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Abstract

Building large-scale knowledge bases from a variety
of data sources is a longstanding goal of AI research.
However, existing approaches either ignore the uncer-
tainty inherent to knowledge extracted from text, the
web, and other sources, or lack a consistent proba-
bilistic semantics with tractable inference. To address
this problem, we present a framework for tractable
probabilistic knowledge bases (TPKBs). TPKBs con-
sist of a hierarchy of classes of objects and a hierar-
chy of classes of object pairs such that attributes and
relations are independent conditioned on those classes.
These characteristics facilitate both tractable probabilis-
tic reasoning and tractable maximum-likelihood param-
eter learning. TPKBs feature a rich query language that
allows one to express and infer complex relationships
between classes, relations, objects, and their attributes.
The queries are translated to sequences of operations in
a relational database facilitating query execution times
in the sub-second range. We demonstrate the power of
TPKBs by leveraging large data sets extracted from
Wikipedia to learn their structure and parameters. The
resulting TPKB models a distribution over millions of
objects and billions of parameters. We apply the TPKB
to entity resolution and object linking problems and
show that the TPKB can accurately align large knowl-
edge bases and integrate triples from open IE projects.

Introduction
A knowledge base continuously acquiring more knowledge
and answering complex queries is a vision as old as the
field of AI itself. Such a knowledge base would address nu-
merous pressing problems such as data integration, infor-
mation extraction, and entity resolution. However, there are
three mutually conflicting properties that pertain to all KBs:
(a) the ability to populate the KB from (uncertain) data;
(b) the tractability of reasoning; and (c) the expressiveness
of the underlying logic. When the uncertainty is modeled
with a probabilistic semantics, the problem of tractability
and learnability is even more challenging. Recent advances
in tractable probabilistic models, however, have shown that
there is the possibility of new and better trade-offs between
these conflicting properties.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

With this paper, we present a novel framework for
tractable probabilistic knowledge bases (TPKBs) that ad-
dresses some of the aforementioned challenges. The TPKB
facilitates reasoning over inheritance hierarchies and on the
level of classes and relations; it provides tractable query an-
swering via a mapping to queries in a relational database;
and it features a complex query language. Instead of merely
making the model more expressive, we focus on a model that
is expressive while featuring a rich query language. We also
emphasize the feasibility of parameter learning using large
data sets and the ability to model uncertainty of class and
relation hierarchies. The tractability is due to the TPKB’s
property that attributes of objects and object pairs are inde-
pendent conditioned on classes of objects and object pairs.

Problem Statement and Contributions
In this paper, we say that a (probabilistic) knowledge base
is tractable if computing the answer to queries takes time
polynomial in the size of the PKB’s data. Hence, we are con-
cerned with polynomial data complexity (Abiteboul, Hull,
and Vianu 1995). There is a large body of work on frag-
ments of first-order logic with polynomial data complexity.
Most notably, the databases literature identified numerous
tractable fragments for which query processing has polyno-
mial data complexity. The understanding of tractable frag-
ments of first-order logic with probabilistic semantics, how-
ever, is not as thoroughly developed. More recently, work on
probabilistic databases (Suciu et al. 2011) has characterized
classes of unions of conjunctive queries for which query an-
swering is possible in polynomial time. The assumption in
probabilistic databases is that the instantiations of a relation
(its tuples) are mutually independent. Unfortunately, even in
this seemingly restrictive setting, numerous natural conjunc-
tive queries are NP-hard. For instance, consider the query
∃x, y.student(x, y), bDate(x, 1950), almaMater(y, Yale)

that asks for the probability of there existing a pairs of ob-
jects (x, y) such that x was born in 1950, y’s alma mater is
Yale, and x was a student of y. This is a natural query that
could, for instance, occur as part of an entity disambigua-
tion problem. However, it is known that this query is not
generally tractable under the assumption of tuple indepen-
dence (Suciu et al. 2011). Therefore, one ought to be careful
when designing probabilistic knowledge bases that need to
be both tractable and useful in practice. Contrary to prob-
abilistic databases, a probabilistic knowledge base models
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Type PKB expression FOL expression RDF expression
Schema subc(C, D) ∀x : C(x)⇒ D(x) C rdfs:subclassOf D

