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Abstract

At present, the distinction between interpretive and ob-
servational assertions is not made strongly in biomed-
ical informatics knowledge representation (KR) re-
search. In this position paper, we draw from examples in
a small number of biomedical domains to advocate the
importance of developing systems based primarily on
scientific evidence rather than interpretations. As an ex-
planatory methodology, we base this argument primar-
ily on a worked example from a cancer biology study
and previous work in knowledge engineering. We em-
phasize how interpretative models that form the basis of
scientific theories are themselves created to fit, explain
and predict experimental data. Within an empirically-
driven field such as biomedicine, scientists typically use
a rich, intuitive understanding of experimental method-
ology directly in their work and developing methods to
incorporate that expertise into informatics systems re-
mains a challenging but important goal.

Motivation: The Importance of Experimental
Methodology to Biomedical Knowledge
Progress and discovery in biomedical research is driven
largely by the development of new experimental techniques
rather than breakthroughs in theory. For example, in the
1970s, neuroanatomical tract-tracing experiments permitted
scientists to trace both the start- and end-points of neu-
ronal projections in animal brains by carefully injecting
tracer chemicals into targeted brain regions and then ob-
serving how the tracer was actively transported along ax-
onal processes (Blackstad, Heimer, and Mugaini 1981). At
the time, this technique was revolutionary and to-date has
provided the highest quality information concerning brain
macro-connectivity data (i.e., region-to-region neuronal pro-
jections). Previous to this, the state-of-the-art involved in-
flicting focal lesions on brain tissue and then observing ax-
onal degeneration in the tissue. This cruder technique was
widely used in the field and a comparative retrospective
of hypothalamic connections involving both techniques re-
vealed that only 51% of lesion studies were correct when val-
idated by later techniques (Bota, Dong, and Swanson 2003).
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The mapping from observation to interpretation is com-
plicated by confounding aspects of the techniques (in ways
that only come clear after the technique has been used for
some time). For some tract-tracers, ‘fibers of passage’ cause
false positives by axons passing through the injection site
to transport label that had effectively originated part-way
along a projection. Other tracers transport label across the
synaptic connections between cells, labeling neurons with
no direct projection to or from the injection site. Other tech-
niques might involve tracers moving in both an anterograde
and retrograde direction simultaneously. All of these com-
plications can easily be resolved in the minds of expert re-
searchers, who present fully formed interpretive conclusions
as the main outcomes of their work (and the primary candi-
dates for curation and retrieval in informatics systems). In
our neuroanatomical example, researchers would highlight
neural projections in a circuit connecting large-scale brain
structures (and may, if prompted, provide some details of
the histological maps that support their findings as support-
ing evidence). These interpretive assertions then form the
primary data elements of informatics systems and the basic
building blocks for AI-inspired computation.

These interpretive models are abstractions that represent
the prevailing perspective of researchers as possible expla-
nations for observed phenomena. They may be based on in-
correct or incomplete assumptions and are likely to need on-
going updates and revisions.

In this position paper, we argue that scientific informatics
systems typically only emphasize the main interpretive find-
ings of studies and omit the crucial reasoning of how conclu-
sions are drawn from experimental data. We rely entirely on
human expertise to formulate interpretive models within any
given subdomain (perhaps as ontologies or data exchange
formats), but rarely (if ever) explicitly capture the underly-
ing supporting data to the level of precision used by labo-
ratory scientists. The task of understanding how interpretive
models (such as neuroanatomical circuits or molecular path-
ways) may be automatically inferred from experimental ob-
servations is an unsolved AI challenge problem. We suggest
that abductive reasoning methods built over a representa-
tion of experimental statistics could provide the foundation
for machine reasoning technology capable of generating hy-
potheses from scientific data.
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Three-level Organization in Biomedical Knowledge
Engineering
Figure 1 illustrates our basic premise with a depiction of
three organizational levels: ‘Context’, ‘Interpretive Mod-
els’ and ‘Experimental Observations’ (with exemplars taken
from two research domains: neuroanatomical macro connec-
tivity and molecular cancer biology).
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Figure 1: A three-level KR organizational scheme in two ex-
ample domains.

