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Abstract

To tackle the problem of saliency detection in images,
we propose to learn adaptive mid-level features to rep-
resent image local information, and present an efficient
way to calculate multi-scale and multi-level saliency
maps. With the simple k-means algorithm, we learn
adaptive low-level filters to convolve the image to pro-
duce response maps as the low-level features, which in-
trinsically capture texture and color information simul-
taneously. We adopt additional threshold and pooling
techniques to generate mid-level features for more ro-
bustness in image local representation. Then, we define
a set of hand-crafted filters, at multiple scales and mul-
tiple levels, to calculate local contrasts and result in sev-
eral intermediate saliency maps, which are finally fused
into the resultant saliency map with vision prior. Ben-
efiting from these filters, the resultant saliency map not
only captures subtle textures within the object, but also
discovers the overall salient object in the image. Since
both feature learning and saliency map calculation con-
tain the convolution operation, we unify the two stages
into one framework within a deep architecture. Through
experiments over challenging benchmarks, we demon-
strate the effectiveness of the proposed method.

Introduction
Visual saliency is basically a process that detects scene re-
gions different from their surroundings (Borji and Itti 2012).
Saliency refers to the attraction of attention arising from
the contrast between the feature properties of an item and
its surroundings (Lin, Fang, and Tang 2010). Recently, the
field of visual saliency has gained its popularity in computer
vision, as it can be widely borrowed to help solve many
computer vision problems, including object detection and
recognition (Walther and Koch 2006; Shen and Wu 2012;
Yang and Yang 2012), image editing (Cheng et al. 2011),
image segmentation (Ko and Nam 2006), image and video
compression (Itti 2004), etc.

There are many popular saliency models in literature. Itti,
Koch, and Niebur propose a general model which uses col-
ors, intensity and orientations as the features to represent
image locals (1998). Lin, Fang, and Tang adopt the lo-
cal entropy to deal with the specific situation that human’s
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perceptual salient region has low local contrast values but
a large contrast background (2010). Borji and Itti use two
color models and two scales of saliency maps to boost the
detection performance (2012). As all these models use hand-
engineered features that separately consider colors or edge
orientations, the local representation lacks adaptiveness. Re-
cently, Yan et al. propose to fuse segmented image maps at
three levels into the final saliency map to deal with a prac-
tical situation that the salient object has complex textures,
facing which many methods merely focus on inner-object
textures and fail in discovering the true salient object (2013).
Although these methods consider multiple cues such as col-
ors and edge orientations and multi-level salient regions,
they are not generic enough due to both the hand-crafted
features and the saliency maps at fixed scales.

In image classification literature, researchers begin to
learn mid-level features for better representation of images.
The so-called mid-level features remain close to image-
level information without attempts at any need for high-level
structured image description, and are generally built over
low-level ones (Boureau et al. 2010). The low-level features
can be either hand-engineered descriptors like SIFT (Lowe
2004) and HoG (Dalal and Triggs 2005), or the learned ones
e.g. convolutional neural networks (LeCun et al. 1998)
and deep belief networks (Hinton and Salakhutdinov 2006;
Boureau, Cun, and others 2007). Amongst the feature learn-
ing methods, the simple k-means algorithm can be also used
to generate mid-level features, which is empirically proven
to be quite effective (Coates, Ng, and Lee 2011).

Inspired by feature learning methods and saliency detec-
tion community, in this paper, we propose a unified frame-
work to tackle the saliency detection problem, as demon-
strated by Figure 1 on the flowchart of our model. Our
method first learns the low-level filters by the simple k-
means algorithm, and uses the resultant filters to convolve
the original image to get low-level features, which can in-
trinsically and simultaneously consider color and texture in-
formation. With additional techniques such as hard thresh-
old and pooling at multiple scales, we generate mid-level
features to robustly represent image locals. Then, we prede-
fine some hand-crafted filters to calculate saliency maps at
multiple levels. These multi-scale and multi-level saliency
maps captures not only the salient textures within the ob-
ject, but also the overall object in images. Finally, we fuse
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Figure 1: (Best view in color and zoom in.) Flowchart of the
proposed framework. The filter bank produce k response
maps via convolution with the k low-level filters. Multiple
pooling scales ensure that saliency can be better captured
in face of varying sized local contrasts. Multi-level saliency
calculation produces more maps to capture both inner-object
textures and the salient object itself. The final saliency map
is the fusion of all these intermediate maps with the center
prior. TheN and bG mean the normalization operation, and
Gaussian blur after binarization, respectively.