subr(r, s) ∀x, y : r(x, y)⇒ s(x, y) r rdfs:subPropertyOf s
Assertion insc(Einstein, Person) Person(Einstein) Einstein rdf:type Person

insr(Einstein, Kleiner, advisor) advisor(Einstein, Kleiner) Einstein advisor Kleiner

attro(Einstein, 1879, birthYear) birthYear(Einstein, 1879) Einstein birthYear 1879

attroo(Eugene, Seattle, 283, distance) distance(Eugene, Seattle, 283) reification

Table 1: Example expressions in PKB syntax with corresponding expressions in first-order logic and the resource description
framework (RDF). Unlike probabilistic databases, PKBs allow queries involving schema expressions.

and reasons over uncertain inheritance hierarchies of classes
and relations, that is, classes and relations can occur in the
answer set of queries. Hence, while probabilistic databases
are in some ways not restrictive enough they are too restric-
tive in other ways.

In this paper, we present a tractable probabilistic knowl-
edge base (TPKB) that facilitates efficient query answer-
ing. Intuitively, the PKB is a probabilistic model that inter-
connects tractable local distributions pertaining to objects,
classes, and relations in a consistent and tractable manner.
The novel TPKB has the following properties

• tractable learning from existing, very large data sets;

• tractable answering of complex queries;

• employment of robust relational database technology;

• default reasoning in the presence of missing data.

We provide experimental results that demonstrate that TP-
KBs can be applied to common large-scale problems such as
entity linking and entity resolution. This shows for the first
time that a PKB over millions of objects and billions of pa-
rameters can be efficiently queried.

Related Work
PKBs are different from probabilistic databases (Suciu et al.
2011) in that PKBs represent class and relation hierarchies.
Moreover, each query over the PKB corresponds to an effi-
cient query in a (probabilistic) database. Hence, every query
in the PKB is tractable and an efficient query plan does not
have to be generated by a process that can take exponential
time.

TPKBs are related to PROBLOG (Raedt, Kimmig, and
Toivonen 2007) a probabilistic logic programming language.
However, PROBLOG is not tractable and does not support
existentially quantified conjunctive queries. URDF (Nakas-
hole et al. 2012) is based on weighted MAX-SAT algo-
rithms and is in principle intractable. It also does not support
queries that ask for a distribution over objects, classes, and
relations, given a subset of their attributes. Infinite relational
models (IRMs) are non-parametric hierarchical models but
are not tractable in general (Kemp et al. 2006). We lever-
age the hierarchy of TPKBs to estimate parameters on the
level of classes and relation more robustly. This is related to
shrinkage in text classification (McCallum et al. 1998), back
off models (Katz 1987), and multilevel models in regression
analysis (Gelman and Hill 2007).

Open information extraction (Etzioni et al. 2011) and
other IE projects (Carlson et al. 2010; Lehmann et al. 2012)
often use ad-hoc approaches and heuristics and do not pro-
vide a consistent joint distribution and query language.
There exist several statistical relational systems employ-
ing relational database technology to facilitate queries over
structured data (Wang et al. 2010; Noessner, Niepert, and
Stuckenschmidt 2013). However, the proposed systems are
intractable in genera;. Recent work on statistical relational
learning has focused on tractable probabilistic graphical
models, that is, probabilistic models for which inference is
efficient by design. Examples are PRISM (Sato and Kameya
1997), tractable Markov logic (Domingos and Webb 2012),
particular tractable fragments of probabilistic logics (Van
den Broeck 2011; Niepert and Van den Broeck 2014), and
probabilistic soft logic (Kimmig et al. 2012). None of these
languages features complex query languages and uncertain
inheritance hierarchies.

