
Controlling Elections by Replacing Candidates:
Theoretical and Experimental Results

Andrea Loreggia
University of Padova

email: loreggia@math.unipd.it

Nina Narodytska
University of Toronto and UNSW

email: ninan@cs.toronto.edu

Francesca Rossi
University of Padova

email: frossi@math.unipd.it

K. Brent Venable
Tulane University and IHMC
email: kvenabl@tulane.edu

Toby Walsh
NICTA and UNSW

email: toby.walsh@nicta.com.au

Abstract

We consider elections where the chair may attempt to influ-
ence the result by replacing candidates with the intention to
make a specific candidate lose (destructive control). We call
this form of control “replacement control” and we study its
computational complexity. We focus in particular on Plural-
ity and Veto, for which we prove that destructive control via
replacing candidates is computationally difficult, and Borda
for which we prove that destructive control via replacing can-
didates is computationally easy. To get more insight into the
practical complexity of this problem, we also perform an ex-
tensive experimental study. This study shows that the theoret-
ical computational complexity results are often not reflecting
the practical difficulty of controlling elections by replacing
candidates.

Introduction
The result of an election can be influenced in many ways.
For instance, voters may submit insincere preferences or the
chair may introduce new candidates or choose the voting
rule. We focus here on control by the chair.

Control may be constructive when the chair’s goal is for a
certain candidate to win, or destructive when the chair’s goal
is to prevent a candidate winning. One action that the chair
can take is adding or deleting candidates or votes.

We consider a specific form of combining the basic con-
trol actions, called replacement control, where we replace
some candidates (or votes) with the same number of other
candidates (or votes). This can be seen as a combination of
deletion and addition of candidates (or votes) in the same
quantity.

We consider a voting rule to be vulnerable (resp. resistant)
to a form of control if it is polynomial (resp. NP-hard) to
check whether that control can be achieved. We prove that
Plurality and Veto are both resistant to destructive control
via replacing candidates, while Borda is vulnerable to it.

We then run an extensive experimental analysis to assess
the practical complexity of this problem and check whether

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such voting rules are really difficult to control in practice.
To do that, we use real datasets from the preflib reposi-
tory (Mattei and Walsh 2013) and we consider k-approval
and Borda. Our experimental study shows that Plurality is
more resistant to this form of control than other versions of
k-approval. Borda, instead, is rather vulnerable to control
by replacing candidates. Moreover, we compare the control
power of replacing candidates to the power of just adding of
deleting them, showing that replacing candidates add signif-
icant power to the chair of the election, with respect to to the
single control actions of adding or deleting candidates.

We also observe that, even if theoretically Veto is resis-
tant and Borda is vulnerable, they both show a different be-
haviour in the empirical evaluation, due to the low likeli-
hood of the conditions that make the system vulnerable or
resistant to replacement control. These results suggest that
the study of computational complexity in the worst case
is not enough to ensure a significant protection to the sys-
tem, as suggested in (Bartholdi, Tovey, and Trick 1992; Fal-
iszewski and Procaccia 2010; Faliszewski et al. 2009; Fal-
iszewski, Hemaspaandra, and Hemaspaandra 2011; 2010;
Walsh 2010).

Background
An election E is a pair (C, V) where C is a set of m candi-
dates and V is a collection of n votes (linear orders over C).
A voting rule R takes an election and returns the winning
candidate from C. Besides the voters and the candidates,
there is also another agent, the chair who can influence, for
example, which candidates and voters participate.

