
Grouping Queries with SV-Semantics in Preference SQL

Markus Endres and Patrick Roocks and Manuel Huber and Werner Kießling
University of Augsburg

86135 Augsburg, Germany
{endres, roocks, kiessling}@informatik.uni-augsburg.de

manuel.huber@aisec.fraunhofer.de

Abstract

Preference database queries become more and more
important in Data Warehousing or Decision Support
Systems. In these environments the standard SQL
GROUP BY operation with aggregate functions is ex-
tensively used in formulating queries. In this paper, we
focus on the novel GROUPING functionality of Pref-
erence SQL which substantially extends the common
aggregation features of SQL GROUP BY. It fully sup-
ports the Substitutable Values semantics for preference
queries, enriched by comfortable aliasing mechanisms.
This yields to an increased intuitive readability of com-
plex queries, which in turn can reduce clearly the cogni-
tive load for OLAP programmers. In addition we show
how a correlated subquery in SQL can be written sim-
pler and evaluated faster using the GROUPING clause.

Introduction
Database queries containing grouping constructs are highly
important in applications like Business Intelligence, or Data
Warehouses (Gupta, Harinarayan, and Quass 1995). Such
Decision Support Systems use SQL aggregate functions and
the GROUP BY operation extensively to formulate queries.
For example, queries that create summary data are of great
importance in such applications. These queries partition data
into several groups (e.g., in business sectors) and aggregate
on some attributes (e.g., sum of total sales).

Beyond this, preferences in databases – as shown by a
recent survey (Stefanidis, Koutrika, and Pitoura 2011) – as
well as preferences in artificial intelligence and social choice
theory (Rossi, Venable, and Walsh 2011; Kaci 2011) are
a well established framework to create personalized infor-
mation systems. Moreover, preference database queries be-
come more and more important in decision support environ-
ments (Golfarelli and Rizzi 2009), because they are an ef-
fective method to reduce very large datasets to a small set
of highly interesting results. In general, a preference query
selects those objects from the database that are not domi-
nated by any others. Since operations like grouping and ag-
gregating have proven to be very helpful for the analysis
of large datasets and are essential in decision support sys-
tems, it seems to be a fruitful approach to extend preference

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

queries by these concepts. Subsequently, we show a simple
example of a preference database query using the Preference
SQL language from (Kießling, Endres, and Wenzel 2011).

Example 1. The wish for a car having the highest power
and a price around 35000 Euro for each group of registra-
tion year (reg date) can be expressed in Preference SQL as:

SELECT id, power, price, y
FROM car
PREFERRING

power HIGHEST AND price AROUND 35000
GROUPING EXTRACT(YEAR FROM reg_date) AS y

ORDER BY y;

Thereby PREFERRING initiates the preferring clause. The
keyword AND expresses a Pareto composition and states the
equal importance of two preferences. The query returns all
cars, for which no dominating cars w.r.t. the preference exist
in the same year of registration.

In our sample dataset in Table 1 there are three groups
(built by the GROUPING keyword), namely 2012, 2013, and
NULL. In the year 2012 the tuples with ID 4 and 5 are dom-
inated by tuple 3, because the latter has more power and
is closer to 35000 Euros than the other two. In the year
2013 both tuples are incomparable as the tuple with ID 1
is cheaper and the tuple with ID 2 has more power.

Table 1: Sample dataset of cars.
car id make power price reg date

1 BMW 180 35000 2013-03-03
2 Mercedes 200 38000 2013-02-15
3 Mercedes 215 40000 2012-11-17
4 Geely 120 22000 2012-10-03
5 Geely 110 23000 2012-01-27
6 Chery 120 25000 NULL

In this paper we generalize the concept of grouping in
preference database queries by allowing grouping w.r.t. ar-
bitrary equivalence relations instead of single grouping at-
tributes. While for the latter the GROUPING construct works
similar to the GROUP BY clause in standard SQL, grouping
on equivalence classes is described with the Substitutable
Values (SV) construct, where the partitions are induced by
the equivalence classes of the attribute values.