Probabilistic description logic programs (Lukasiewicz
2007) combine DL programs under the answer set and well-
founded semantics with independent choice logic (Poole
2008). Particular variants of light-weight description logics
with probabilistic semantics (Gutiérrez-Basulto et al. 2011;
Niepert, Noessner, and Stuckenschmidt 2011; Noessner and
Niepert 2011) have been proposed. However, these for-
malisms are too expressive to be tractable for the types of
complex queries needed in large-scale applications, do not
allow the modeling of numerical attributes, and do not ad-
dress the problem of parameter learning.

There is related work in the context of information ex-
traction and relation learning. Notable representative pub-
lications of this line of research are tensor factorizations
of YAGO (Nickel, Tresp, and Kriegel 2012) and universal
schemas (Riedel et al. 2013). These approaches do not fa-
cilitate a consistent probabilistic semantics and expressive
query languages.

A Tractable Probabilistic Knowledge Base
A probabilistic knowledge base (PKB) models a probabil-
ity distribution over possible worlds where each such pos-
sible world models an instantiation of a logical knowledge
base. The design of a tractable PKB, therefore, involves (a)
the logical characterization of a possible world and (b) a
parameterization of possible worlds rendering probabilistic
reasoning tractable. Table 1 lists several expressions in PKB
syntax and in first-order logic and simplified RDF syntax.
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Figure 1: The TPKB models a distribution over possible
worlds where each such world corresponds to a fully ma-
terialized hierarchical knowledge base modeling objects,
classes, relations, and properties. Arrows correspond to
prior conditional probabilities for subclass, subrelation,
class, relation, and property assertions. In each possible
world and for every entity, exactly one of the assertions mod-
eled by outgoing dashed arrows holds. Solid arrows repre-
sent deterministic assertions.

The chosen syntax facilitates a seamless knowledge transfer
from existing logical KB formalisms. We define the syntax
and semantics of the novel TPKB, its parameterization, and
prove tractability results.

Syntax
The domain of a PKB K is a set of symbols K defined
as the union of a set of object names O, a set of class
names C, a set of attribute names A, and a set of binary
relation names R. Object names O represent individuals
such as AlbertEinstein and MountEverest. Class
names C represent sets of objects such as Person and
Mountain. There is a unique class name Thing that
represents the set of all objects. Binary relation names
R represent subsets of Thing × Thing, that is, classes
of pairs of objects, such as studentOf and actedIn.
Attribute names A represent properties of objects such as
birthYear, properties of classes such as medianAge, and
properties of relations such as surfaceForm. In addition,
we write A(x) to denote the set of attributes of entity x
and A(x, y) to denote the set of attributes of object pair
x, y ∈ O. Moreover, for every A, we assume that the set
of possible values Val(A) is finite. The difference between
attributes and relations is that the former relate entities to

1. The dsubc and dsubr assertions form trees on C and R with
root nodes Thing and Thing× Thing, respectively.

2. For all x, y, z ∈ C :

(a) dsubc(x, y) ∈W⇒ subc(x, y) ∈W;
(b) subc(x, y) ∈W ∧ subc(y, z) ∈W⇒ subc(x, z) ∈W;
(c) ∀A ∈ A(x) there exists exactly one V ∈ Val(A) with

attrc(x, V, A) ∈W.

3. For all x, y, z ∈ R :

(a) dsubr(x, y) ∈W⇒ subr(x, y) ∈W;
(b) subr(x, y) ∈W ∧ subr(y, z) ∈W⇒ subr(x, z) ∈W;
(c) ∀A ∈ A(x) there exists exactly one V ∈ Val(A) with

attrr(x, V, A) ∈W.

4. For all x ∈ O :

(a) ∃C ∈ C : dinsc(x, C) ∈W;
(b) ∀C ∈ C : dinsc(x, C) ∈W⇒ insc(x, C) ∈W;
(c) ∀C, C′ : insc(x, C) ∈ W ∧ subc(C, C

′) ∈ W ⇒
insc(x, C

′) ∈W;
(d) ∀A ∈ A(x) there exists exactly one V ∈ Val(A) with

attro(x, V, A) ∈W.