In both domains, there exist ‘standard’ interpretive mod-
els: the ‘Foundational Model of Structural Connectivity
in the Nervous System’ (FMC) for neural connections
(Swanson and Bota 2010) and BioPax, the Systems Biol-
ogy Markup Language (SBML), and Graphical Notation
(SBGN) for molecular pathways. These representations act
as a data interchange format (BioPax), a standard set of ele-
ments for simulation (SBML) or as a standardized notation
for diagrams (SBGN). They do not yet support reasoning to
emulate the way that scientists construct theories from data
or apply those theories in a broader context across the sub-
ject, but nonetheless are the best available shared KR struc-
tures to begin the process of formulating such theoretical
frameworks in their respective fields.

The distinction between interpretations and observations
can be elucidated based on models of macro-connectivity
(Russ et al. 2011). The FMC uses a graph abstraction where
nodes correspond to grey matter regions in the brain and
edges correspond to projections between regions. The pres-
ence of an edge asserts that there exists a subpopulation of
neurons with cell bodies located in the origin region and ax-
ons that synapse onto neurons that have their soma located
in the edge’s target region. Under a strict policy concern-
ing evidence supporting adding an edge to such a graph, we
might require that (A) at least one experiment using high-
quality anterograde tracers visualize terminal boutons in the
target region; (B) at least one retrograde study map out the
originating cells for the projection in the starting region; (C)
suitable control injections ensure that none of the regions
surrounding the injection site could be the actual source
or target of the projection; and (D) ultrastructural studies
confirm that axonal terminal boutons actually correspond to
anatomical synapses. Satisfying these criteria in a consis-
tent way across all studies in a database is challenging (due
to data heterogeneity, variable standards of reporting and the
effort required to curate published information to such a high
standard). Therefore, the presence of an edge in an FMC
model is so highly dependent on the experimental observa-

tions on which it is based, it should never be considered in
isolation from those observations.

Thus, for the purpose of applying AI technology to
biomedical knowledge, it is crucial that we construct practi-
cal representations of experimental observations not just as a
means to code the reliability of interpretive assertions (as is
currently the case with ‘evidence codes’ in BioCyc or Gene
Ontology), but as a framework for reasoning over avail-
able evidence to generate and validate interpretative mod-
els. Each domain requires specialized, nuanced knowledge
to generate correct hypotheses that fit the constraints from
available data. We assert that the crucial step of evaluating
this technology depends on whether we are able to generate
predictions that are then testable scientifically. This ideal
has already been realized by ‘robot scientists’ developed for
yeast metabolic biochemistry (King et al. 2009), but must
now be generalized across less well-defined domains. We
examine studies of molecular pathways involved in cancer.

Pan et al. 2013, a typical molecular biology
experimental paper.1

Molecular biology studies involve a large number of small-
scale assays. For example, (Pan et al. 2013) uses ⇠20 sepa-
rate small-scale experiments where measurements appear as
images (e.g., of a blot assay) or graphs (to show statistical ef-
fects) and direct measurements may not be reported explic-
itly in the text. This paper elucidates the dynamic action of
the HMG box-containing protein 1 (HBP1) on gene expres-
sion of DNA methyltransferase 1 (DMNT1) and its role in
senescence by a dual action of both activating and repress-
ing the cyclin-dependent kinase inhibitor p16. In Figure 2,
we render the paper’s main summary as an SBGN gene reg-
ulation diagram based on our understanding of the paper’s
findings.
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Figure 2: The findings of Pan et al. 2013 as an SBGN gene
regulation network.

1This paper was cited in the Broad Agency Announcement of
the 2014 DARPA ‘Big Mechanism’ program.
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With omissions, the paper’s explanation of this model reads:
”We envision that HBP1 represses the DNMT1 promoter
through sequence-specific binding (...) and that the activity
of HBP1 itself is regulated through acetylation at any of 5
sites in the protein... The HBP1-mediated repression of the
DNMT1 gene then decreases overall DNA methylation. On
the p16 gene, HBP1 expression leads to a similar DNA hy-
pomethylation, but HBP1 instead binds to putative HBP1 ac-
tivation element (...) to give activation. While HBP1 alone
can partially activate the p16 gene, full transcriptional ac-
tivation of the p16 gene requires hypomethylation and an
HBP1 acetylation at K419”

This interpretation is intended as the best possible expla-
nation of data presented in the results section of Pan et al.
2013. This can be broken down into the following elements
(numbered corresponding to figures where supporting data
was reported).
• Background informatics-driven research (This establishes cor-

relative relationship between HBP1 and DMNT1 expression)

– An inverse correlation between HBP1 and DMNT1 expres-
sion in public databases for cervical and ovarian cancer.

