
On Demand SPARQL Extension: A Case Study of Extending
Geo-SPARQL for Sensor Data Exploration in Semantic Cities

Snehasis Banerjee and Debnath Mukherjee
TCS Innovation Labs, Tata Consultancy Services, Ecospace 1B Building, Kolkata, 700156, India.

{snehasis.banerjee, debnath.mukherjee}@tcs.com

Abstract
SPARQL is the standard language for querying on RDF data,
however it lacks support for many useful functions that a se-
mantic city service may require. In this paper, a system is
discussed where functions written in commonly known pro-
gramming language like Java can be instantly added to the
SPARQL function library, thereby decreasing development
time as well as keeping the underlying implementation trans-
parent. As a case study for instant SPARQL extension, we
have chosen to extend the Geo-SPARQL library. We propose
various functionality missing in Geo-SPARQL specification
and discuss how their instant addition makes sensor data ex-
ploration in semantic cities more rich.

Introduction
With a wide variety of RDF data available, the number of
rich SPARQL queries possible is humongous. However, ex-
pressing complex logic in form of SPARQL queries that re-
quire computations apart from graph pattern matching is not
handled well. As an example, ‘co-prime’ is not supported
by default, and the logic for the same has to be written in
SPARQL syntax each time a query needs a calculation of
mutual prime. One way is to extend the existing SPARQL
grammar, but that needs implementation expertise that a nor-
mal SPARQL query user need not have. Hence in this pa-
per, an approach is proposed where a user can paste from
some source or write code in native language of a function-
ality (say co-prime), and the same will be instantly added as
a function for use across multiple queries. In this way the
query writer need not know the implementation details; and
can use a set of functions that some other user have created,
which will lead to a collaborative ecosystem. To showcase
the proposed functionality, we have taken help of a use case
where users can formulate rich queries over city sensor data,
whose interface is named as Sensor Explorer. Sensors are
attached with a location, so Geo-SPARQL, a SPARQL ex-
tension in the geo-spatial domain plays a major role in sup-
porting spatial queries. However, the Geo-SPARQL specifi-
cation by OGC1 lacks some features which are required to
satisfy many useful Sensor Explorer queries, thereby mak-
ing extension a necessity for this as well as similar use cases.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.opengeospatial.org/standards/geosparql

Section 2 discusses possible SPARQL enhancements for
Sensor Explorer use case while section 3 describes the pro-
posed system. Finally section 4 concludes the paper.

Extending SPARQL for Sensor Explorer
Sensor data queries in a semantic city can be of 2 types:
a)Query on sensor meta-data (like age of a sensor)
b)Query on sensor data or readings (like humidity level)
Geo-SPARQL is a good choice as a standard for sensor data
exploration. However, in the spatial domain, Geo-SPARQL
specification does not handle Orientation aspect at all, par-
tially handles Proximity and Containment and misses on
some other aspects as shown below.
1. Orientation:- The basic features in Geocentric reference
system missing from the specification are: a) North b) East
c) West d) South, and by combining the aspect of angle be-
tween two entities we can have a set of function such as
‘isNorthOf’, ‘isNorthWestOf’, ‘isParallellToEquator‘, ‘is-
NorthWestOfAtAngle(x)’ and so on. For egocentric and ex-
ternal reference system, Oriented Point Relation Algebra is
one of the ways to represent qualitative relations. The list of
functions include ‘isFrontOf’, ‘isBackOf’, ‘isLeftOf’, ‘is-
RightOf’, relative angles and their combination. Some other
functions include ‘isAbove’ and ‘isBelow’ in case of 3-D. A
simple query is to find the average temperature to the north
of a specified zone.
2. Proximity:- It is the calculation of distance between two
points and can be quantitative like within 10 km as well as
qualitative like ‘near’ and ‘far’ (fuzzy functions), the latter
being missing from the Geo-SPARQL specification. Often
distance between two points is determined by the path, as
a straight line journey is infeasible. This leads to functions
like ‘distance-on-road’, ‘distance-by-flight’ and the like. A
simple function can be ‘quickest-distance’ that returns the
distance in terms of best suitable travel mode, similar to
the Google Maps API2. Another aspect in this regard is that
sometimes distance is denoted in terms of time to reach a
destination instead of path length, so functions in that cate-
gory can be of the form ‘reachableWithIn(x, y time units)’.
3. Containment:- One interesting function missing in Geo-
SPARQL specification is ‘between’ (whether an object lies
between two objects). This can be determined if an object