Positional scoring rules give to each candidate points
based on their ranked position in each vote. The sum of the
points gives the total score of the candidate. The candidate
with the highest score is the winner. Scoring rules differ in
the way points are allocated to candidates. This difference
is expressed by the scoring vector, which denotes the score
given by each vote to each candidate according to its po-
sition. We consider Plurality (where the scoring vector is
v =< 1, 0, . . . , 0 >), Veto (v =< 1, 1, . . . , 1, 0 >), and
k-approval (v =< 1, 1, . . . , 1, 0, 0, . . . , 0 >, where there are

Multidisciplinary Workshop on Advances in Preference Handling: Papers from the AAAI-14 Workshop

61

k 1’s), and Borda (v =< m− 1,m− 2, . . . , 0 >).
There are many ways that the outcome of an election

can be influenced. Voters may submit insincere preferences,
whilst the chair may add or delete candidates or votes. While
there are few situations in which voting rule cannot be ma-
nipulated or controlled, it could be computationally complex
to understand whether a form of manipulation or control is
possible, and how to do it. This may protect the election
against such strategic actions. In this paper we focus on con-
trol actions, and we say that a voting rule is immune to a
type of control if the result cannot be affected by that type
of control, otherwise we say that it is susceptible to that type
of control. If it is susceptible, we say that it is resistant to a
control action if the deciding how to perform that action is
NP-hard, otherwise we say that it is vulnerable.

The forms of control considered here are the addition or
deletion of candidates and/or votes. The computational com-
plexity of these forms of control have been studied in the
literature, with results for several voting rules (Faliszewski,
Hemaspaandra, and Hemaspaandra 2011; Hemaspaandra,
Hemaspaandra, and Rothe 2005; Erdélyi, Piras, and Rothe
2010b; 2010a; Menton 2010). Control actions can be con-
structive or destructive, depending on whether the chair aims
at making a certain candidate win or lose. We will use the
usual acronym DC for Destructive Control, AC (for Adding
Candidates), DC (for Deleting Candidates) as well as their
combinations.

Replacement Control
Replacement control can be seen as the combination of

the addition and deletion of either votes or candidates in
equal amount. That is, the chair can replace some candi-
dates. We use RC for Replacing Candidates. These will be
combined with destructive control (DC).

Name: DCRC (Destructive Control via Replacing Candi-
dates)

Given: a collection V of votes over C1 ∪ C2 (with C1 and
C2 disjoint), a distinguished candidate p ∈ C1, and r ∈
Z+

Question (DCRC): is there a subset A ⊆ C2 and a subset
D ⊆ C1 such that |A| = |D| ≤ r and p ∈ (C1 \ D) is
NOT the winner of the election E = ((C1 \D) ∪A, V)?

We write DCY (C,A, V, p, r) to denote an instance of the
problem with Y ∈ {AC,DC,RC}, where C is a set of can-
didates. A is another set of candidates and V is the collec-
tion of votes over C∪A. Moreover, p ∈ C is a distinguished
candidate and r is the budget. Informally, A is the set of can-
didates or votes that the chair may add to the election, while
candidates or votes to be deleted comes from C or V .

Relationship with Adding/Deleting Candidates
There is no connection between the computational complex-
ity of replacement control and that of the single control ac-
tions of adding or deleting candidates.

Theorem 1. There exist voting rules such that:

1. destructive control by adding candidates is in P, by delet-
ing is NP-hard, and replacing is in P;

2. destructive control by adding candidates is in NP-hard,
by deleting is NP-hard, and replacing is in P;

3. destructive control by adding candidates is in NP-hard,
by deleting is in P, and replacing is in P;

4. destructive control by adding candidates is in P, by delet-
ing is NP-hard, and replacing is NP-hard;

5. destructive control by adding candidates is in P, by delet-
ing is in P, and replacing is NP-hard;

6. destructive control by adding candidates is in NP-hard,
by deleting is in P, and replacing is NP-hard.