Multidisciplinary Workshop on Advances in Preference Handling: Papers from the AAAI-14 Workshop

37

Based on this, we extend the syntax of the Preference
SQL query language and provide some common use cases.
Furthermore, we show how preference grouping can be effi-
ciently used to simplify correlated nested queries, and there-
fore reduce the computation costs of such queries.

Preferences in Database Systems
We follow the preference model from (Kießling 2005),
where a preference P = (A,<P) is a strict partial order
on the domain of A. Thereby A is a set of attributes. The
term x <P y is interpreted as “I like y more than x”. Two
tuples x and y are indifferent, if ¬(x <P y) ∧ ¬(y <P x),
i.e., neither x is better than y nor y is better than x. The Best-
Matching-Objects (BMO-set) of a preference P = (A,<P)
on an input database relation R contains all tuples that are
not dominated w.r.t. the preference. It is computed by the
preference selection operator σ[P](R) (called winnow by
(Chomicki 2003)) and finds all best matching tuples t for
P , where t.A is the projection to the attribute set A.

σ[P](R) := {t ∈ R | ¬∃t′ ∈ R : t.A <P t′.A}
To specify a preference, a variety of intuitive preference

constructors have been defined.

Base Preference Constructors
Preferences on single attributes are called base preferences.
There are base preference constructors for continuous (nu-
merical), discrete (categorical), temporal, and spatial do-
mains. Most of them can be specified by a SCORE function
fd : dom(A)→ R+

0 , and some d ∈ R+
0 (Kießling 2005). In

the case of d = 0 the function fd(v) models the distance to
the best value. That means fd(v) describes how far the do-
main value v is away from the optimal value. A d-parameter
d > 0 represents a discretization of fd(v), which is used to
group ranges of scores together. The d-parameter maps dif-
ferent function values to a single number. Choosing d > 0
effects that attribute values with identical fd(v) value be-
come indifferent.

There are several sub-constructors of SCOREd: In the nu-
merical AROUNDd(A, z) the desired value should be z. If
this is infeasible, values having the smallest distance to z are
preferred, where the distance is discretized by the parameter
d. The LOWESTd(A, infA) constructor and the HIGHESTd

(A, supA) constructor prefer the minimum and maximum
of the domain of A, where infA and supA are the infi-
mum and supremum of dom(A). The categorical base pref-
erence POS(A,POS-set) expresses that a user has a set of
preferred values, the positive POS-set. The negative prefer-
ence NEG(A,NEG-set) is the counterpart to the POS prefer-
ence. For the temporal preferences LATEST / EARLIEST,
LATER / EARLIER THAN the desired date or time should
be as late/early as possible or later/earlier than the denoted
date or time.
Example 2. The wish for a BMW or Geely
is expressed with a positive preference: P1 :=
POS(make, {’BMW’, ’Geely’}). The preference selec-
tion σ[P1](car) on the car dataset in Table 1 leads to the
cars with IDs {1,4,5}.

If we prefer a horsepower around 170, where a difference
of 5 does not matter, i.e., d = 5, this can be expressed by
P2 := AROUND5(power, 170). The result is given by the
tuple 1 because its power of 180 hp is nearest to 170 hp.

Complex Preference Constructors
Complex preferences determine the relative importance of
preferences. Intuitively, people speak of “this preference is
more important to me than that one” or “these preferences
are all equally important”. Hence we need a notion of equal-
ity w.r.t. a preference. A simple approach for this is to use
strict equality of the domain values. But often we have pref-
erences where values x, x′ are equally good in the sense that
x<P y ⇔ x′<P y for all y. For example, this happens if
fd(x) = fd(x

′), i.e., the tuples have the same score. This
behavior is called regular Substitutable Values semantics
(SV semantics), denoted by ∼P . In contrary, requiring strict
equality leads to the trivial SV-semantics, denoted by =P .
We formalize this in the following definition.

