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We propose a new parameter learning algorithm for
ProbLog, which is an extension of a logic program that
can perform probabilistic inferences. Our algorithm differs
from previous parameter learning algorithms for probabilis-
tic logic program (PLP) models on the point that it tries to
reduce the number of probabilistic parameters contained in
the estimated program. Since the amount of computation re-
quired for a probabilistic inference with a ProbLog program
can be exponential with respect to the number of probabilis-
tic parameters, programs with fewer parameters are prefer-
able. Our algorithm tries to reduce the number of parame-
ters by adding a penalty term to the objective function, and
then minimizing it to encourage the estimated parameters
to take either 0 or 1. If a parameter takes value 0 or 1, we
can delete the corresponding probabilistic fact, or treat the
corresponding fact as a deterministic one, to remove the pa-
rameter from the obtained model. We also show that the op-
timization problem can be solved efficiently by applying the
projected gradient method to a compiled knowledge repre-
sentation. We confirm experimentally that the proposed al-
gorithm is comparable with the state-of-the-art algorithm,
while it can reduce the number of probabilistic parameters
contained in the estimated program.

Introduction
A probabilistic logic program (PLP) is an extension of a
logic program that can perform probabilistic inferences. A
PLP is a kind of statistical relational model (Getoor and
Taskar 2007), and was developed for modeling complex
and uncertain relationships. Many PLP models have been
proposed (e.g., (Muggleton 1996; Sato and Kameya 2001;
De Raedt, Kimmig, and Toivonen 2007)), and most of exist-
ing PLP models are based on Sato’s distribution semantics
(Sato 1995), which defines a probability distribution over
possible worlds by introducing probabilistic ground facts
into a logic program.

A problem with these PLP models is the difficulty related
to inferences. In the worst case, a PLP model that is based on
the distribution semantics may require computational time
exponential to the number of probabilistic parameters con-
tained in the model. It prevents PLP models from being ap-
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plied to large problems. Although some efficient exact and
approximate inference algorithms have been proposed for
these models (De Raedt, Kimmig, and Toivonen 2007), in-
ference is still difficult and hence PLP models with fewer
probabilistic parameters are preferable.

In this paper, we propose a parameter learning algorithm
for probabilistic logic programs. The proposed algorithm
can reduce the number of probabilistic factors contained in
the estimated model. Parameter estimation algorithms for
PLP models proposed in previous research (e.g, (Gutmann,
Thon, and De Raedt 2011; Sato and Kameya 2001)) are
not intended for estimating compact models, i.e., a model
with fewer probabilistic parameters. In order to estimate a
compact model, we add penalty terms to the negative log-
likelihood function and then minimize it to estimate proba-
bilistic parameters. Penalty terms are often introduced into
machine learning algorithms to impose some restrictions on
the estimated parameters. A well-known penalty term is `1
norm, which is applied for obtaining sparse solutions (Bach
et al. 2009), but the `1 or other sparsity inducing norms can-
not be directly applied to the parameter learning problem
of PLP models. The new penalty term we propose in this
paper induces the learned parameters to take either 0 or 1.
When a probabilistic parameter is 0 or 1, we can remove
it or treat it as deterministic to obtain a PLP model with
fewer number of probabilistic parameters. We also give an
efficient optimization algorithm that can run on a compiled
knowledge representation. Given an objective function with
penalty terms, we minimize it by applying a projected gra-
dient algorithm (Bertsekas 1999). A projected gradient al-
gorithm is an efficient method for solving an optimization
problem with constraints that a solution must be contained
in a convex set, and we present a method to run it with a
compiled knowledge representation, which is obtained by
transforming a logical model into another form, and reduces
the computational time. As the transformation, we use a
deterministic and decomposable negation normal form (d-
DNNF) (Darwiche and Marquis 2002) so that we make op-
timization problems tractable.

In the following, we use ProbLog (De Raedt, Kimmig,
and Toivonen 2007) as a concrete example of PLP model
and we propose a parameter learning algorithm on it. How-
ever, with slight modification our method may also be appli-
cable to other PLP models. We give a class of PLP models
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to which our parameter learning algorithm can be applied.

Preliminaries
We first briefly introduce some basic notations used in this
paper. A term is a variable, a constant, or a function applied
to terms. Let q(t1, . . . , tk) be an atom, where t1, . . . , tk
are terms and q is a predicate of arity k. Definite clauses
are universally quantified expressions of the form h :- b1,
. . ., bn, where h, b1, . . . , bn are all atoms, and h is the head
of a clause and b1, . . . , bn are the body. A clause without a
body is a fact. A substitution θ is an expression of the form
{V1/t1, . . . , Vm/tm}where Vi are different variables and ti
are terms. If a substitution θ is applied to an expression e,
then the instantiated expression eθ is made by simultane-
ously replacing the variables Vi in e with ti. An expression
is called ground if it has no variables. The semantics of a set
of definite clauses is given by its least Herbrand model, i.e.,
the set of all ground facts entailed by the theory.

A ProbLog theory T consists of both a set of labeled facts
F and a set of definite clauses KB. Let fi be a fact con-
tained in F and wi ∈ [0, 1] be the label of fi. wi represents
the probability that each ground substitution fiθ is true in
the theory. We refer to an annotated fact wi :: fi as a proba-
bilistic fact.
Example 1. The following is an example of ProbLog pro-
gram.
0.1::burglary. 0.2::earthquake.
0.7::hears alarm(X) :- person(X).
person(mary). person(john).
alarm :- burglary. alarm :- earthquake.
calls(X) :- alarm, hears alarm(X).
In this program, burglary. and earthquake. are facts
and their probabilities are 0.1 and 0.2, respectively. 0.7 ::
hears alarm(X) :- person(X). is a notation that rep-
resents two probabilistic facts, 0.7::hears alarm(mary)
and 0.7::hears alarm(john).