Proof. The NP-hardness results of the single destructive
control action of adding and deleting candidates are showed
in (Faliszewski et al. 2009). Given an election E = (C, V),
where C is a set of m qualified alternatives and V is a col-
lection of n voters, fix r = m

n . There are also a set A of
candidates that can be added to the election. Anytime we
can compute the value r′ = m′

n , where m′ is the number of
candidates in the election the chair is trying to control. With
respect to the value of r:

1. consider a voting rule that works like Borda when r′ > r,
it works like plurality when the value of r′ < r and works
like Borda when r′ = r. When r′ < r the chair is ex-
ploiting some deleting control actions against the set of
candidates, while she is using some adding control ac-
tions when r′ > r. We know that plurality is resistant
to DCDC (Faliszewski et al. 2009), while Borda is vul-
nerable to DCAC from corollary 3. When the value of
r′ = r the chair is replacing some candidates or she is do-
ing nothing. Then, we showed with Corollary 1 that Borda
is vulnerable to DCRC;

2. consider a voting rule that works like plurality when
r′ > r and r′ < r, it works like Borda when r′ = r.
When r′ < r the chair is exploiting some deleting control
actions against the set of candidates, while she is using
some adding control actions when r′ > r. We know that
plurality is resistant to DCDC and to DCAC (Faliszewski
et al. 2009). When the value of r′ = r the chair is re-
placing some candidates or she is doing nothing. Then,
we showed with Corollary 1 that Borda is vulnerable to
DCRC;

3. consider a voting rule that works like plurality when
r′ > r, it works like Borda when the value of r′ < r
and works like Borda when r′ = r. When r′ < r the
chair is exploiting some deleting control actions against
the set of candidates, while she is using some adding con-
trol actions when r′ > r. We know that plurality is re-
sistant DCAC (Faliszewski et al. 2009), while Borda is
vulnerable to DCDC from corollary 4. When the value of
r′ = r the chair is replacing some candidates or she is do-
ing nothing. Then, we showed with Corollary 1 that Borda
is vulnerable to DCRC;

4. consider a voting rule that works like Borda when r′ > r,
it works like plurality when the value of r′ < r and works
like plurality when r′ = r. When r′ < r the chair is

62

exploiting some deleting control actions against the set of
candidates, while she is using some adding control actions
when r′ > r. We know that plurality is resistant to DCDC
(Faliszewski et al. 2009), while Borda is vulnerable to
DCAC from Theorem 3. When the value of r′ = r the
chair is replacing some candidates or she is doing noth-
ing. Then, we showed with Theorem 2 that plurality is
resistant to DCRC;

5. consider a voting rule that works like plurality when
r′ > r and r′ < r, it works like plurality when r′ = r.
When r′ < r the chair is exploiting some deleting control
actions against the set of candidates, while she is using
some adding control actions when r′ > r. We know that
plurality is resistant to DCDC and to DCAC (Faliszewski
et al. 2009). When the value of r′ = r the chair is re-
placing some candidates or she is doing nothing. Then,
we showed with Theorem 2 that plurality is resistant to
DCRC;

6. consider a voting rule that works like plurality when
r′ > r, it works like Borda when the value of r′ < r
and works like plurality when r′ = r. When r′ < r the
chair is exploiting some deleting control actions against
the set of candidates, while she is using some adding con-
trol actions when r′ > r. We know that plurality is re-
sistant DCAC (Faliszewski et al. 2009), while Borda is
vulnerable to DCDC from Theorem 4. When the value
of r′ = r the chair is replacing some candidates or she
is doing nothing. Then, we showed with Theorem 2 that
plurality is resistant to DCRC.

Plurality, Veto and Borda Results
In this section we report some results that are useful for the
empirical evaluation we do in this paper. In particular, we are
interested in the theoretical results about the computational
complexity of for DCAC, DCDC and DCRC for Plurality,
Veto, and Borda. The results about the single control actions
of DCAC and DCDC for Plurality and Veto can be found
in (Faliszewski et al. 2009), while we formally report and
analyze the two algorithms that prove the vulnerability of
Borda to DCAC and DCDC.

Theorem 2. Plurality and Veto are resistant to DCRC.

Proof. (Sketch) We can prove the resistance of Plurality
building a particular profile that uses the resistance to DCDC
(Hemaspaandra, Hemaspaandra, and Rothe 2005). We can
prove the resistance of Veto to DCRC by reduction from the
hitting set problem. These proof are omitted due to lack of
space.