Definition 1 (SV-Relations). Let P = (A,<P) be a pref-
erence, and A an attribute set. We define the following:

a) A general SV-relation (A,∼=) on attribute setA, where∼=
has to be an equivalence relation on dom(A).

b) A SV-relation (A,∼=P) for a preference P = (A,<P)
has to be compatible to P which means that we have for
all x, y, z ∈ dom(A):
• x ∼=P y ⇒ ¬(x <P y ∨ y <P x)

• (x <P y ∧ y ∼=P z) ⇒ x <P z

• (x ∼=P y ∧ y <P z) ⇒ x <P z

Note that the attribute set is often omitted, i.e., we just
write ∼=P for (A,∼=P). By convention, if P is a prefer-
ence, then ∼=P is always the SV-relation associated with
preference P .

c) The identity relation on attribute set A, denoted by idA.
For a preference P = (A,<P) this is also called the
trivial SV-relation and denoted by =P , i.e., we always
have =P := idA.

d) The regular SV-relation ∼P for a preference P , which
is the equivalence relation induced by the equivalence
classes of the SCORE function fd(v).

Note that this definition of SV-semantics is required to
preserve the strict order property of complex preferences, cp.
(Kießling 2005). Within Preference SQL the use of trivial
or regular SV-semantics can be specified with the keywords
TRIVIAL and REGULAR.

Definition 2 (Pareto). In a Pareto preference P := P1 ⊗
P2 = (A1 × A2, <P) all preferences Pi = (Ai, <Pi

) are
of equal importance, i.e., for two tuples x = (x1, x2), y =
(y1, y2) ∈ dom(A1)× dom(A2) we define:

(x1, x2) <P (y1, y2) ⇐⇒
(x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 ∼=P2 y2)) ∨
(x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 ∼=P1 y1))

38

Definition 3 (Prioritization). In a Prioritization prefer-
ence P := P1 & P2 the preference P1 = (A1, <P1) is more
important than P2 = (A2, <P2), i.e.

(x1, x2) <P (y1, y2) ⇐⇒
x1 <P1 y1 ∨ (x1 ∼=P1 y1 ∧ x2 <P2 y2)

For base preferences regular SV semantics does not affect
<P itself, but expresses that it is admissible to substitute
values for each other. A complex constructor using∼P does
affect <P , as we can see in the next example.

Example 3. Reconsider the preferences P1 and P2 from Ex-
ample 2. If both preferences are equally important and we
use trivial SV-semantics for P1 and P2 we write

Pt := POS(make, {’BMW’, ’Geely’},=P1
) ⊗

AROUND5(power, 170,=P2
)

Using the dataset given in Table 1 on page 1 the tuples
(’BMW’, 180) and (’Geely’, 120) would be the best-matches
for Pt, although a horsepower of 180 is better w.r.t. the pref-
erence than 120. Due to the trivial SV-semantics BMW and
Geely are not substitutable.

Having regular SV-semantics we write

Pr := POS(make, {’BMW’, ’Geely’},∼P1) ⊗
AROUND5(power, 170,∼P2

)

Here BMW and Geely become substitutable. Therefore
(’Geely’, 120) is equally good as (’BMW’, 180) concern-
ing the make, but 180 hp is better than 120 concerning the
AROUND preference. This means, (’BMW’, 180) is the only
tuple in the result set.

Grouping Queries
To conjunct preferences and our target applications (e.g.,
business intelligence, decision support) it is highly im-
portant to define a grouping functionality for preferences.
Therefore we define the grouped preference selection and
the syntactical GROUPING schema for Preference SQL
queries. Finally we present some use cases including a sub-
query optimization via preferences and GROUPING.