– Bioinformatics predicts a high affinity HBP1 site in the
DMNT1 promoter

• Experiment 1A: examine expression of HBP1 and DNMT1 in
fibroblasts at different times in progression to senescence (This
establishes the relationship of HBP1 / DNMT1 to aging).

– HBP1 levels increases with replicative senescence.
– DNMT1 levels decrease with population doubling levels.
– DNMT3A and DNMT3B levels are unchanged.

• Experiment 1B: express HBP1 through retroviral infection (This
indicates how HBP1 acts on DNMT1 expression).

– Exogenous HBP1 expression reduced DMNT1 protein and
mRNA but had no effect on DNMT3A or DNMT3B.

• Experiment 1C: use short hairpin RNA to knock down HBP1
gene (This provides an indicator of how HBP1 acts on the ex-
pression of DNMT1, DMNT3A, DMNT3B, p16 and p21.).

– HBP1 knockdown increased DMNT1 protein and mRNA lev-
els but had no effect on DNMT3A or DNMT3B.

– HBP1 knockdown shows increased methylation of p16 and
p21 promoters.

• Experiment 2C: express HBP1 or DNA-binding defective
mutant of HBP1 (pmHMG)2 (This establishes that a HBP1
sub-sequence is needed to suppress DMNT1 expression ).

– Wildtype HBP1 over expression suppressed DMNT1 pro-
tein level.

– An HBP1 mutant without the binding site (pmHMG) had
no effect on DMNT1 protein relative to controls.

• Experiment 2D/E/F: use DMNT1 promoter luciferase reporters
with either intact DNMT1 or DNMT1 with the HBP1 bind-
ing site deleted (This investigates further the specific HBP1 se-
quence needed to suppress DMNT1 expression).

– Wildtype HBP1 expression suppressed DMNT1 protein level.
– HBP1 had no effect on the DNMT1 promoter that lacked the

HBP1 binding site.

2The entry for Experiment 2C is emphasized since we refer to
it in the next section

– pmHMG had no effect on native or mutant DNMT1 promoter.

• Further Experiments 3A-B, 4A-E, 5A-D, 6A-F, 7A-E, 8A-D
deal with locating the binding sites, the effects of methylation,
interactions with p16 and p21, processes related to senescence,
HBP1 acetylation and effects on the senescence phenotype.

This evidence provides constraints that the interpretive
model shown in Figure 2 attempts to explain as one possible
interpretation. By listing these specialized findings here, we
now showcase an AI-driven approach to find, enumerate and
compare other possible explanations for these data.

Representing experimental evidence.
‘Knowledge Engineering from Experimental Design’
(KEfED) uses a simplifying assumption: a measurement is
dependent on a given parameter if that parameter lies on
a path that can be traced back to the start of the protocol
(Russ et al. 2011). KEfED generates a data schema from a
flowchart-based, process model. Typically, each experimen-
tal type has a restricted set of interpretations, given its input
parameters and measurements. Two excerpts from Pan et al.
2013 show how KEfED can be applied (Figure 3).

pg: 891, Fig 2CPan et al. 2013, pg: 889, excerpt 1 
HBP1 represses the DMNT1 gene 
through binding a high-affinity site in 
the DNMT1 promoter.
                          pg: 890, excerpt 2
Wild-type HBP1 overexpression de-
creased DNMT1 protein level, but the 
DNA-binding defective mutant 
(pmHMG) had no effect on DNMT1 pro-
tein reltive to control cells (Fig 2C).

Figure 3: Some excerpts from the text and figures of Pan et
al. 2013 pertaining to the results of experiment 2C.