Surprisingly, DCRC is polynomial for Borda, because the
differences between two consecutive scores in the Borda’s
scoring vector are identical. We prove it by firstly reporting
and analyzing the algorithms proving that Borda is vulnera-
ble to adding or deleting candidates for destructive control.

Theorem 3. Borda is vulnerable to DCAC.

Algorithm 1 Destructive Control Adding Candidates
1: procedure DCACBORDA(C,A, V, p, r)
2: w ←Compute-Borda-winner(C, V)

3: if p 6= w then
4: return ∅
5: for all x ∈ C ∪ A do
6: for all ci ∈ ((C ∪ A) \ {x}) do
7: dist(x, ci)← 0

8: for all vl ∈ V do
9: dist(x, ci) ← sign(sign(pos(vl, x) − pos(vl, ci)) −

sign(pos(vl, w)− pos(vl, ci))) + dist(x, ci)

10: for all x ∈ C ∪ A do
11: A′ = ∅; copyA← A

12: j ← 0

13: if x ∈ A then
14: A′ ← A′ ∪ {x}; j ← 1

15: while j < r do
16: a← arg max

ai∈copyA
dist(x, ai)

17: A′ ← A′ ∪ {a};
18: w ←Compute-Borda-winner(C ∪ A′, V)

19: copyA← copyA \ {a}; j ← j + 1

20: if w 6= p then
21: return A′

22: return null

Proof. Algorithm 1 is polynomial and proves the statement
of this theorem. The rough idea of the algorithm is that,
given an instance DCAC(C,A,V,p,r), the algorithm fixes an-
other candidate x and it verifies if it can defeat p. The chair
can make p lose the election by adding candidates in C that
are ranked between x and p. For instance, candidates ai ∈ A
give 1 point to x and 0 point to p for each voter that has pref-
erences like in the following example:

. . . � x � . . . � ai � . . . � p � . . .

where dots means that the other candidates are ranked in any
arbitrary way. Starting from this observation, the chair can
fix a candidate x ∈ (C ∪ A) one at a time and it can add
candidates that maximize the score of x with respect to the
score of p and the budget r.

Given two disjoint sets C,A of alternatives, a collection V
of preferences over C ∪A, a distinguished candidate p ∈ C
and r ∈ Z+, the algorithm answers to the question if it is
possible to make p lose the election by adding at most r
candidates. If the answer is “yes”, it also returns a subset
A′ ⊆ A which is a solution to the problem, otherwise it
returns null. Let m = |C ∪A| and n = |V |. First, it controls
if p is the current winner. If it is not the case, the chair does
not need to do anything to make p lose the election. Line
2 to 4 are computed in O(nm), since winner determination
is polynomial for Borda. If p is the current winner, then the
algorithm computes the support that each candidate gives
to the other ones. This is done in lines 5 to 9 in O(nm2).
From line 10 to 21 the algorithm fixes a candidate x and
tries to add the candidates that give maximal support to it.
After each addition, it computes the winner. If the winner
changes, then a solution to the problem is found and this
solution is returned (line 21), otherwise the algorithm goes
on. These operations are done for each candidate until the

63

budget is exhausted or the winner changes.
The algorithm is sound and complete. It always terminates

and returns a solution of the problem instance, if it exists. In
particular it always returns the solution that firstly change
the winner and makes some other candidate x ∈ C win
the election. If the algorithm stops without returning a so-
lution, then a solution to the instance of the problem does
not exist. The computational complexity of the algorithm is
O(knm2).

Theorem 4. Borda is vulnerable to DCDC.

Proof. The polynomial Algorithm 2 that shows the state-
ment of this theorem is very similar to algorithm 1, except
that for the DCDC problem it fixes a candidate x and tries
to maximize its score with respect to the score of p and the
budget r by the deletion of candidates in C.