Grouped Preference Selection in Preference SQL
Basically, the grouping-construct allows us to split the
dataset into several groups w.r.t. the grouping attributes. Af-
terwards the preference is evaluated on each group sepa-
rately. The simplest grouping queries split the dataset ac-
cording to distinct values of one ore more attributes. We also
allow grouping w.r.t. to equivalence relations on attributes.
Formally the grouped preference selection is described in
the following definition.

Definition 4. Let G ⊆ attrib(R) and ∼=G an equivalence
relation on dom(G), then the grouped preference selection
w.r.t. ∼=G is defined as:

σ[P grouping ∼=G](R) :=

{t ∈ R | ¬∃t′ ∈ R : t <P t′ ∧ t ∼=G t′}

As the identity relation idA on dom(A) is an equivalence
relation, this is a generalization of the grouping on distinct
values of attributes. To see this, we refer to (Roocks, Endres,
and Kießling 2013). According to (Kießling 2005) this can
be expressed as a preference itself:

t <P grouping G t′ ⇐⇒ t <P t′ ∧ t ∼=G t′

Preference SQL (Kießling, Endres, and Wenzel 2011) is
a declarative extension of SQL by strict partial order prefer-
ences, behaving like soft constraints under the BMO query
model. The BMO-set as result of a preference query con-
tains all database tuples which are not dominated by any
other tuple concerning the users preferences. Syntactically,
Preference SQL extends the SELECT statement of SQL by
an optional PREFERRING clause, cp. Figure 1.

SELECT . . . <projection, aggregation>
FROM . . . <table reference>
WHERE . . . <hard conditions>
PREFERRING . . . <soft conditions>
GROUPING . . . <attribute list>
TOP . . . <number>
BUT ONLY . . . <but only condition>
HAVING . . . <aggregating conditions>

ORDER BY . . . <attribute list>

Figure 1: Preference SQL query block with GROUPING.

The keywords SELECT, FROM, WHERE, and ORDER BY are
treated as the standard SQL keywords. The PREFERRING
clause specifies a preference which is evaluated separately
on each of the groups induced by GROUPING. If an aggregate
function (e.g., SUM, COUNT, ...) is specified in the projection
of the query, then each BMO-set collapses to the aggregation
result. If TOP-k is specified, only the k best tuples according
to the preference order are returned. Preference SQL cur-
rently supports most of the SQL-92 standard (SQL-92 1992)
as well as all preference constructors from (Kießling, En-
dres, and Wenzel 2011). Note that TOP, BUT ONLY, HAVING,
and the use of aggregation is optional. Even PREFERRING is
optional, which allows us to use Grouping-SV for conven-
tional aggregations.

A grouped preference query is evaluated as follows:
1. The result of the WHERE-clause is partitioned according to

the grouping attributes or their SV classes, respectively.
2. If a preference is given, the BMO-set is calculated sepa-

rately for every group.
3. The additional TOP-k specifier selects the k best tuples ac-

cording to the preference order per group. The maximum
amount of tuples returned is k · g, if g groups exist.

4. The BUT ONLY clause is applied, where all tuples are ex-
cluded which do not fulfill this hard selection (i.e. similar
to WHERE, but after the preference selection).

5. The HAVING condition, e.g., COUNT(*)>1, is evaluated,
i.e., those groups are excluded in which HAVING evaluated
to false.

6. If an aggregation function occurs in the projection, it is
applied to any group separately; hence only one line is
returned per group in the result set.

39

Syntax for Grouping with Substitutable Values
Grouping on distinct values of attributes A,B, ... is speci-
fied with GROUPING A, B,... completely analogous to the
GROUP BY clause in SQL. Grouping on equivalence classes
is described with the construct SV, short for “Substitutable
Values”. This stems from the SV relations on preferences,
introduced in (Kießling 2005) which behave similar to the
Grouping-SV functionality. The equivalence classes form-
ing the groups are from now on called (grouping) SV classes.
The syntactic schema of a SV class’ specification is as fol-
lows (where [...] indicates optional elements):
GROUPING
A SV (

(A_1, A_2, ...) [AS ’class1_a’],
(A_3, A_4, ...) [AS ’class2_a’], ...,
[OTHERS [AS ’others_class_a’]]) [AS sv_a],

B SV (
(B_1, B_2, ...) [AS ’class1_b’], ...,
[OTHERS [AS ’others_class_b’]]) [AS sv_b],
...