Excerpt 1 is an interpretation and excerpt 2 describes its
experimental foundation where protein levels of DNMT1
were measured in cells transfected to express either wild
type HBP1 or a HBP1 mutant whose HMG box DNA bind-
ing domain (amino acids 431 to 509) had been removed
(‘pmHMG’). The key interpretation is that the comparative
density of lines on the blot for DMNT1 expression (2nd row)
between the pmHMG knockout and the ‘Vector’ cases are
the same, but the column for HBP1 is diminished. We show
a KEfED model of this data in Figure 4.
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Figure 4: KEfED models and data for experiment 2C from
Pan et al. 2013.
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This KEfED model provides a simple, powerful explana-
tory structure for this data that could be instantiated as an
‘experimental motif’ for knockout experiments that could
be reused by changing the values of the parameters shown.
This could be used to identify and systematize these motifs
for the most common patterns of reasoning used for specific
molecular biology assays.

These motifs are typically ‘coarser’ than a description de-
signed to allow a scientist to reproduce the experiment in
the laboratory (which would require details of all steps de-
scribed in full rather than specifying an assay type such as
‘Western Blot’ with its main parameters). Capturing the con-
founding variables that govern reproducibility will require
that motifs be expanded to capture the relevant variables.

Abductive Reasoning.
The reasoning used by scientists to connect observations to
explanations (or models) is one of abduction, which is infer-
ence to the best explanation (Peirce 1958). The relationship
between a model M , an experimental context E and pre-
dicted observations O can be written logically as:

M ^ E ) O

Using such a formulation, we can then use reasoning tech-
nology, such as PowerLoom, to link observations with inter-
pretations. In a validation scenario, we exploit this impli-
cation in the forward direction to test whether a considered
model explains the data. If we know the model M we want
to test and that M implies O under certain conditions E we
can test whether the predicted observations O describe all
relevant actual observations in the data. Usually, we only
know about O and want to find out about M relative to ex-
perimental conditions E. Abduction tells us that M is a pos-
sible explanation of O if it does not lead to some inconsis-
tency with other things known to be true. So, that ‘HBP1
regulates DNMT1’ is a possible explanation for observed
outcomes, it is consistent with the data.

Generally, abductive reasoning will lead to several com-
peting alternative explanations, especially when M and E
are sufficiently complex and only constrained by data from
within a single study (such as Figure 2). Such alternative
explanations can be useful to overcome interpretation bias
and provide alternative views on what data might mean.
However, that usefulness is predicated on explanations being
plausible, which requires some realistic evaluation scheme
to measure the cost of alternative models and assumptions.

Our contention is that by explicitly modeling the obser-
vations from many experiments across studies and making
them available, we would greatly increase the number of
constraints available to restrict the number of plausible mod-
els. This would also provide an incentive for scientists to
publish negative findings since these could equally well act
as model constraints.

Practical challenges of this approach
There is a wealth of knowledge in the results sections of pa-
pers and the laboratory notes of researchers that is largely

untapped by existing informatics technology. This knowl-
edge could be applied to constrain abductive reasoning sys-
tems if it could be captured accurately and efficiently.

Building the basic knowledge representation for a given
domain requires a significant amount of background knowl-
edge. These entity and element definitions can be gleaned
from existing ontological resources, but in order to mirror
inferences drawn by molecular biologists, the system must
also be programmed with implicit, basic molecular biology
formulations. It would also need to reason over different
types of manipulations and assays and how they are used as
part of experimental patterns such as, ‘a gene knockout ex-
periment’. While some of this knowledge is quite complex,
we anticipate that scoping to a specific subdomain would
limit the number of experimental techniques to be modeled
and permit us to build a sufficient representation to capture
the meaning of quite specific elements (such as the use of a
mutant protein with an altered sequence and its correspond-
ing wild type protein in a gene knockout experiment).

Conclusions
In this position paper, we argue for a reasoning-driven ar-
chitecture for biomedical knowledge engineering based on
experimental observations rather than interpretations. We
present a preliminary approach for such a model (the KEfED
methodology with logical ‘motifs’ for experimental types
augmented with abductive reasoning) and provide an exam-
ple from molecular biology.
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