Algorithm 2 Destructive Control Deleting Candidates
procedure DCDCBORDA(C,A, V, p, r)

w ←Compute-Borda-winner(C, V)

if p 6= w then
return (∅, ∅)

for all x ∈ C do
for all ci ∈ (C \ {x}) do

dist(x, ci)← 0

for all vl ∈ V do
dist(x, ci) ← sign(sign(pos(vl, x) − pos(vl, ci)) −

sign(pos(vl, w)− pos(vl, ci))) + dist(x, ci)

for all x ∈ C do
D = ∅; copyC ← C;

j ← 0

while j < r do
c← arg min

ci∈copyC
dist(x, ci);

D ← D ∪ {c}
w ←Compute-Borda-winner((C \D), V)

copyC ← copyC \ {c}; j ← j + 1

if w 6= p then
return D

return null

Corollary 1. Borda is vulnerable to DCRC.

Proof. The algorithm can be easily derive as a combination
of the two algorithms used in the Theorem 3,4.

Empirical Evaluation
To better understand the theoretical results showing the
hardness or easiness of the DCRC control problem, we per-
formed an empirical evaluation on real-world datasets. Be-
sides Plurality and Veto, in this experimental analysis we
also consider k-approval for values of k that are different
from 1 and m − 1 as this naturally interpolates between
Plurality (1-approval) and Veto (m-1-approval). We also run
some experiments using Borda, to check whether in practice
it is easy, as the theoretical results say.

We also compare DCRC with single control actions which
just add or delete candidates (DCAC and DCDC).

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

1 2 3 4

%
 o

f
co

n
tr

o
lle

d
 p

ro
fi

le
s

k of k-approval

|A|=2 |A|=3 |A|=4 |A|=5

Figure 1: Percentage of profiles (over 1000) with successful
DCRC.

We consider profiles coming from real world data sets. In
particular, we use three datasets from the prelib repository
(www.preflib.org) (Mattei and Walsh 2013):

• the AGH Course Selection ED00009, which contains the
preferences of some university students over a set of
courses (Skowron, Faliszewski, and Slinko 2013);

• the T-Shirt ED00012 dataset, which contains the prefer-
ences of some NICTA employees over some tshirt tem-
plates;

• the sushi dataset ED00014, which contains the pref-
erences of 5000 people on various kinds of sushi
(Kamishima, Kazawa, and Akaho 2010).

For each data set, we generate profiles of 1000 votes by
randomly selecting preference rankings from the dataset.

The first thing we show is the percentage of profiles where
DCRC is able to change the winner. Figure 1 reports the
test run using the sushi data set, with 10 voters, |C| = 5
and 2 ≤ |A| ≤ 5. The x axis has the value of k in k-
approval, which varies from 1 to 4. The four curves corre-
spond to different sizes of set A. Clearly, the larger k and A,
the more controllable the profile is, because there could be
more harmful combinations of candidate replacements. The
x axis has the value of k in k-approval, which varies from 1
to 4. Even if the data is different we can observe the same
trend in both chart: while veto seems to be controllable most
of the times, plurality shows some resistance to it.

We then consider the actual difficulty for changing the
winner, or for discovering that it cannot be changed, by con-
sidering a deterministic algorithm that checks all possible
combinations of candidates to be added, and an equal num-
ber of candidates to be deleted, starting from combinations
with budget (number of replacements) 1 and going up to the
maximum size. A lexicographic ordering over candidates is
used to decided which delete/add combinations to try first
with the same budget size.

Figure 2 shows the average percentage of combinations
tested, over all possible add/delete combinations, when us-
ing 1000 profiles from the sushi dataset, with 10 voters,
|C| = 5 and 2 ≤ |A| ≤ 5. The x axis has the value of k in k-
approval, which varies from 1 to 4. We are interested in the

64

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4

%
 o

f
co

m
b

in
at

io
n

s
te

st
ed

k of k-approval

|A|=2 |A|=3 |A|=4 |A|=5

Figure 2: Deterministic algorithm: Average percentage of
tried add/delete combinations.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

1 2 3 4 5 6

%
 o

f
co

m
b

in
at

io
n

s
te

st
ed

k of k-approval

Deterministic Random

Figure 3: Deterministic and non-deterministic algorithm:
comparison.

main trend of these charts and not in the small differences
that they can report, because these small differences are con-
nected to the structure of the preferences in the dataset. What
is really interesting is once again that the larger are k and
|A|, the smaller is the computational effort of this algorithm.