Thereby the meaning of the syntactical parts is as follows:

• A_i and B_i represent domain values according to the at-
tributes A and B.
• The domain values A_1, A_2,. . . are considered equal

w.r.t. the SV relation∼=A for an attribute A (and analogous
for B and ∼=B). The names class. . . are aliases for the
SV classes which occur in the projection. If not specified,
A_1, A_2,. . . is the default name for a SV class with
values A_1, A_2,. . .

• The keyword OTHERS puts all elements, which were
not be mentioned before, in one “default” SV class. If
OTHERS is not given, all tuples t ∈ dom(A)\ {A_1, A_2,
. . ., A_3, A_4,. . . } form a SV class (t) of its own.

Note that the name of a SV-attribute (e.g. sv_a) is op-
tional, but should be given to reference the SV grouping at-
tributes in the projection. The original attributes A, B,. . .
remain unchanged; they can still be referenced in the pro-
jection. Finally the entire term generates a SV relation ∼=G

where G = {A,B, ...} are the grouping attributes. The han-
dling of NULL values or NULL SV classes follows the
specification in (Endres et al. 2012). The implementation of
GROUP BY in standard database systems usually rely either
on sorting or on hashing techniques. For the GROUPING of
SV-equivalent values we use a combination of sets for the
SV values and hashing techniques to perform an efficient
grouping.

Use Cases
Subsequently we show some common use cases to demon-
strate the expressive power of our preference grouping.
Example 4. Consider the sample data set given in Table 1
on page 1. We want to retrieve the best cars for each country.
Therefore we group all cars which are made in one country,
i.e., Germany or China, together. This is done using the SV
keyword. For every group we are interested in the cheapest
cars. This is performed by a LOWEST preference in the fol-
lowing query:

SELECT country, id, price FROM car
PREFERRING price LOWEST
GROUPING make SV (
(’BMW’, ’Mercedes’) AS ’Germany’,
(’Geely’, ’Chery’) AS ’China’) AS country;

The result of this query on the given sample dataset is:
{(’Germany’, 1, 35000), (’China’, 4, 22000)}.

In the next example we consider an aggregating query in
combination with TOP-k.
Example 5. We are interested in the average price of the
two cheapest cars of every group of country. Therefore we
state the following query:

SELECT country, AVG(price)
FROM car
PREFERRING price LOWEST
GROUPING make SV (
(’BMW’, ’Mercedes’) AS ’Germany’,
(’Geely’, ’Chery’) AS ’China’) AS country
TOP 2;

For the calculation of the average price the cars with IDs
{1, 2, 4, 5} are considered. The final result of this query is
{(’Germany’, 36500), (’China’, 22500)}.

Note that, if we omit the preference in the example above,
we could express this in standard SQL in a more lengthy
way, cp. the next example.
Example 6. Consider the aggregating query from Example
5 without the preference, i.e., calculate the average car price
for every country:

SELECT manufacturer, AVG(price) FROM car
GROUPING make SV (...) AS country;

This can be expressed in standard SQL using the lengthy
CASE . . . THEN . . . statement:

SELECT country, AVG(price) FROM
(SELECT (CASE

WHEN make IN (’BMW’, ’Mercedes’)
THEN ’Germany’

WHEN make IN (’Geely’, ’Chery’)
THEN ’China’

END) AS country, price FROM car) tmp_car
GROUP BY country;

Thus we are able to simplify GROUP BY queries with case-
statements by our Grouping-SV construct. Note that this
kind of grouping could be simplified, if the country is stored
as an attribute in the dataset. However, if this is not the case,
it would be a high effort to alter the table and add the coun-
try for each make.