5. For all x, y ∈ O :

(a) ∃R ∈ R : dinsr(x, y, R) ∈W;
(b) ∀R : dinsr(x, y, R) ∈W⇒ insr(x, y, R) ∈W;
(c) ∀R, R′ : insr(x, y, R) ∈ W ∧ subr(R, R

′) ∈ W ⇒
insr(x, y, R

′) ∈W;
(d) ∀A ∈ A(x, y) there exists exactly one V ∈ Val(A) with

attroo(x, y, V, A) ∈W.

Figure 2: Axiomatization of possible worlds.

values of a particular data type such as the integers or the
set of all strings while the latter relate objects to objects.
There are 8 predicate symbols insc(x, y), insr(x, y, z),
attro(x, y, z), attroo(x, y, z, z

′), attrc(x, y, z),
attrr(x, y, z), subc(x, y), and subr(x, y) represent-
ing class, relation, attribute, subclass, and subrelation
assertions. Note that classes and relations are reified
allowing us to express arbitrary relations between object
pairs. Table 1 depicts some example expressions formed
with these predicates. There are 4 additional predicates
dsubc(x, y), dsubr(x, y), dinsc(x, y), and dinsr(x, y, z)
whose sole purpose is to model prior conditional proba-
bilities for subclass, subrelation, and instance assertions.
A grounding of a predicate is obtained by replacing each
variable with the appropriate symbols in K. The Herbrand
base of K is the set of all ground predicates. Each subset of
the Herbrand base is a Herbrand interpretation specifying
which ground predicates are true. We make the closed
(active) domain assumption meaning that quantifiers range
over elements in K (Abiteboul, Hull, and Vianu 1995).

Semantics
Every TPKB’s joint distribution is fully characterized by
two components. First, a set of first-order formulas T that
axiomatize the Herbrand models (possible worlds) of the
TPKB. A Herbrand model W is a Herbrand interpretation
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that satisfies all formulas in T. We use the words Herbrand
model and possible world interchangeably. Second, a set
of prior conditional probabilities for knowledge base as-
sertions. Prior probabilities might differ from the posterior
probabilities obtained via inference as the axiomatization in-
troduces complex dependencies between assertions.

There are several possible ways to specify an axiomati-
zation of possible worlds and a parameterization in form
of prior probabilities. We focus on one particular combina-
tion that results in tractable probabilistic inference. First, we
characterize a possible world W with the axioms in Fig-
ure 2. These axioms make every possible world corresponds
to a fully materialized description logic based ontology with
classes, roles (binary predicates), individuals (objects), and
concrete domains (attributes) (Baader et al. 2003).

Second, we specify prior conditional probabilities for as-
sertions of the knowledge base. For every C ∈ C\{Thing},
P (dsubc(C, C

′)) is the prior probability of an object being
an instance of class C′ given that it is an instance of class
C. Since we specify conditional distributions, we must have
that

∑
C′∈C P (dsubc(C, C

′)) = 1, for every C ∈ C, and we
write P (dsubc(C, ·)) for this conditional distribution. For
example, the probabilistic KB depicted in Figure 1 has the
prior probabilities P (dsubc(Person, Organization)) =
0.1, P (dsubc(Person, Agent)) = 0.9, and
P (dsubc(Person, C

′)) = 0.0 for all other C′ ∈ C. In this
example, the prior probability of dsubc(Person, Thing) is
0.0 but the posterior probability of subc(Person, Thing)
is 1.0 which is due to the axiomatization of a possible
world in Figure 2. We have to impose a mild restriction
on the prior probabilities to make them compatible with
the axiomatization of possible worlds. We assume that
we can partition the classes C into sets C1, ...,Ck with
C1 = {Thing} such that for all 1 ≤ i ≤ j ≤ k, if Ci ∈ Ci

and Cj ∈ Cj then P (dsubc(Ci, Cj)) = 0. Stratification
ensures that, in every possible world, classes in stratum Ci

can only be subclasses of classes in strata Cj with j < i
which, in turn, ensures that the dsubc assertions form a
tree. We refer to this restriction on the parameterization as
stratification and to k as the stratification size. For every
R ∈ R \ {Thing× Thing}, P (dsubr(R, ·)) is the prior
conditional distribution for relations with stratification
restrictions identical to those made for classes.