these intermediate maps into the final saliency map. As
both our feature learning and saliency map calculation con-
tain the common convolution operation, we unify the two
stages into one framework within a deep architecture, which
also mimics the human nerve/cognitive system for receiv-
ing and processing visual information (O’Rahilly and Müller
1983). Our model merely includes feed-forward computa-
tions through the architecture, thus parallel computing can
be adopted to expedite the overall process.

The rest of this paper is organized as follows. We first
briefly review several related works. Then, we elaborate our
proposed saliency model. We present experimental compar-
isons with other popular methods to show the effectiveness
of our model, before closing this paper.

Related Work
Different from popular methods for saliency detection, our
method adaptively learns mid-level features to represent im-
age locals. The so-called mid-level features remain close
to image-level information without attempts at any need
for high-level structured image description, and are gener-
ally built over low-level ones (Boureau et al. 2010). The
mid-level features can be built in a hand-engineered man-
ner over SIFT or HoG descriptors, e.g. concatenating sev-
eral pooled vectors over sparse codes of these low-level de-
scriptors in predefined pyramid grids (Yang et al. 2009).
It can also be learned hierarchically in a deep architec-
ture, e.g. summing up outputs of previous layer as the
input of current layer through nonlinear operations such
as max pooling and sigmoid function (Lee et al. 2009;
Krizhevsky, Sutskever, and Hinton 2012). Recent studies
demonstrate that the simple k-means method for convolution

can also produce promising mid-level features w.r.t compa-
rable performances (Coates, Ng, and Lee 2011; Coates and
Ng 2012).

In literature, to boost performance of saliency detection,
methods consistently consider either multiple cues like col-
ors and edge orientations, or multiple scales of local contrast
calculation. For example, Borji and Itti take advantage of
two different color models (Lab and RGB) and two scales
(local and global) of local contrast calculation (2012), and
fuse these resultant saliency maps into the final one. But
their method uses non-overlapping patches based on color
information to represent image locals, so some valuable in-
formation is missed due to bound effect and lacks of tex-
ture/edge consideration. Moreover, their local and global
scales need to be generalized for more subtle situations. Yan
et al. explicitly consider the situation that the real salient ob-
ject has complex inner textures, which lead popular methods
to focusing on the trivial patterns rather than the object itself.
For this reason, they propose to segment the image at three
scales to generate intermediate saliency maps, and fuse them
into the final one. Similarly, the preprocessing stage of im-
age segmentation merely relies on color information, thus
ignoring other valuable cues such as textures.

Saliency Detection within a Deep
Convolutional Architecture

Overview of the Proposed Model
The deep architectural framework for saliency detection
consists of two parts, mid-level feature generation and inter-
mediate saliency map calculation at multiple scales and mul-
tiple levels, as demonstrated by Figure 1. The mid-level fea-
tures are generated by threshold and pooling over low-level
features, which are the response maps by convolving the im-
age with a bank of low-level filters learned by the simple k-
means algorithm. Here, our method uses a set of predefined
filters to fast pool the mid-level features in an overlapping
manner, therefore, subtle information can be captured such
as inner-object textures and the salient object itself. Then,
we define a bank of hand-crafted filters to calculate local
contrast maps at multiple levels, i.e. the size of “local” is
defined by our filters in this step. A benefit of this is to en-
sure the whole salient object can be detected. Finally, we
normalize all the intermediate maps and fuse them into the
final saliency map with the vision prior of center bias (Tatler
2007). In this section, we elaborate the important compo-
nents in feature learning and intermediate saliency map cal-
culation, and demonstrate how to unify these components
into one deep architecture.