Projection functions for hierarchical data
types are also supported, e.g., the function
EXTRACT(datepart FROM ...) for date.
Example 7. We are looking for the most powerful cars,
where groups are built from the year of registration.

SELECT y, id, power
FROM car
PREFERRING power HIGHEST
GROUPING
EXTRACT(YEAR FROM reg_date) AS y AVOID NULL;

40

This yields the result {(2012, 3, 215), (2013, 2, 200)}.
Following (Endres et al. 2012), AVOID NULL specifies that
the grouping preference does not consider a NULL-group.

Note that the aliasing mechanism of our syntactic scheme
allows for a renaming via AS ... in the grouping-clause.
This is in contrast to standard SQL where such declarations
would be stated in the projection. As in the logical order
of processing, the partitioning into groups is done first and
the projection at last, we think that it is intuitive to state the
aliasing in the grouping-clause.

Expressing Subqueries with Preferences
Beyond the powerful and flexible grouping functionality,
grouped preferences allow for the elimination of correlated
subqueries in some cases. A common practice in data ware-
houses is to relate a nested query to the outer query such that
the subquery only processes values relevant to the rows of
the outer query (Elhemali et al. 2007). This introduces a so-
called correlation between the outer query and the subquery.
Correlations make it challenging to find well-performing ex-
ecution plans for queries with subqueries, cp. (Ganski and
Wong 1987; Elhemali et al. 2007).

Subsequently, we illustrate this for a variant of the TPC-
H Q2 query1, reduced to its essence. The TPC-H benchmark
is a decision support benchmark, which consists of a suite
of business oriented ad-hoc queries with a broad industry-
wide relevance. Assume one is looking for the cheapest
supplier for each part in the relation partsupp(ps partkey,
ps suppkey, ps supplycost, ...):
SELECT ps_partkey, ps_suppkey
FROM partsupp ps
WHERE ps.ps_supplycost = (
SELECT MIN(p.ps_supplycost)
FROM partsupp p
WHERE p.ps_partkey = ps.ps_partkey);

Following (Elhemali et al. 2007), this is a Type-JA Nested
Query, which can be optimized by transforming it into a
canonical equivalent which references a new temporary re-
lation Rt.
-- Query 1: Non correlated query.
SELECT ps.ps_partkey, ps.ps_suppkey
FROM partsupp ps,
(SELECT p.ps_partkey AS C1,

MIN(p.ps_supplycost) AS C2
FROM partsupp p
GROUP BY p.ps_partkey) AS Rt

WHERE ps.ps_supplycost = Rt.C2
AND Rt.C1 = ps.ps_partkey;

This can be rewritten as the following query:
-- Query 2: Preference SQL query.
SELECT ps_partkey, ps_suppkey FROM partsupp
PREFERRING ps_supplycost LOWEST
GROUPING ps_partkey;

The subquery searching for the minimal price is replaced
with GROUPING by the auto-correlation parameter together
with a LOWEST preference on price.

1http://www.tpc.org/tpch/spec/tpch2.15.0.pdf (2013)

The latter query is a more intuitive semantic represen-
tation. Beyond that, no temporary space for the subquery
is necessary, such that the grouped preference query out-
performs the computation, too. This can be seen in Table
2, where we used the Preference SQL system to evalu-
ate the queries above. The Preference SQL framework is a
Java 1.6 middleware for preference queries on conventional
database systems. It parses the query and performs a log-
ical query optimization as described in (Hafenrichter and
Kießling 2005) inside the middleware. Afterwards it evalu-
ates the preference query using, e.g., BNL (Börzsöny, Koss-
mann, and Stocker 2001). The queries were performed on
the 10 MB, 100 MB, 500 MB, and 1 GB TPC-H dataset.
The preference query (Query 2) outperforms the conven-
tional optimized query (Query 1) by a factor of more than 2.
Therefore, our preference rewriting may speed up the query
answer time for such nested queries.

