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Abstract

Despite growing interest in using sparse coding based
methods for image classification and retrieval, progress
in this direction has been limited by the high computa-
tional cost for generating each image’s sparse represen-
tation. To overcome this problem, we leverage sparsity-
based dictionary learning and hash-based feature selec-
tion to build a novel unsupervised way to efficiently
pick out a query image’s most important high-level fea-
tures; the selected set of features effectively pinpoint
to which group of images we would visually perceived
the query as similar. Moreover, the method is adaptive
to the retrieval database presented at the moment. The
preliminary results based on L1 feature map show the
method’s efficiency and accuracy from the visual cog-
nitive perspective.

Motivation and Introduction
As the amount of digital data grows in unprecedented speed,
new opportunities come with new challenges. The real value
of big data lies in the ability to extract from it meaningful,
even insightful information, rather than the “big” itself. Fur-
thermore, many applications also require information to be
retrieved fast. Efficient similar image retrieval thus becomes
an important problem in the field of artificial intelligence
with many real-world applications. The task is closely re-
lated to the nature of human cognition since any definition
of similarity is meaningful only when it coincides with hu-
man feeling. Though the similar-or-not decision comes intu-
itively in no time for human, to find a well-defined decision
guideline for computers is extremely hard. To resolve this
stark discrepency that can inhibit human-machine cooper-
ation, in this paper, we propose a novel method that emu-
lates several important aspects of actual neurophysiological
mechanisms, including sparse coding in primary visual cor-
tex (V1), synaptic plasticity, and mutual inhibition between
neurons. The mechanisms are not chosen randomly, instead,
they complement each other’s weak points for overall im-
provements without sacrificing efficiency.

Given unlabeled data, sparse coding provides a class of
algorithms capable of extracting higher-level features that
are actually more cognitively effective than hand-picked
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ones as it emulates partial activity of neurons. The features
can be regarded as the most representative building blocks
by which the input data can be reconstructed most efficiently
– highest accuracy with fewest elements used. The features
form the overcomplete bases that resemble the receptive
fields of neurons in the visual cortex, making sparse coding a
more appropriate medium than other widely-used computer
vision features such as SIFT (Lowe 1999), GIST (Oliva and
Torralba 2001), HOG (Dalal and Triggs 2005), etc., to bridge
human cognition and algorithmic way of learning for com-
puter implementation.

Unfortunately, though there are works (Ge, Ke, and Sun
2013) that tackle the image search problem by first repre-
senting query images as their sparse codes, the high com-
putational cost involved in sparse code calculation renders
it infeasible for (near) realtime retrieval tasks. Thus, we pro-
posed in this paper a novel approach to overcome the perfor-
mance bottleneck by a change of perspective: equipped with
already-learned features stored as a dictionary, can we filter
out the dominant features directly from an image, without re-
sorting to the complete set of its sparse code? By regarding
an image’s selected features collectively as its correspond-
ing hash value, the method actually transforms the sparse
coding based approach to one more similar to efficient hash-
based methods. In the following, we would use basis and
feature interchangeably, and refer to the group of importatnt
features learned as the dictionary.

Considering the fact that sparse representation is based
on an overcomplete basis (Olshausen and Field 1997), we
use concepts similar to that of inner-products and orthogonal
decompositions to aid our feature selection. Overcomplete
basis emerges as a natural result of the sparsity constraint.
Sparsity requirement goes against using only independent
basis to assemble other important features, instead, if a fea-
ture is popular and representative enough, it would be more
beneficial to add it into the dictionary to improve sparsity.
As a result, apart from the robustness it provides, the seem-
ingly redundant overcompleteness implies the vectors’ inde-
pendent importance in representing different types of data.
This forms the reason behind choosing similar features only
exclusively, i.e. similar features are mutually inhibitive.

By combining the inhibition-like decomposition scheme
with an additional mechanism that emulates synaptic plas-
ticity to add adaptiveness given a static pre-learned dictio-
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nary, we are able to come up with a retrieval system with
hash-based-like efficiency, and performance comparable to
GIST-based approach. Experiments based on SUN397 scene
benchmark (Xiao et al. 2010) confirmed the effectiveness
and efficiency of our method.

Proposed Retrieval System
System framework

A complete view of our proposed system is shown here for
easier reference. Each step will be discussed in more detail
in the following sections.
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Figure 1: Proposed system. Given a query image, the system
extracts from the database the required number of similar
images in real time. Note that the dictionary is learned in
advance from possibly a different set of images from the re-
trieval database, as long as they are of the same categories.

Image Preprocessing

Before being fed into the retrieval system or used for dictio-
nary training, all images are first whitened to remove infor-
mation redundancy that lies in correlations between neigh-
boring pixels. This step is very fast while allowing signifi-
cant improvement in feature learning quality, as the features
learned would become less correlated and of the same vari-
ance. It is worth noting that the retinal ganglion cells (RGC)
actually perform center-surround filtering that is very similar
to the whitening procedure on their spatial receptive fields.