Mid-level Feature Learning
K-means for Low-level Filters. We use the simple k-
means algorithm to learn low-level filters instead of hand-
craft ones, such as SIFT and HoG. The filters are learned
from a large set of patches, which are randomly extracted
from web downloaded images, as demonstrated by Figure 2.
We can see in this figure, different from existing methods
that use hand-crafted features such as colors and edge orien-
tations separately, our learned filters simultaneously capture
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Figure 2: Illustration of low-level filters learning by k-means
algorithm. Color patches of size 8× 8× 3 are randomly ex-
tracted from images that are downloaded from the internet.
Over these patches, the k-means simply learns k = 80 filters
throughout our work, and we store them in a filter bank.

both color and edge information. Throughout our work, we
learn k = 80 filters and store them in a filter bank, which is
kept unchanged for extracting low-level features for all im-
ages. The filter bank is used to generate low-level features
as described in the following.

Response Maps as Low-level Features. Over the bank of
k filters, we convolve the input image with them, and pro-
duce k response maps, as shown in the left panel of Figure
3. In addition, we adopt a thresholding operation and nor-
malization along the third mode of these maps to produce
sparse responses. Thresholding produces sparse responses,
while normalization makes all the low-level features have
unit Euclidean length. A benefit of these operations is that
small response values can be removed, which merely reflect
trivial information in the image; meanwhile, high responses
are highlighted that capture more meaningful local informa-
tion. Empirically, we find that an effective way to threshold
the response maps is to keep first 50 largest elements in the
k = 80 ones at the same position and zero the others. We
define the hard threshold parameter to be the ratio of the
number of these retained largest elements to the number of
response maps; here we denote the thresholding parameter
as 5/8. After this process, we generate the low-level features
and feed them into the next step to produce mid-level ones.

Mid-level Features Generation. Over the low-level fea-
tures in the response maps, we turn to generate mid-level
features to represent image locals. The mid-level features
are the spatially pooled vectors in local patches of predefined
sizes, as described by the right panel of Figure 3. The pool-
ing operation will capture local information of each pixel in
the original image, thus leading to a better local representa-
tion. As for the pooling technique, average and max pooling
are two popular choices. But through experiments, we find
average pooling is better than max pooling. The reason is
that average pooling aggregates local statistics information
by preventing large response values taking over and small
ones being removed out. In contrast, max pooling always
captures the larger response values, which can be outliers
regions in the image rather than human perceptual saliency.
As well, it is worth noting that average pooling generate the
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Figure 3: Convolved response features for multi-scale pool-
ing. The convolved low-level response maps are pooled with
filters at multiple scales from S1 × S1 to S4 × S4.

same results as mean filtering (Jahne 2002).
To facilitate the average pooling operation, we construct

several filters with different sizes. Specifically, a filter of
s× t can be represented by a square matrix s = 1

st ∈ Rs×t,
where 1 is a matrix with all the elements equaling to one
with appropriate size. Then, convolving each low-level re-
sponse map with the filter s will lead to the mid-level feature
map accordingly. There are two advantages of the convolu-
tion operation for average pooling. First, convolution means
every possible local patch is considered for calculating local
contrast. Second, convolution at multiple scales can be done
in a parallel manner, thus fast processing can be expected.

In our work, we explore more filters with varying sizes,
so that both the inner-object textures and the object itself can
be captured as salient regions. In this work, we choose four
scales, S1 = 10, S2 = 15, S3 = 20 and S4 = 50, to produce
four filters; then, for an image of h × w-pixel resolution,
specifically, each grid size in scale S1 has size of h

S1
× w

S1
.