For every O ∈ O, P (dinsc(O, C1) ∧ ... ∧ dinsc(O, Cn))
is the prior probability of object O being an instance
of exactly the classes C1, .., Cn. We must have that∑

C′⊆C P (
∧

C′∈C′ dinsc(O, C
′)) = 1 for every O ∈ O. For

example, the probabilistic KB depicted in Figure 1 has the
prior probabilities P (dinsc(Arnold, Actor)) = 0.1,
P(dinsc(Arnold, Politician)∧ dinsc(Arnold, Actor))
= 0.8, P(dinsc(Arnold, Politician)) = 0.1, and
P (

∧
C′∈C′ dinsc(Arnold, C

′)) = 0 for all other C′ ⊆ C.
In order to ensure tractability, we have to impose two
restrictions. First, we have to ensure that every object is an
instance of at least one class. Hence, there must exists a
C′ ⊆ C with P (

∧
C′∈C′ dinsc(O, C

′)) > 0 for all O ∈ O.
Moreover, we have to bound the number of sets of classes
an object can be an instance of. That is, we assume there
exists a constant c ∈ N which is bounded polynomially

in the size of the PKB and, for every O ∈ O, we have
that |{C′ ⊆ C : P (

∧
C′∈C′ dinsc(O, C

′)) > 0}| < c.
For every pair of objects O, O′ ∈ O, P (insr(O, O

′, X))
specifies the analogous prior probabilities for object pairs
with restrictions identical to those made for objects.

For every O ∈ O and every A ∈ A(O), P (attro(O, X, A))
is the probability of object O having value X ∈ Val(A) for
attribute A. For example, for the PKB depicted in Figure 1,
we have P (attro(Arnold, “Arni”, surfaceForm)) = 0.1,
P (attro(Arnold, “Arnold”, surfaceForm)) = 0.7, and
P (attro(Arnold, “Schwarzenegger”, surfaceForm)) =
0.2. The families of prior conditional distribu-
tions P (attroo(O, O

′, ·, A)), P (attrc(C, ·, A)), and
P (attrr(R, ·, A)) are the analogous conditional distri-
butions for object pairs, classes, and relations.

The probability of a possible world now factorizes into the
probability of the class hierarchy, the probability of the rela-
tion hierarchy, and the probability of instance and attribute
assertions given these hierarchies:

P (W) =
∏

dsubc(C,C′)∈W

P (dsubc(C, C
′))

∏
attrc(C,V,A)∈W

P (attrc(C, V, A)) ×

∏
dsubr(R,R′)∈W

P (dsubr(R, R
′))

∏
attrr(R,V,A)∈W

P (attrr(R, V, A)) ×

∏
O∈O

P (
∧

C∈CO

dinsc(O, C))
∏

attro(O,V,A)∈W

P (attro(O, V, A))

×
∏

O,O′∈O

P (
∧

R∈RO,O′

dinsr(O, O
′, R))

∏
attroo(O,O′,V,A)∈W

P (attroo(O, O
′, V, A))

 ,

where CO = {C ∈ C : dinsc(O, C) ∈ W} and RO,O′ =
{R ∈ R : dinsr(O, O

′, R) ∈ W}. We can now state the
following theorem.
Theorem 1. Let K be a PKB, let W be the set of possible
worlds for K, and let P be the distribution over possible
worlds. Then,

∑
W∈W P (W) = 1.0.