Table 2: Results for queries 1 and 2.
TPC-H 10 MB 100 MB 500 MB 1 GB

BMO-size 2000 20002 100006 200010
Query 1 in sec 2.5 129.8 1329.2 2092.2
Query 2 in sec 1.1 51.5 569.5 802.2
Speedup factor 2.3 2.5 2.3 2.6

In the following theorem we show that the above rewriting
is correct.

Theorem 1 (Replace Nested Query by Preference). Let
R be a database relation where G ∈ attrib(R) is a grouping
attribute without NULLs. Let A ∈ attrib(R) be some numer-
ical attribute and P = (A,<P) a LOWEST (or HIGHEST)
preference. Assume a subquery sub(s) = f(σA=s(R).A)
where f = min (or f = max). Then⋃

t∈R.G

σA=sub(t)(R) = σ[P grouping G](R)

Note that the union on the left hand side is the relational
transcription for a correlation (Elhemali et al. 2007).

Proof. ⋃
t∈R.G σA=sub(t)(R)

=
⋃
t∈R.G σA=f(σG=t(R).A)(R)

= {[f ∈ {min,max} is LOWEST or HIGHEST pref.]}⋃
t∈R.G σ[P] (σG=t(R))

= {[Definition of selection and BMO set]}]⋃
t∈R.G{y ∈ {x ∈ R | x.G = t} |

@z ∈ {x ∈ R | x.G = t} : y <P z}
= {[Reorganize set and quantifier conditions]}⋃

t∈R.G{y ∈ R | y.G = t∧
@z ∈ R : z.G = t ∧ y <P z︸ ︷︷ ︸

y <P grouping G z

}

= {[For every y there exists a t ∈ R.G with y.G = t]}
{y ∈ R | @z ∈ R : y <P grouping G z}

= {[Definition of BMO-Set]}
σ[P grouping G](R)

41

Related Work
Since the specification of grouping in the well-known SQL-
92 standard, many papers were published on grouping and
aggregation, e.g., (S. Chaudhuri 1994). Grouping was ex-
tended in SQL-99 to grouping sets, which allow more re-
peated grouping clauses in one query. However, to the best
of our knowledge, there is no work which discusses the inter-
play between grouping and preferences in detail. However,
preference queries containing grouping are one of the most
intuitive and practical type of queries: they find the best re-
sults concerning the preference for each group of tuples.

In (Börzsöny, Kossmann, and Stocker 2001) the Sky-
line operator was introduced, which is a special case
of a Pareto preference query (Chomicki, Ciaccia, and
Meneghetti 2013). Although the Skyline operator may in-
teract with the GROUP BY operation, the discussion of this
issue was restricted to the question whether grouping and
aggregating should be executed before or after the Skyline
operator. Another interpretation of grouping in the context
of Skylines is the partitioning of the data w.r.t. an attribute.
Then the Skyline is executed on each partition separately,
which is studied for example in (Luk, Yiu, and Lo 2009).
However, they discuss Group-by algorithms using sorting
and hashing, but do not specify the grouping functionality.

Furthermore, the optimization of nested queries was done
by (Ganski and Wong 1987), and extended e.g., by (Elhe-
mali et al. 2007), to name a few. However, in all these papers
temporary relations are used to optimize nested queries. We
presented an approach to rewrite a correlated subquery into
a preference query without temporary sets. This simplifies
the modeling of nested queries and at the same time speeds
up their computation.

Summary and Outlook
In Decision Support Systems, BI, OLAP or Data Ware-
houses the GROUP BY operation is extensively used to for-
mulate queries. Moreover, preference database queries al-
low to analyze large data sets without the annoying empty
result or flooding effect. In this paper we combined these
two concepts to provide a flexible framework for preference
data analytics. The novel concept of Grouping-SV allows
user-defined SV-relations for a powerful grouping function-
ality. In particular, this unified approach presents a more in-
tuitive representation of grouping and aggregating in Pref-
erence SQL. Using Decision Support Systems this means a
faster, more intuitive and less error-prone query writing.