Therefore, for the filter of the first scale, we have s = h
S1

and t = w
S1

. We use these four filters to convolve each of the
k = 80 low-level response maps to produce 320 mid-level
feature maps in total, as illustrated by Figure 3. Note that the
resultant maps produced by the sizing filters have different
sizes and thus produce bound effects, so we pad the smaller
maps with zero values around the map bound.

Multi-level Saliency Calculation
Using the mid-level feature maps, we now calculate inter-
mediate saliency maps at multiple levels. The multi-level
saliency maps mean that the local contrast is defined at re-
gions with different sizes. Each level is defined as the num-
ber of surrounding laps. For instance, we calculate the local
contrast between 2 laps of surrounding patches with the cen-
ter patch when the level is 2. This can also help to capture
both the inner-object saliency and the salient object itself.

To this end, we also define a set of filters of different sizes
for calculating local contrast values. Convolving these filters
with the mid-level feature maps results in a set of interme-
diate saliency maps at multiple levels of local contrasts. In
this paper, we define four levels of filters, which are demon-
strated by Figure 4 (a). When convolving the mid-level fea-
ture maps at a lower level, i.e. a small region is compared
within a small neighborhood, subtle inner-object saliency
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Figure 4: (a) Some predefined filters for local contrast cal-
culation at multiple levels; (b) Calculation of intermediate
saliency maps over the mid-level feature maps at multiple
local contrast levels. Note that in (a), the square grids are
not pixels, and the size of grids at higher level is larger than
that at lower level. Moreover, “1” and “-1” means the two
local areas/grids are used to calculate contrast values. The
final saliency map is obtained by summing up all the inter-
mediate maps at all the pooling scales and all the local con-
trast levels. We also present the map after binarization and
Gaussian blurring.

can be detected, such as characters in a vehicle plate. While
at a higher level, i.e. a local region has a larger surround-
ing neighborhood for contrast calculation, the overall salient
object can be detected, such as a vehicle plate placed on a ta-
ble as the background. Thus, all these intermediate saliency
maps will contribute to detecting both inner-object saliency
and the salient object itself.

Mathematically, with a defined filter pl to calculate local
contrast values of mid-level feature maps at a specific level
denoted by l. Specifically, we convolve all the m feature
maps X(s)

i (i = 1, . . . ,m) at a particular scale s with pl to
obtain the corresponding saliency map Y

(s)
l :

Y
(s)
l =

m∑
i=1

pl ∗X(s)
i , (1)

where ∗ indicates the convolution operation.

Saliency Maps Fusion with Priors
Since we obtain a set of intermediate saliency maps at dif-
ferent pooling scales and different local contrast levels, we
now turn to fuse them into the final saliency map with vision
prior. In particular, we merely consider the simple center-
bias prior (Tatler 2007), which can be seen in Figure 1.
Please note that other high-level priors are used in literature,
such as warm colors (Rother, Kolmogorov, and Blake 2004),
face priors (Judd et al. 2009), etc. But we do not adopt these
principles in our current work.

There are several ways to fuse the intermediate maps,
such as “add”, “product” and “max”. But empirically we
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Figure 5: Smoothed precision-recall curve on MIT (left) and
Toronto (right) datasets.

find “add” fusion generates the best result, so we choose
“add” fusion throughout our work.

Moreover, we incorporate the center-bias prior in this fu-
sion stage. In particular, the specific prior is generated by a
2D Gaussian heat map W as shown by the upper-right panel
in Figure 1. Mathematically, the final saliency map Z is ob-
tained by the following operation:

Z = N (W �
m∑
l=1

n∑
s=1

N (Y
(s)
l )), (2)

where�means Hadamard product between matrices, andN
denotes the normalization operation (Itti, Koch, and Niebur
1998) that transforms all the values in the fused map to lie
in the range of [0, 1]. Besides, we also get the map after
binarization and Gaussian blurring.

Experiments
In this section, we evaluate out method through experiments,
and all the methods are carried out in MATLAB platform.

Datasets and Evaluation Metric
Datasets. The datasets used in our experiments are the
MIT dataset (Judd et al. 2009) and the Toronto dataset
(Bruce and Tsotsos 2005).

