath, V. & Levinson, S. (2014). Autonomous Robotics and Deep
Learning. New York: Springer New York.
Russell, S., & Norvig, P. (2010). Artificial Intelligence, A Modern
Approach. Ner Jersey: Prentice Hall.
Sandini, G., Metta, G., & Vernon, G. (2007). The iCub Cognitive
Humanoid Robot: An Open-System Research Platform for
Enactive Cognition. In 50 years of artificial intelligence (pp. 358-
369). Berlin Heidelburg: Springer Berlin Heidelberg.
Sigaud, O., & Buffet, O. (2010). Markov Decision Processes in
Artificial Intelligence. Wiley.
Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot
Modelling and Control. New Jersey: John Wiley & Sons.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An
Introduction. Cambridge: MIT Press.
Tsagarakis, N., Metta, G., & Vernon, D. (2007). iCUb: The design
and realization of an open humanoid platform for cognitive and
neuroscience research. Advanced Robots 21.10, (pp. 1151-1175).

26