Furthermore, we demonstrated how a correlated subquery
can be rewritten as a grouped preference query. Our bench-
mark shows that the expressive power of grouped preference
queries leads to a faster computation of such nested queries.

In the future work we will investigate other types of nested
queries for preference rewriting. Since the size of databases
increases drastically and complex business analysis becomes
progressively more important, the question of an efficient
processing of preference Grouping-SV queries arises. Mo-
tivated by this and the high significance of preferences, we
will look deeper into finding more efficient ways of process-
ing and optimizing Grouping-SV queries.

References
Börzsöny, S.; Kossmann, D.; and Stocker, K. 2001. The
Skyline Operator. In ICDE ’01: Proceedings of the 17th
International Conference on Data Engineering, 421–430.
Chomicki, J.; Ciaccia, P.; and Meneghetti, N. 2013. Skyline
Queries, Front and Back. SIGMOD Rec. 42(3):6–18.
Chomicki, J. 2003. Preference Formulas in Relational
Queries. In TODS ’03: ACM Transactions on Database Sys-
tems, volume 28, 427–466.
Elhemali, M.; Galindo-Legaria, C. A.; Grabs, T.; and Joshi,
M. 2007. Execution Strategies for SQL Subqueries. In
Proceedings of SIGMOD ’07.
Endres, M.; Roocks, P.; Wenzel, F.; Huhn, A.; and Kießling,
W. 2012. Handling of NULL Values in Preference Database
Queries. In MPref ’12: Proceedings of the 6th Multidisci-
plinary Workshop on Advances in Preference Handling.
Ganski, R. A., and Wong, H. K. T. 1987. Optimization of
Nested SQL Queries Revisited.
Golfarelli, M., and Rizzi, S. 2009. Expressing OLAP Pref-
erences. In Proceedings of SSDBM ’09, 83–91.
Gupta, A.; Harinarayan, V.; and Quass, D. 1995. Aggregate-
Query Processing in Data Warehousing Environments. In
Proceedings of VLDB ’95, 358–369.
Hafenrichter, B., and Kießling, W. 2005. Optimization of
Relational Preference Queries. In ADC ’05: Proceedings of
the 16th Australasian database conference, 175–184. ACS.
Kaci, S. 2011. Working with Preferences: Less Is More.
Springer.
Kießling, W.; Endres, M.; and Wenzel, F. 2011. The Prefer-
ence SQL System - An Overview. Bulletin of the Technical
Commitee on Data Engineering, IEEE CS 34(2):11–18.
Kießling, W. 2005. Preference Queries with SV-Semantics.
In In Proceedings of COMAD ’05, 15–26.
Luk, M.-H.; Yiu, M. L.; and Lo, E. 2009. Group-by Skyline
Query Processing in Relational Engines. In Proceedings of
CIKM ’09, 1433–1436.
Roocks, P.; Endres, M.; and Kießling, W. 2013. Specifica-
tion and Optimization of Preference (SV-)Grouping Queries.
Technical Report 2013-01, University of Augsburg.
Rossi, F.; Venable, B.; and Walsh, T. 2011. A Short Intro-
duction to Preferences: Between Artificial Intelligence and
Social Choice. Morgan & Claypool.
S. Chaudhuri, S. K. 1994. Including Group-By in Query
Optimization. In VLDB ’94: Proceedings of the 20th Int.
Conference on Very Large Data Bases.
SQL-92. 1992. Database Language SQL. Docu-
ment ISO/IEC 9075:1992. ANSI Document X3.135-1992
(SQL92 Standard).
Stefanidis, K.; Koutrika, G.; and Pitoura, E. 2011. A Survey
on Representation, Composition and Application of Prefer-
ences in Database Systems. ACM Transaction on Database
Systems 36(4).

42

