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Abstract

In this paper we present the budgeted biomarker dis-
covery problem as an alternative to the association stud-
ies traditionally used to identify biomarkers. We present
several strong arguments to show why adopting this new
problem will help solve issues in reproducibilty and
understanding of association studies. Additionaly, we
present several algorithms for this problem and show
their performance on real metabolomic data and on syn-
thetic data.

1 Introduction
Many researchers in bioinformatics are interested in dis-
covering “differentially expressed” genes and proteins; also
known as biomarkers. Researchers commonly use associa-
tion studies to find these biomarkers. Unfortunately, the re-
sults of such association studies are often irreproducible, in
that very different sets of genes appear as biomarkers in dif-
ferent studies done on the same phenotype (Ioannidis et al.
2009). Indeed, different labs will often produce different re-
sults, even using the same tissue samples (Yang et al. 2008).

While there are biological, technical and statistical expla-
nations for this phenomenon (Ein-Dor, Zuk, and Domany
2006; Leek et al. 2010), part of the problem lies in the am-
biguities inherent with the concept of association studies.
Traditionally, association studies are viewed as multiple hy-
pothesis testing problems, using some summary statistics
to capture different trends in the data (Cui and Churchill
2003; Witten and Tibshirani 2007). However, the results
of a study can vary wildly depending on which statistic is
used (Boulesteix and Slawski 2009).

Another short coming of association studies is the issue
of determining how different a feature must be for it to be
considered significantly different – i.e., when to reject the
null hypothesis. Many researchers circumvent this issue by
reporting the top k features (e.g., k =50, or 100 or 1000).
While such top lists may contain many features that are bio-
logically interesting, no objective statements can be said of
the quality of the list – i.e., there is no biology-free validation
for such lists. Other researchers prefer to control the false
discover rate FDR (Reiner, Yekutieli, and Benjamini 2003;
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Storey and Tibshirani 2003). Note, however, that a list with
1 false positive in 10 purposed biomarkers is as good as one
with 10 false positives in 100, as both have the same FDR =
0.1. However, as the goal of association studies is discov-
ery, we should prefer the list with more actual biomarkers.
Also note that perfect FDR is easy to achieve, by trivially
declaring that no features are signifcantly different.

A final problem with association studies is that very few
researchers release their data. Typically, they only provide
basic summaries.1 This may be a chicken-and-egg problem
here, as researchers in the association studies community see
no benefit to releasing their data, and thus people from the
machine learning community are not motivated to develop
methods to improve association studies due to lack of data
sets for verifaction. We hope that our formalization will es-
tablish an initial foundation that both communities can ex-
tend.

Section 2 presents the budgeted biomarker discovery
problem, and highlights why it is more precise, objective,
and reproducible than standard association studes. Section 3
then describes a series of (increasingly effective) algorithms
for solving this problem, with experimental comparisions
(on both synthesized and real world data) in Section 4.

2 The Budgeted Biomarker Discovery
Problem

In keeping with all the assumptions of association stud-
ies (Baldi and Long 2001; Efron et al. 2001; Smyth 2004),
we first formalize things mathematically such that we may
clearly define our budgeted biomarker discovery problem.

For each feature fi (for i = 1..N ), we let ex( s, fi ) ∈ <
be the (expression) value of feature fi for subject s, whose
label/phenotype is `( s ). We will asume only two classes, so
`( s ) ∈ {0, 1}.

For each fi, we assume ex( s, fi ) ∼ N
(
µi,`( s ), σ

2
i

)
is normally distributed when conditioned on the class label
(that is, the value of the binary phenotype); note the mean
depends on that class, but the variance is common to both
classes.
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1One noteable exception is the microarray community, which
posts their data sets to GEO – http://www.ncbi.nlm.nih.gov/geo/.



We assess each feature fi based on its effect size ∆i =
µi,1−µi,0

σi
. If ∆i = 0 then we say the feature is irrelevant;

and otherwise, ∆i 6= 0 means the feature is relevant – i.e., is
a biomarker. (We will later use ‘+’ for biomarker and ‘−’ for
irrelevant.) We assume that the absolute values of the effect
size |∆i| for biomarkers are random variables drawn from
an exponential distribution with rate parameter λ. This as-
sumption seems appropriate as the exponential distribution
is the maximum entropy distribution if we assume we only
know E [|∆|] (Kapur 1989).