We also considered a non-deterministic algorithm which
the chair of the election could use to change the winner by
replacing candidates. Such an algorithm consists of picking
an add/delete combination randomly (over all possible com-
binations), and checking whether the winner changes. From
the experimental data, we count the percentage of profiles
where the winner changes (see Fig. 1) and we use this as the
probability of success of this approach. If p is the probability
that picking one profile is enough to change the winner, it is
easy to see that 1/p is the expected number of profiles to be
picked up before changing the winner. We therefore show
this 1/p number as a measure of how many combinations
should be tested by this non-deterministic algorithm before
changing the result (or discovering that it cannot change).

Figure 3 compares the difficulty of the DCRC problem
as measured in Fig.2 to this measure of the difficult of
DCRC via the non-deterministic algorithm. We used the
sushi dataset, with 10 voters, |C| = 7 and |A| = 3. The
x axis has the value of k in k-approval, which varies from
1 to 6, while the y axis shows the percentage of add/delete
combinations that the algorithm tries before stopping.

t]

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Plurality Veto Plurality Veto Plurality Veto Plurality Veto

2 3 4 5

%
 o

f
co

n
tr

o
lle

d
 p

ro
fi

le
s

cardinality of A

RC AC DC AC,DC

Figure 4: Deterministic algorithm: RC compared to AC, DC,
and AC+DC.

We also compared the power of replacing candidates with
respect to just adding or deleting candidates. We consider the
profiles where the winner changes using RC, and we count
in how many of these profiles

• the winner changes using AC but does not change using
DC (denoted by “AC only”);

• the winner changes using DC but does not change using
AC (denoted by “DC only”);

• the winner changes using either DC or AC (denoted by
“AC only and DC only”);

• the winner changes only using RC (denoted by “RC
only”).

Notice that “AC only” and “DC only” do not add up to “AC
only and DC only” because all these categories represent
disjoint sets of profiles.

Figure 4 shows the percentage of profiles where the win-
ner changes using RC. We use a stacked bar histogram that
report the percentage of profiles where the winner change
using RC only, AC only, DC only, or AC only and DC only,
for Plurality and Veto. We used the sushi dataset, with 10
voters, |C| = 5 and |A| varies over the x axis from 1 to 4.

It can be seen that RC improves the vulnerability of the
voting rule since the number of controllable profiles in-
creases by about 9%, this is a significant increase in control-
lability compared to AC or DC alone that is not reported in
this chart and which is around 0,3%, thus making the voting
rule much more vulnerable to this kind of control action.

Data from experiment over t-shirt dataset show that the
structure of the preferences made veto almost resistant to
AC only but the voting rule shows the same trend about the
vulnerability to RC. Once again RC improves the vulner-
ability of the voting rule since the number of controllable
profiles increases by about 7%, this is a significant increase
in controllability compared to AC or DC alone that is not re-
ported in this chart and which is around 0,2%, thus making
the voting rule much more vulnerable to this kind of control
action.

We also run some experiments using Borda. Theorem 1
shows that Borda is vulnerable to DCRC. Surprisingly, the
deterministic algorithm for checking whether the winner can

65

0

0,1

0,2

0,3

2 3 4 5 6 7 8

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

2 3 4 5 6 7

%
 o

f
co

m
b

in
at

io
n

s
te

st
ed

cardinality of A

Deterministic Random

Figure 5: Borda deterministic and non-deterministic algo-
rithm: comparison.

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

3 4 5 6 7

%
 o

f
co

n
tr

o
lle

d
 p

ro
fi

le
s

cardinality of C

|A|=2 |A|=3 |A|=4 |A|=5 |A|=6

Figure 6: Borda: percentage of profiles (over 1000) with suc-
cessful DCRC.

be changed by replacing candidates needs to test many com-
binations, as shown in Figure 5. Also, the number of profiles
where the control succeeds decreases when the cardinality
of C increases, as shown in Figure 6.