2https://developers.google.com/maps/documentation

Semantic Cities: Beyond Open Data to Models, Standards and Reasoning: Papers from the AAAI-14 Workshop

50



Figure 1: Frontend screen to run query

Figure 2: System Workflow

lies in the area formed by connecting the ends of ‘n’ objects.
An example query is to list the active camera sensors be-
tween two specified buildings.
4. Pattern-based:- In 2-D and 3-D space, spatial objects can
form patterns of geometric functions and shapes such as if
four objects form a square or not. An example query can be
to find collinear sensors in a zone.
5. Altitude:- It is a neglected feature in the spatial extensions
of SPARQL. Usually sensor locations can be expressed as a
tuple (latitude, longitude, altitude) which makes way for a
rich function set like ‘higher’ and ‘lower’. ‘Visibility’ be-
tween two points (considering possible obstructions) is an-
other interesting function.
5. External API calls:- As a large number of computational
tasks are provided as a web service, using API calls instead
of whole function implementation is the way to go. As an
example, instead of using the standard Haversine3 formula
to calculate distance between two points on Earth’s surface,
the distance computation API of Google Maps can be used
for better results.
6. External Tools:- Offloading computation to external tools,
containg well tested function implementations is another
approach. For example, statistical calculations can be of-
floaded to ‘R’ tool and the results fetched back.

System Description
A J2EE based system was developed where Apache Jena
ARQ4 was used as the SPARQL engine. If a user wants to

3http://www.movable-type.co.uk/scripts/latlong.html
4https://jena.apache.org/documentation/query/

add a function say ‘isNorthWestOf’, then the user searches
a Registry of existing functions. The Registry is a code base
of functions that a user can use for querying. The code base
contains a) Standard functions: some frequently used func-
tions b) Defined functions: functions added by the user c)
Shared functions: functions added by other users and shared
for re-usability. The user needs to turn on the functions that
he or she wish to use. The user can remove and update self-
created functions. If a desired function does not exist, the
user can add that to Registry. If a desired function does ex-
ist, but some logic needs to be changed for application spe-
cific requirements, it can be done by overriding the function
for that user. Fig. 1 showcases the front-end screen where a
Java code is either typed or pasted and the same is added to
the SPARQL library (post validation) which is used by the
query below, keeping the users transparent from implemen-
tation. The system response time (time to add a function in
Registry for usage) lies within a few seconds. In Fig. 2, the
proposed system is illustrated. If a desired function do not
exist in Registry, the user can add that function by tagging
the ‘main’ method in case of multiple modules. Then the
code is added to SPARQL library for immediate use, and
the same can be shared with others for use. Finally the user
visualizes the result in an appropriate form. There are some
intermediate steps like error handling and error reporting.

Conclusion and Future Work
In this paper, a system and method for instant addition of
SPARQL functions is showcased by extending SPARQL,
especially Geo-SPARQL for sensor discovery. In future,
support for more programming languages apart from Java
to express logical functionality are planned. Future area of
work include stabilizing and testing the system, and man-
aging external function and tool integration. Some of the
Geo-SPARQL extensions discussed here will be proposed
to the OGC steering committee for possible inclusion into
the specification.

References
Battle, R., and Kolas, D. 2011. Geosparql: Enabling a
geospatial semantic web. Semantic Web Journal 3(4):355–
370.
Dey, S.; Dasgupta, R.; Pal, A.; and Misra, P. 2013. Sen-
sxplore: A tool for sensor discovery using semantics with
focus on smart metering. Semantic Web Challenge.
Mossakowski, T., and Moratz, R. 2012. Qualitative rea-
soning about relative direction of oriented points. Artificial
Intelligence 180:34–45.

51