We consider an experimental setup where data is collected
in a series of ‘probe-pairs’, which includes an observation
of 1 specific feature from each of two patients: one in the
‘1’ class and another in the ‘0’ class. However, before we
can collect any probes for feature fi, we must first (pay to)
collect C probes from samples of known concentrations to
calibrate the machinery.
Definition [Budgeted biomarker discovery problem]

We are given (a) a set of features {fi}Ni=1, some of which
are biomarkers ‘+’ and others are not ‘−’; (b) a reward
model RTP , RFN , RFP , RTN ∈ <, where

truth\prediction + 0 −
+ RTP 0 RFN
− RFP 0 RTN

and (c) a fixed budget of B on the total number of probes.
An “assessment” is a function that maps each feature to
{+, 0, −} (where 0 means “undecided”). Our goal is to find
a sequential probing strategy (spending at most B probes)
and an assessment function to maximize our expected re-
ward. Where appropriate, we may use an a priori probability
πi that feature fi is a biomaker; if no information is available
a priori we use πi = 0.5 as the default. �

This budgeted biomarker discovery problem has several
advantages over the standard notion of an association study:
(1) it has a clear and precise definition of biomarker versus
irrelevant, as opposed to the subjective concept of “diffen-
tial expression”; (2) the fixed definition of biomarker versus
irrelevant features should improve the reproducibility of the
studies, as it removes the ambiguity on how “differential ex-
pression” is quantified; (3) it allows the discovery of both
biomarker and irrelevant features, whereas association stud-
ies focused only finding biomarkers; (4) the reward model
allows an “undecided” label, which means algorithms can
avoid labeling features if they have low confidence in their
assessments; and (5) it can use the known budget to pro-
duce algorithms that can avoid collecting data on features
where the decision is obvious and hence spend more on fea-
tures that have need more information, which can be more
efficient than the the static experimental designs used in tra-
ditional association studies.

3 BBD Algorithms
Here we progressively build a series of BBD (budgeted
biomarker discovery) algorithms, leading to the oSPRT (or-
dered sequential probability ratio test), which is our current
best solution for the budgeted biomarker discovery problem.

Traditional: UNIFORM-BBD

The UNIFORM-BBD algorithm performs a traditional as-
sociation study. It begins by selecting a subset of N ′ of
the candidate features, and spending the probe budget uni-
formly accross them. Thus, each feature will be probed
n = bB/N ′−Cc times. Then it runs a standard two-sample
t-test for each feature. If the resulting p-value is less than
pcritical, the feature is labeled as ‘+’, and otherwise it is
labeled as ‘−’.

The results of this algorithm are very sensitive to the spe-
cific subset of features that are used. If it includes too many
features, then n will be small, which makes it unlikely that
any p-values are below pcritical. If it includes too few fea-
tures, the possible score that the algorithm can achieve will
be limited. We suggest using the priors {πi} and Monte-
Carlo simulaiton to pick an appropriate set.

NAIVE-BBD

The NAIVE-BBD algorithm collects the same data as
UNIFORM-BBD, but uses the basic modeling assumption
that |∆| is exponentially distributed for the ‘+’ features to
compute a posterior probability for each feature. NAIVE-
BBD algorithm then returns the assessment to the features
with highest expected evaluation. The posterior is computed
by Eqn 3, which uses ft (x : ν, θ) to denote the non-central
t-distribution with ν degrees of freedom and non-centrality
parameter θ evaluated at x.

t =

∣∣∣∣ µ̂+ − µ̂−
σ̂

∣∣∣∣ , ν = 2n− 2, θ = ∆

√
n

2

f− (t;n) = ft (t : ν, 0) + ft (−t : ν, 0) (1)
f+ (t;n) = E∆ [ft (t : ν, θ) + ft (−t : ν, θ)] (2)

p (+|t, n) =
π f+ (t;n)

π f+ (t;n) + (1− π)f− (t;n)
(3)

ORDERED-BBD

A problem with NAIVE-BBD is that the averaging in Eqn 2
places much of the distributional mass near the origin, which
makes it harder to detect ‘−’ features than ‘+’ ones. A
smarter algorithm can counteract this by noting that we ex-
pect N̂− =

∑N ′

i=1(1 − πi) ‘−’ features, and so we should
expect, amongst those features, to see some smaller statistics
than if we were observing just one feature.

This motivates the ORDERED-BBD algorithm, which
agrees with NAIVE-BBD on the ‘+’ features, but sorts the
t-values, t(1) ≤ . . . t(N̂−), so that ordered statistics can be
used to detect the ‘−’ features. For notational convenience,
we drop the dependence on t and n, and use F− to denote
the CDF corresponding to the distribution in Eqn 1.

f(r) =
r
(
N̂−
r

)
× (F−)r−1 × f− . . .

×(1− F−)N̂−−r
(4)

p (+|r) =
πf+

πf+ + (1− π)f(r)
(5)

ORDERED-BBD will label the feature with t(r) as ‘−’ if
Eqn 5 gives it sufficient confidence.
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SPRT-BBD

Thus far, all the algorithms presented have worked with a
static experimental design. We can potentially do better if
we only probe a feature until we have sufficient confidence
to label it as either ‘+’ or ‘−’. It is straightforward to adopt
the well studied sequential probability ratio test (SPRT) to
this task (Wald 1945). The algorithm operates by picking
the unassigned feature with the largest prior and collecting
probes until a {+,−} assessment can be made, then exam-
ines the feature with the next largest prior, and so forth.

OSPRT-BBD

Like the NAIVE-BBD algorithm, SPRT-BBD also suffers
from the averaging effect in Eqn 2. This means SPRT-BBD
needs more probes for the ‘−’ features than the ‘+’ ones.
We can again use ordered statistics to remedy the situation,
by tweaking SPRT-BBD to only collect probes until it has
sufficent confidence to label the feature as ‘+’ or it times
out when nmax probes have been collected. Amongst the
features that time out, the ‘−’ ones will have i.i.d. t-statitics.