Probabilistic Reasoning
The joint distribution over possible worlds is a product of
conditional distributions. The conditional distributions are
representable with block-independent-disjoint (BID) tables
of a probabilistic database. BID tables are table where the
tuples can be partitioned into blocks such that tuples within
the same block are mutually exclusive and tuples in different
blocks are independent (Suciu et al. 2011). This opens the
door to the application of known tractability results from the
probabilistic database literature. However, for the types of
queries typically performed with a PKB, the known results
do not generally apply and we have to prove the tractability
of certain queries only partially relying on known results.

We first define the query language and semantics. A for-
mula is given by the following grammar:

Q := u = v | R(x) | ∃x.Q1 | Q1 ∧Q2 | Q1 ∨Q2

where R(x) is one of the TPKB’s predicate symbols with
variables and/or constants from K. A union of conjunctive

72



Q1(x) := attro(x, Val1, A1), ..., attro(x, Valn, An)

Q2(x) := insc(x, C1), ..., insc(x, Cn)

Q3(x, y) := insc(x, y), Q1(x), Q2(x)

Q4(x) := subc(x, C1), ..., subc(x, Cn)

Q5(x) := Q1(x), Q2(x)

Q6(x, y) := insr(x, y, R1), ..., insr(x, y, Rn)

Q7(x, y, z) := insr(x, y, z), Q6(x, y)

Q8(x, y) := subr(x, y, R1), ..., subr(x, y, Rn)

Q9(x, y) := Q6(x, y), Q5(x), Q5(y)

Q10(x, y) := Q7(x, y), Q5(x), Q5(y)

Table 2: A collection of tractable query families.

queries (UCQ) has the form Q(x) where x are the free vari-
ables of formula Q. A Boolean query is a query without free
variables. We write Q[a/x] to refer to the query expression
Q where the free variables x are substituted with constants
a. When a query has free variables x, then for possible world
W, Q(W) = {a : W |= Q[a/x]} where W |= Q means
Q is true in W. We refer to the elements Q(W) as tuples.
Given a PKBK with possible worldsW , the marginal prob-
ability of tuple t for a query Q is

P (t ∈ Q) =
∑

W∈W:t∈Q(W)

P (W).

We construct mappings from queries over the PKB to
queries over a probabilistic database and exploit the hier-
archical structure of possible worlds to derive tractability
results and efficient query evaluation plans. Note that we
can compute probabilities conditioned on attribute values by
normalizing the query probabilities with the probability of
the tractable Boolean query ∃x.Q1(x).

Consider the families of queries in Table 2. Queries of
type Q1 return, for a given set of attribute values, a list of
objects with their marginal probabilities. For instance, the
query “All entities born in 1950 and with surface form ‘Ein-
stein’” can be expressed. Queries of type Q2, Q3, and Q4 are
queries one typical asks against a logical KB. For instance,
the query “All classes/instances that are subclasses/instances
of Politician and Actor” can be expressed. Queries of
type Q3 return a list of object class tuples given a set of
attribute values and instance restrictions. For instance, the
query “All classes whose instances were born after 1950 and
are instances of the class Person.” Queries of type Q9 re-
turn a list of object pairs that are related via a set of relations
Ri given a set of attribute values and instance restrictions.
For instance, the query “All object pairs (x, y) that are in a
studentOf relation and where x was born in 1950 and y
has surface form ‘Bach’” is a member of this query family.
Query Q10 returns a list of object pairs and relations that
could hold between objects x and y given a set of attribute
values and instance restrictions for the two objects such as
“All relations that could hold between a person and an orga-
nization where the person’s surface form is ‘Obama’ and the
organization was founded after 2009.”
Theorem 2. Query types Q1, ..., Q10 are tractable.

The tractability of most queries does not follow from
the probabilistic database literature and the proofs in the
appendix are quite involved. This is because the posterior
probabilities for the insc, insr, subc, and subr assertions
are not identical to the prior probabilities. Moreover, there
are only few tractability results for conjunctive queries with
self-joins. The TPKB’s hierarchical structure of the possi-
ble worlds and the stratification of the parameterization ren-
der the queries tractable. Table 2 lists classes of queries that
are important for applications such as entity resolution and
data integration, however, there are other classes of tractable
queries and this is often easily verifiable.