Offline Unsupervised Dictionary Learning

Sparse-based dictionary learning has been proved to be espe-
cially effective in capturing discriminative features of scene
images. We use the Efficient sparse coding algorithms pro-
posed in (Lee et al. 2007) to build the dictionary of features
from a learning set of 1000 images of size 200× 200 pixels,
the result is shown in Fig. 2. The Achilles’ heels of sparse
code dependent methods are rarely their performance, but
the time needed for image encoding. In our method, sparse
code calculation is done once and for all during dictionary
learning, off-line and in advance. The calculation can be
done on an arbitrary set of images by some powerful com-
puter not contained in the retrieval system itself. Only the
resulted dictionary is required.

Figure 2: The dictionary learned off-line.

Hash Value Generation
Inspired by the efficient localitive sensitive hashing (LSH)
proposed by (Andoni and Indyk 2006), where high dimen-
sional data can be projected to lower dimensional space with
similarity preserved, this hash value generation step plays
central role in our proposed method. Instead of determining
two images’ similarity by directly computing and compar-
ing the difference between their sparse codes, we use the
projection of patches onto dictionary as an emulation of
image-triggered neuron excitation: bases with longest pro-
jected length correspond to the most responsive neurons. We
proposed two neural-inspired procedures that when used co-
operatively, can generate each image’s adaptive hash value
most effective for current retrieval database. For each image,
this step can efficiently select from the dictionary a group of
(non-redundant) features that together captures the image’s
characteristic. “Which features are chosen from the static
dictionary” can be regarded as a form of hash value. If our
method can effectively select features in a way like how we
recognize similarity, the cognitively similar images would
have similar hash values, i.e. have similar features selected.
This is indeed the case as will be shown in the experiment.

The two neural-inspired procedures: inhibitive feature se-
lection, and synaptic plasticity reactivation scoring focus on
the mutual inhibition of neurons and the connection weight
tuning based on experience, respectively. As also will be
shown in the experiment, the two mechanisms reinforce each
other and lead to much better result when used together.

Inhibitive Feature Selection (IFS) Algorithm Dictio-
nary as an overcomplete basis comes as a natural result un-
der sparsity constraints. Given a training set of n input im-

age patches
−→
i(1),
−→
i(2), ...,

−→
i(n), assume that their sparse coef-

ficients given the to-be-learned basis are
−→
c(1),
−→
c(2), ...,

−−→
c(n),

the basis
−→
b(1),
−→
b(2), ...,

−−→
b(m) that form the learned dictionary

is the solution to the optimization problem:

minimize
n∑
j=1

‖
−→
i(j) −

m∑
k=1

−→
b(k)c

(j)
k ‖

2 + β

n∑
j=1

m∑
k=1

φ(c
(j)
k )

subject to ‖
−→
b(k)‖2 ≤ δ, ∀k = 1, ...,m



Where φ is a sparsity measure under the user’s choice. Spar-
sity constraint makes it more optimal to reconstruct each
training image within certain accuracy using as few features
from the dictionary as possible, thus effectively extracting
the most representative features, not orthogonal features,
out of the training database. This constraint is reasonable
because features actually reside in (very-)high-dimensional
vector space(s); what we try to capture in the dictionary are
already their projections. A projected feature is not neces-
sarily independent from other features’ projections. In other
words, being dominated by features that appear to be only
slightly different in the relatively low dimensional vector
space may actually be the main cause of two images’ non-
similarity.

As we use projection as our efficient way of gauging each
basis’s relevance with the (image) patch at hand, we are con-
fronted with the problem that projecting onto similar bases
lead to similar strength of response. Considering the the-
ory of sparse coding, only one of them should be selected.
We choose the one with the highest response b̂ (i.e. with the
longest projected length) and subtract this component from
the input vector

−→
i , to form the vector

−→
i′ used in the next

projection onto the dictionary. i.e.
−→
i′ =

−→
i −

−→
i ·̂b
‖b̂‖2

b̂. Itera-
tively, we can filter out the top n strongly responsive features
as our hash value for each patch vector, where n is flexible to
the application at hand. Though we came to the subtraction
from a mathematical viewpoint, this coincides well with the
inhibitive nature demonstrated by neurons with similar re-
ceptive fields.