Once it exhausts the budget, OSPRT-BBD then applies the
same ordered statistics techniques from Eqn 4 and Eqn 5 on
the features that have timed out to label some of them as ‘−’.

We select an appropriate nmax value by running Monte-
Carlo on synthetic data.

4 Experiments
We compare the algorithms on two datasets. The first
is a real dataset that examines cancer cachexia from a
metabolomic perspective (Eisner et al. 2011). The second
data set is synthetic based on the modeling assumptions.

Real Data
The real data set contains expression values of 63 metabo-
lites in 77 cancer patients, (47 with cachexia ‘1’, 30 con-
trols ‘0’). For the experiment, we do not know which of
the features are actual biomarkers, so to set the ground
truth we first compute p-values and effect sizes ∆̂ using
all the data. We observe, that setting pcritical = 0.05 and
λ = 1 both UNIFORM-BBD and NAIVE-BBD will produce
the same assement for each of the 63 features. Thus, we set
the {+,−} labels for each feature based on those assess-
ments. In the experiment, when an algorithm probes a fea-
ture, it will recieve a random observation from the available
‘1’ patients, and a random observation from the available ‘0’
patients. Lastly, we make the innocuous assumption that we
have a constant prior π = 0.3 across all features to model
the intuition that most features are not biomarkers.

To capture the budgeted nature of the problem, we set the
budget to be B = 1000 probes and calibration cost C = 10
probes so that the algorithms can only collect half of the
available data. We set the evaluation parameters to force a
minimum confidence level of 80%: RTP = 1, RFP = −4,
RTN = 1, RFN = −4.

To show the strength of OSPRT-BBD, we force it to use
the best nmax found by Monte-Carlo in the following syn-
thetic data experiment, while UNIFORM-BBD, NAIVE-BBD,
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Figure 1: Plot of experimental results on the cancer cachexia
data.

and ORDERED-BBD are allowed to tune their parameters by
training on the test data.

Figure 1 shows the results from this experiment. Firstly,
we see UNIFORM-BBD performs the worst, because the as-
sessments based on the p-values alone is the least robust
to resampling noise. NAIVE-BBD and ORDRERED-BBD are
more robust as their assessments directly consider the ‘+’
vs. ‘−’ nature of the problem. Note that ORDRED-BBD out-
performs NAIVE-BBD based on its use of ordered statistics,
and OSPRT-BBD does even better by also considering the
budget as data is collected. The most interesting result is
the total failure of SPRT-BBD. The reason for this failure is
that, it is designed to make assessments as quickly as possi-
ble, and due to a mismatch between the model assumptions
and the real data it over estimates its confidence. By quickly
making slighlty bad decisions, SPRT-BBD saves budget to
make even more bad decisions. Note, OSPRT-BBD does not
have this problem as it must wait for nmax probes before it
can potential label a feature as ‘−’.

Synthetic Data
We now repeat the real data experiment but use entirely syn-
thetic data, with all the same parameters as previously as-
sumed. To genereate the data for each feature fi we first flip
a coin with probability πi = 0.3 to decide if it is a biomarker.
If it is a biomarker, than we draw ∆i from exponential dis-
triobtion with λ = 1, if it is irrelevant than we set ∆i = 0.
We then draw the probe data from the approriate normal dis-
tributions.

Figure 2 shows the results for the best parameter settings
of each algorithm. We observe similar trends to the real data
experiment but the scores are notably lower. Without access
to more public datasets it is difficult to explain if this is a re-
sult of violation of the normal assumption, or an issue arising
from re-sampling technique used to run the real data experi-
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Figure 2: Plot of experimental results on synthetic data.

ment. The most important observation from this study is that
on synthetic data the SPRT-BBD algroithm behaves exactly
as it should and out performs the others. However, the ad-
vantage over OSPRT-BBD is small. Decomposing their re-
sults we find that OSPRT-BBD actually has higher true and
negative positive rates, but achieves a lower score because it
makes fewer ‘+/−’ assessments.

5 Conclusions
This paper has motivated and presented the budgeted
biomarker discovery problem (BBD) as a highly practical
variant to standard association studies. Here, an algorithm
can collect data in a series of probes, with the goal of as-
sessing which features, in a pre-defined set of candidates,
qualify as biomarkers. This BBD task extends association
studies as it provides (1) a clear definition of what is and
is not a biomarker; (2) an objective evaluation function for
scoring the list of features labeled as biomarkers; and (3) a
cost criterion for gathering the relevant information.

We presented 5 algorithms for tackling this BBD task
and empirically compared them on both real and synthetic
datasets. These empirical results confirm that it is advan-
tagous to use an online decision process to quickly deter-
mine which features are obviously ‘+’ or ‘−’, which then
means that more effort can be spent on the features that are
hardest to assess. They also show that ordered statistics can
be a powerful tool when simultaneosly assessing many fea-
tures. We found that our OSPRT-BBD, which embodies both
these principals, provides the best solution to this task.
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