The MIT dataset contains 1003 images (resolution from
405 × 1024 to 1024 × 1024 pixels), including landscape,
portrait and synthetic data. It is a challenging large dataset
containing complex foreground and background scenes with
very high resolutions.

Another challenging dataset is the Toronto dataset which
is widely used. It contains 11 subjects with indoor and out-
door scenes. It includes 120 color images (resolution of
511 × 681 pixels) with complex foreground objects of dif-
ferent sizes and positions, of which a large portion do not
contain particular regions of interest.

Precision-Recall Curve. Based on information retrieval,
the precision-recall curve (PRC) has become a widespread
conceptual basis for assessing classification performance
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Table 1: Average AUC Score w.r.t. different saliency meth-
ods on MIT and Toronto datasets

datasets Ours Judd Hou Cov Itti
MIT 85.0% 86.9% 80.4% 78.1% 61.7%

Toronto 77.5% 75.3% 69.7% 64.9% 58.0%

and saliency model evaluation (Brodersen et al. 2010). In
PRC, the human fixations for an image are regarded as the
positive set and some points randomly selected from the im-
age are considered as the negative set. The saliency map
is treated as a binary classifier to separate the positive set
from the negatives (Borji and Itti 2012). The precision-recall
curve is a relation of the positive predictive value and the
true positive rate.

AUC Score. Another evaluation metric in our experiments
is the area under the receiver operator curve (AUC) score
(Bruce and Tsotsos 2005). The well-known receiver oper-
ating characteristic (ROC) curve is obtained by threshold-
ing over the saliency map and plotting true positive rate vs.
false positive rate. It often provides a useful alternative to
the precision-recall curve. The AUC concentrates the per-
formance of the two-dimensional ROC by a single scalar, as
implied by its name; and the value of AUC is the area un-
der the ROC curve. AUC is a good evaluation method for
saliency models whose main advantages over other evalua-
tion methods are its insensitiveness to unbalanced datasets
and better insight into how well the saliency model is.

Experimental Setup

Size of Low-level Filters. We randomly extract 10000
patches from web downloaded images to train low-level fil-
ters. In view of the image size involved, the size of each
sampling color patch is set to 8 × 8 × 3. We perform k-
means on the preprocessed sampling patches. The resul-
tant filter bank is composed of a set of filters each of length
192 = 8× 8× 3. The number of k-means filters is 80, thus
we can get 80 response maps after convolution.

Threshold parameter. Thresholding on the response
maps greatly improve the saliency performance. Here we
set the threshold parameter to be 5/8. In other words, when
the length of the response maps is 80, we zero out the small-
est 80 ∗ (1 − 5/8) = 30 feature values of each convolved
feature vector.

Pooling Grid Scales. When we summarize features over
regions of the convolved features, we use multi-scale aver-
age pooling to capture salient objects of different scales. The
pooling grid scales consist of four versions, namely, 10×10,
15× 15, 20× 20 and 50× 50.

Saliency Levels. We perform saliency computation on the
mid-level feature maps on multiple numbers of surrounding
laps, namely, the saliency computational levels, which are
set to 1, 3, 6 and 9.
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Figure 7: Left: Average AUC score with respect to different
threshold parameters. The x-axis is the threshold parameter
and the y-axis is the corresponding average AUC score on
some randomly selected images. Right: Average AUC score
with respect to different numbers of filters. The x-axis is the
number of filters.

Experimental Results
The saliency models we compare with are: (1) Judd’s model
(Judd et al. 2009) is a supervised learning model which com-
bines low-level local energy features, mid-level gist features
and the high-level face and person detectors for saliency
computation. (2) Hou’s model (Hou, Harel, and Koch 2012)
uses “image signature” as an image descriptor which con-
tains information about the foreground of an image. (3)
Cov’s model (Erdem and Erdem 2013) uses covariance ma-
trices of simple image features extracted from local im-
age patches as meta-features. Region covariances as low-
dimensional representations of image patches capture local
image structures. (4) Itti’s model (Itti, Koch, and Niebur
1998) uses colors, intensity and orientations as the features
to represent image locals.