These results suggest that, even if the worst case theo-
retical analysis tells us that a voting rule is vulnerable to a
certain control action, or resistant, the conditions that make
it susceptible to the control action could be difficult to find
in real-world scenarios, and this could sometimes lead to a
reverse situation in practice. Veto, for instance, is resistant
to DCRC, but in practice it is very easy to control and this
can be done in almost all the profiles. On the other hand,
Borda is vulnerable to DCRC, but in practice, when the size
of the profile grows, it is unlikely to find a combination that
changes the winner.

We also performed experiments with the data collected
using the AGH course selection dataset. However, we do not
report them here since they show the same trends as the ones
of the other datasets.

Conclusions
After reporting theoretical results that show that Plurality
and Veto are difficult to control, while Borda is easy, with re-
spect to DCRC, we also performed an extensive experimen-
tal work, using real-world data sets, to test if k-approval and
Borda are really difficult in practice to control via replacing

candidates. Our experiments show that plurality is more re-
sistant to DCRC than other versions of k-approval. Further-
more, the results show that Borda becomes more resistant to
replacement control when the size of the profile grows. Also,
a non-deterministic algorithm seems to be the most conve-
nient for the chair to control the election. Finally, RC is sig-
nificantly more powerful than just AC or DC alone in terms
of giving the chair control over the election. These results
suggest that the study of computational complexity in the
worst case is not enough to ensure a significant protection to
the system, as reported in many works such as (Bartholdi,
Tovey, and Trick 1992; Faliszewski and Procaccia 2010;
Faliszewski et al. 2009; Faliszewski, Hemaspaandra, and
Hemaspaandra 2011; Walsh 2010). Experimental analysis is
needed to get a deep comprehension of the likelihood of the
conditions that make the system vulnerable/resistant to the
control action.

References
Bartholdi, J. J.; Tovey, C. A.; and Trick, M. A. 1992. How
hard is it to control an election. Mathematical and Computer
Modeling 27–40.
Erdélyi, G.; Piras, L.; and Rothe, J. 2010a. Bucklin voting
is broadly resistant to control. CoRR abs/1005.4115.
Erdélyi, G.; Piras, L.; and Rothe, J. 2010b. Control com-
plexity in fallback voting. CoRR abs/1004.3398.
Faliszewski, and Procaccia. 2010. Ai’s war on manipulation:
are we winning? AI Magazine pp. 53–64.
Faliszewski, P.; Hemaspaandra, E.; Hemaspaandra, L. A.;
and Rothe, J. 2009. Llull and copeland voting computation-
ally resist bribery and control. JAIR 275–341.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra,
L. A. 2010. Using complexity to protect elections. Commun.
ACM 53(11):74–82.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra,
L. A. 2011. Multimode control attacks on elections. JAIR
305–351.
Hemaspaandra, E.; Hemaspaandra, L. A.; and Rothe, J.
2005. Anyone but him: The complexity of precluding an
alternative. Artificial Intelligence 171:255–285.
Kamishima, T.; Kazawa, H.; and Akaho, S. 2010. A sur-
vey and empirical comparison of object ranking methods. In
Fürnkranz, J., and Hüllermeier, E., eds., Preference Learn-
ing. Springer-Verlag. 181–201.
Mattei, N., and Walsh, T. 2013. Preflib: A library for pref-
erences http: //www.preflib.org. In ADT, 259–270.
Menton, C. 2010. Normalized range voting broadly resists
control. CoRR abs/1005.5698.
Skowron, P.; Faliszewski, P.; and Slinko, A. 2013. Achiev-
ing fully proportional representation is easy in practice. In
Proceedings of the 2013 International Conference on Au-
tonomous Agents and Multi-agent Systems, AAMAS ’13,
399–406. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.
Walsh, T. 2010. Is computational complexity a barrier to
manipulation? CoRR.

66