Modeling and Learning
The most sophisticated PKB is of limited use if learning its
parameters from existing data sets is not possible. Users of
the TPKB only need to worry about learning (some of) the
prior conditional distributions. Both structure and parameter
learning is accomplished by estimating these parameters in-
dependently because the likelihood decomposes into a prod-
uct of the local conditional distributions of the joint distribu-
tion. It is possible to incrementally add attribute and object
distributions without having to relearn the entire PKB. Espe-
cially if the parameter values are learned by processing very
large data sets, this property of incremental learning is cru-
cial. Since there are no latent variables and all parameters to
be estimated are those of conditional distributions, we can
apply closed-form maximum-likelihood learning as long as
the chosen parameterization of the random variables allows
this. For instance, this is always possible if we use multino-
mials to model the distributions.

Let W1, ...,WN be sets of assertions of the PKB’s
predicates. For instance, we estimate the parameter
P (dsubc(C, C

′)) of the multinational distribution with

1

|N ||O|

N∑
i=1

∑
O∈O

[[insc(O, C
′) ∈Wi and insc(O, C) ∈Wi]]

[[insc(O, C) ∈Wi]]
,

where [[·]] is the indicator function. Similarly, we can es-
timate the parameters for the other distributions. The only
additional constraint is that the parameterization is stratified
and that every object (object pair) is an instance of at least
one class (relation) in a possible world.

We also learn histograms to estimate the densities of nu-
merical attribute values on the level of classes and rela-
tions. These histograms can be leveraged for default rea-
soning when data on the level of objects is missing. For in-
stance, consider the attribute birthYear. There are numer-
ous persons without an assertion for this property in any of
the information extraction projects. However, the TPKB can
still compute the probability for those objects by using the
distribution of birthYear on the class level. For instance,
Arnold who is an instance of the class Actor might not
have an assertion for the attribute birthYear. In this case,
we use the probability of an actor being born in 1950 as a
surrogate for P (attro(Arnold, 1950, birthDate)).

Experiments
For the experiments, we learned a TPKB’s direct subclass
and instance distributions (both for objects and object pairs)
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Precision@1 Recall@1
NELL relation WL TPKB1 TPKB2 WL TPKB1 TPKB2
ActorStarredInMovie 0.81 0.85 0.95 0.82 0.81 0.31
AgentcollaboratesWithAgent 0.82 0.83 0.95 0.86 0.84 0.20
AnimalIsTypeofAnimal 0.86 0.86 1.00 0.86 0.85 0.00
AthleteLedSportsTeam 0.89 0.91 0.92 0.86 0.79 0.37
BankBankInCountry 0.82 0.87 0.92 0.76 0.69 0.10
CityLocatedInState 0.80 0.85 0.96 0.81 0.80 0.64
BookWriter 0.82 0.83 0.92 0.83 0.82 0.73
CompanyAlsoKnownAs 0.71 0.71 1.00 0.58 0.28 0.00
PersonLeadsOrganization 0.79 0.81 0.93 0.75 0.57 0.11
TeamPlaysAgainstTeam 0.81 0.81 1.00 0.81 0.73 0.00
WeaponMadeInCountry 0.88 0.91 1.00 0.88 0.84 0.00
LakeInState 0.90 0.91 1.00 0.92 0.90 0.84

System Precision Recall
PARIS 91.9 73.8

TPKB1@1 85.3 72.4
TPKB2@1 89.3 69.3
TPKB3@1 92.8 67.1
TPKB1@2 - 73.1
TPKB2@2 - 74.0
TPKB3@2 - 74.2

Table 3: Results for entity resolution experiments (left) and entity linking experiments (right). WL is the WikiLink baseline.