Figure 5 plots the performances of all the compared meth-
ods and ours based on the precision-recall curve (PRC).
The results in Figure 5 show that Judd’s and our models
show higher performance than the rest on MIT and Toronto
dataset, respectively. Besides, we compare the saliency per-
formance using the AUC score. The average AUC score
with respect to these saliency models is shown in Table
1. Among the compared saliency models, our models lead
to higher performance than others although it is not per-
fect. Because our model uses adaptive mid-level features
based on low-level filters which are obtained by unsuper-
vised learning k-means and capture the texture and color
information simultaneously, while the mid-level features of
other models are not adaptive. Our model computes saliency
through a unified multi-scale and multi-level framework,
thus capturing both inner-object textures and the salient ob-
ject itself, while others compute saliency on limited scales.

Figure 6 shows the visual saliency maps on the MIT
dataset generated by different models. Ground truth saliency
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Figure 6: Saliency maps of different models on MIT dataset. Each row corresponds to an example. The columns are the original
images, ground truth images, human fixation points and saliency maps with different models, respectively.

maps and human fixation points are also provided. The
saliency maps of our model and the Gaussian smoothed bi-
nary saliency maps are given in the last two columns. The
rest four columns are saliency maps obtained by other mod-
els, i.e. Judd, Hou, Cov and Itti. White regions indicate
intense saliency of that patch, while black regions indicate
low saliency. The white regions in our saliency maps are ex-
actly the noticeable parts which draw our attention. Among
these saliency maps generated by different models, we can
see that our model captures salient parts in the image, in-
cluding heads or bodies of people, without additional ef-
forts such as human face detection, object recognition, etc.
The Gaussian smoothed binary saliency maps of our model
explicitly accord with the ground truth and human fixation
points and these maps highlight the important areas of our
attention.

Parameter Analysis
Here we discuss two important parameters, namely, the
threshold parameters and the numbers of k-means filters.

Threshold has a notable influence on the performance
of our saliency computation while it is not widely used in
saliency detection. Through our experiments, we find that
hard thresholding on the response maps indeed boosts the
performance. We run experiments with different thresh-
old parameters on randomly selected images on MIT and
Toronto datasets. The hard threshold parameters we com-
pare with are 2/8, 3/8, 4/8, 5/8, 6/8 and 8/8. We run five
times to calculate the average and the experimental results
are shown in the left panel of Figure 7, where the x-axis
is the threshold parameter value and the y-axis is the aver-
age AUC score obtained on these thresholds. It is clear that

the best saliency performance is achieved when the thresh-
old parameter is 5/8. No thresholding (threshold parameter
equals 8/8) and excessive thresholding (threshold parameter
equals 2/8) give worse results.

The performances on different numbers of k-means filters
are also compared. As is shown in the right panel of Figure
7, the highest performance is achieved when the number k
is between 80 and 200. For sake of efficiency, we should
use as few filters as possible to represent a patch in the im-
age, and we adopt k = 80. This also mimics the human
nerve/cognitive system for receiving and processing visual
information (O’Rahilly and Müller 1983).

Conclusion and Future Work
We propose a model for saliency detection which uses mid-
level features on the basis of low-level k-means filters within
a unified deep framework in a convolutional manner. This
saliency model calculates the multi-scale and multi-level
saliency maps and takes the “add” fusion operation to ob-
tain final saliency map. Our model can be applied in a par-
allel manner, which makes it possible for fast computation.
Through experimental validations, we demonstrate that the
mid-level features are adaptive and the saliency model ex-
hibits high performance.

Our saliency model merely consider the low-level k-
means filters and mid-level features. Possible future work
includes more proper features design or the combination of
them. Image matching based on mid-level features which
are generated by our multi-scale deep framework and bene-
fit from the properties of adaptiveness and robustness can be
further studied.
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