Algorithm 1 IFS Algorithm
(τ : How many basis vectors to be selected.)
k = Number of patches;
m = Dimension of patches vectors and basis;
n = Number of basis in the dictionary;
Data ∈ Rk×m // each image patch is a row vector;
Dictionary ∈ Rm×n // each basis forms a column vector;

Projection← Data ·Dictionary;
for i = 1; i < τ ; i+ + do

for all j, 1 < j < k do
value(j)max ← max(jthrow of Projection)
index(j)

max ← position(max(jthrow of Projection))
(pj ≡ jth row ofData)
pj ← pj − value(j)max· (basis at index(j)

max)
T ;

end for
Projection = Data ·Dictionary

end for

Synaptic Plasticity Reactivation Scoring Recall that the
dictionary is learned beforehand on a different database and
will stay static throughout the query process. However, it
will be beneficial to make the retrieval process adaptive to
current retrieval database without changing the dictionary
itself. Actually, this is what the nerons are doing everyday
– the synaptic weights are altered to adapt to the survival
tasks confronted. We incoporate this weight tuning scheme
into our hash value generation by repeating a query image’s

stimulus using multiple groups of patches. Given an input
image, we extract from it multiple sets of patches. Each set
of patches goes through the IFS step and selects its set of
important features. Everytime a set finishes its selection, the
weights of those images in retrieval database that share the
most of this iteration’s selected features are scaled up while
all other weights are scaled down. In the end, the images
with the highest weights are retrieved as answer. The de-
signed repeated stimulation from the same query image, and
the corresponding weight updates not only average out pos-
sible noise, but also take current task condition into account.

Experimental results
We evaluate our proposed system on a subset of SUN397
scene benchmark dataset and it contains 10 categories from
all three top-level partitions (indoor, outdoor natural, out-
door man-made): bamboo forest, beach, botanical garden,
corridor, cottage garden, hayfield, mountain snowy, water-
fall block, wheat field, and wine cellar barrel storage. To ac-
celerate training as well as later query stage, we randomly
extract 50 patches of 14 × 14 pixels from each 200 × 200
pixels image as our input. The results are shown in Fig. 3
and Fig. 4

The average runtime for one query that retrieves top 8 re-
sults from a retrieval database of 3853 images is 10 seconds
on a MacBook Air with 1.8 GHz Intel Core i7, 4 GB memory.

Improvement with Inhibition Considered
Under our sparse coding dictionary framework, we imple-
mented two encoding method. One is a direct transplant of
localitive sensitive hashing: reducing the high dimensional
data into lower dimension by projecting onto the dictionary,
without considering inhibitions between similar features, al-
though the reactivation scoring is included. In fact, this is
our first proof-of-concept method to explore the effective-
ness of the sparse coding based framework with adaptive-
ness; we will refer to this first method as feature selection al-
gorithm, denoted as FS SPRS in the figures. Another one is
our novel inhibitive feature selection algorithm with both in-
hibition and adaptiveness considered, denoted as IFS SPRS
in the figures. As shown in Fig. 3(a), adding inhibition into
the flow can lead to significant performance improvement.

Comparison with GIST-based methods
As we use a scene image database, to be fair, we compare
our results with GIST-based methods, which is well-suited
for capturing scene related features. GIST features are ex-
tracted directly from all 200×200 pixels images using meth-
ods proposed by (Oliva and Torralba 2001). The first base-
line method GIST simply extracts 512-bits GIST feature of
the query image and finds the ones with nearest GIST fea-
tures from the retrieval database. Another one, GIST LSH
accelerates the retrieval by generating 128 binary hash bits
through random projection of images’ GIST features. To
boost up the speed, we generate compact codes for all above
methods into binary bits and employ hamming distance met-
ric to perform fast image retreival. Experiments show that
our method performs better than GIST-based ones for most
cases (Fig. 3 and Fig. 4).
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Figure 3: (a) Precision&Recall curves compiled from 10 queries to each category; our proposed method (IFS SPRS) outper-
forms the baselines in different image categories. (b) An example of top 8 retrieved results from one of the 10 random queries.
(For both (a) and (b), the corresponding categories from left to right: bamboo forest, beach, corridor.)
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Figure 4: Precision & Recall curve for 1000 random queries.
Note that our methods’ effectiveness is even more apparent
than the results with 10 queries shown in Fig. 3(a).

Conclusion
In this paper, we proposed a real-time similar image retrieval
system that based its similarity judgement on sparse cod-
ing based features, which are closer to the inherent process
forming human perception. Apart from maintaining a pre-
learned dictionary as a feature storage, we overcome the
obstacles of sparse coding’s high computational complex-
ity by neural-inspired strategies, including inhibitive feature
selection that improves the quality of extracted features for
a query image without computing its sparse code. Instead,
projection similar to those used in localitive sensitive hash-
ing is adopted for efficiency reason. Another strategy emu-
lates synaptic plasticity to bring adaptivity into the static dic-
tionary. Experimental results based on a retrieval database
with 3853 images demonstrate the effectiveness of our meth-
ods, furthermore, large improvement from introducing inhi-
bition between similar features is confirmed by experiments.
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