using the ontology and the data from DBPEDIA (Lehmann
et al. 2014; Bizer, Heath, and Berners-Lee 2009) and we
manually created a shallow relation hierarchy. For several
attributes on the class and object level, such as birthDate,
elevation, geocoordinates, etc. we also used data in
DBPEDIA. To learn these attributes on the object level, we
assumed a uniform distribution if, for one object, more than
one value is given for a particular attribute. For instance, if
Arnold has values 1947 and 1946 for attribute birthDate
then, following the maximum-likelihood principle, we as-
sume that both values have probability 0.5. For the class
level, we pooled attribute values of the instances of each
class and used histograms to model these distributions. For
the object attribute surfaceForm we used the WIKIPREP
tool (Gabrilovich and Markovitch 2006; 2007) to compute
the conditional distributions using Wikipedia’s link struc-
ture. Based on object attributes it is possible to learn the pa-
rameters of attributes for object pairs. For instance, we intro-
duced the attribute diffBirthYear which models a distri-
butions over the absolute value of birth year differences. For
instance, if Arnold was born in 1947 or 1946 and Einstein
in 1879, then the value for this attribute would be 68 and 67
with probability 0.5 each. We also pool attributes for distri-
butions on the level of relations. The number of parameters
of the resulting TPKB exceeds 1 billion and we model more
than 1 million objects and object pairs. We ran the respective
conjunctive queries using a MYSQL database and stored
functions for the computations of the extensional queries.
Each query used for the experiments could be answered in
less than one second.

We evaluated the learned TPKB on two important prob-
lem classes which we discuss in the following.

Entity Linking For the entity linking experiments we
used an existing gold standard for aligning NELL
triples (Carlson et al. 2010) to DBPEDIA (Dutta et al. 2013).
We run two different queries to compute, for each triple,
subject and object alignments using the same experimen-
tal set-up as previous work (Dutta et al. 2013). For each of
the NELL predicates in Table 3(left) we manually aligned
the domain and range with classes in the TPKB if possible.
For instance, for the first relation, we know that subjects are

instances of class Actor and objects are instances of class
Film. The queries are now Q5(x) where we used only the
attribute surfaceForm and the aligned classes (TPKB1);
and query Q10 := insr(x, y, z), attro(x, Val1, surfaceForm)
insc(x, C), attro(y, Val2, surfaceForm), insc(y, C) where we
only use answer tuples with z 6= Thing× Thing (TPKB2).
This query retrieves all object pairs that are instance of a re-
lation other than Thing× Thing given attribute values and
class memberships. The results are given in Table 3 (left)
and compared with a baseline given in (Dutta et al. 2013).
Precision@k and Recall@k is computed by retrieving the k
most probable answer tuples.

Entity Resolution Entity resolution is the problem of de-
termine whether two objects are equivalent. To evaluate the
TPKB for entity linking we repeated the experiment of link-
ing YAGO (Hoffart et al. 2013) to DBPEDIA conducted to
evaluate the PARIS matching system (Suchanek, Abiteboul,
and Senellart 2011). Both knowledge bases use Wikipedia
identifiers for their objects which gives us a large set of gold
standard pairs for evaluation purposes. We manually aligned
a set of attributes (datatype properties) and classes between
YAGO and the TPKB (DBPEDIA). We sampled 100000 ob-
jects in YAGO, retrieved the aligned attributes for each object
(labels, numerical attributes, etc.) and ran, for each object,
the query Q1 only with attribute surfaceForm (TPKB1);
and all other attributes for which a manual alignment ex-
isted (TPKB2). Moreover, we ran the query Q5(x) when an
alignment between at least two classes existed (TPKB3). Ta-
ble 3 shows that TPKBs are able to accurately link entities
and compare favorably with specialized algorithms.

The TPKB is both efficient and performs comparable to
existing problem specific and less versatile approaches.

Future Work
Directions for future work include more expressive variants
of the presented TPKB framework, more applications, and
learning TPKBs from multiple IE projects.
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