Given a finite number of possible ground substi-
tutions {θi,1,. . .,θi,Ki} for each probabilistic fact
wi :: fi, a ProbLog program T defines prob-
ability distribution over total choices L, where
L is a subset of the set of all ground facts
LT = {f1θ1,1, . . . , f1θ1,K1

, . . . , fNθN,1, . . . , fNθN,KN
}.

P (L|T ) =
∏

fiθi,k∈L

wi
∏

fiθi,k∈LT \L

(1− wi) . (1)

Using the above definition of probability P (L|T ), we define
the success probability of a query literal q as

P (q|T ) =
∑

L⊆LT ,L∪KB|=q

P (L|T )

∑
L⊆LT

δ(q,KB ∪ L) · P (L|T )

where δ(q,KB∪L) = 1 if there exists a substitution θ such
that KB ∪ L |= qθ, and 0 otherwise.
Example 2. For the program in Example 1, LT contains
four probabilistic facts, and hence there are 24 = 16 pos-
sible L ⊆ LT . If q = alarm, δ(q,KB ∪ L) = 1 if

either burglary or earthquake is contained in L, and
its probability is P (alarm|T ) = 1 − P (¬burglary ∧
¬earthquake|T ) = 1− 0.9× 0.8 = 0.28.

Parameter Learning
Motivating Examples
Before presenting our parameter learning algorithm, we first
show what it aims to do. What we want is a compact
ProbLog program, but a compact program is not just a pro-
gram with fewer clauses. At this point, our algorithm differs
slightly from sparse learning algorithms (Bach et al. 2009);
sparse learning algorithms try to obtain sparse models by
letting many parameters take zero. By contrast, our learn-
ing algorithm induces many parameters to take either 0 or 1.
This setting is motivated by the following two examples.

w1:: q. w2:: r. p :- q. p :- r.

Suppose that we are given training examples D that only
contains literal p, and we want to set parameters w1, w2

so as to maximize the log-likelihood of D. If training ex-
amples follow probabilistic distribution P (p) = 0.5, then
any combination of parameters w1 and w2 that satisfies
1.0− (1−w1)(1−w2) = 0.5 will maximize log-likelihood.
However, if we set w1 = 0.0 and w2 = 0.5 (or equivalently,
set w1 = 0.5 and w2 = 0.0), then we can remove one prob-
abilistic fact from the program. This clearly reduces the size
of the obtained program. The above approach is equivalent
to theory compression (De Raedt et al. 2008), which allows
some parameters of a ProbLog program to be zero to obtain
a more concise logic program.

We give another example.

w1:: q. w2:: r. p :- q, r.

With this program, the probability P (p) is represented as
P (p) = w1w2. As same as the previous example, suppose
that we are given training examples D that only contains
literal p, and we want to set parameters w1, w2 so as to
maximize log-likelihood of D. If training examples follow
probabilistic distribution P (p) = 0.5, many combinations
of parameters are possible. However, if we set w1 = 1.0 and
w2 = 0.5 (or w1 = 0.5 and w2 = 1.0), it means we treat the
probabilistic fact q as a deterministic (i.e., non probabilistic)
fact. Since the complexity of probabilistic inference with a
ProbLog program depends on the number of probabilistic
facts, treating some probabilistic facts as deterministic facts
also helps to reduce the cost of probabilistic inference.

Our algorithm uses a penalty function to obtain these two
types of reduction of probabilistic parameters, namely, (i) re-
moving probabilistic facts and (ii) substituting probabilistic
facts with deterministic ones.

Learning Algorithm
Our parameter learning algorithm follows the learning from
interpretation setting that has been proposed in (Gutmann,
Thon, and De Raedt 2011) since it is more general than the
learning from entailment settings as used in other learning
algorithms (Gutmann et al. 2008; Sato and Kameya 2001;
Cussens 2001). Let I be a partial interpretation of ground
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atoms in LT , which determines the truth values of some
atoms in LT . We represent a partial interpretation as I =
(I+, I−) where I+ contains all true atoms and I− all false
atoms. We define the probability of a partial interpretation I
in a way that is similar to that for an atom q:

P (I|T ) =
∑
L⊆LT

δ(I+,KB ∪ L)δ̄(I−,KB ∪ L)P (L|T ),

where δ(I+,KB ∪ L) = 1 if KB ∪ L |= q for all atoms
q ∈ I+ , and δ̄(I−,KB ∪ L) = 1 if KB ∪ L 6|= q for all
atoms q ∈ I− .

Parameter learning is formalized as the task of finding a
set of parameters ŵ = {ŵ1, . . . , ŵN} that minimizes the
objective function given training examples. Let a set of in-
terpretationD = I1, . . . , IM be training examples. We make
the objective function as a combination of the negative log-
likelihood and a penalty function that encourages parame-
ters to take either 0 or 1. We therefore define the objective
function g(T (w),D) as

g(T (w),D) = `(T (w),D) + λh(w) ,

where T (w) represents a ProbLog program whose param-
eters are w, and `(T (w),D) represents a negative log-
likelihood function and h(w) is a penalty function. A param-
eter λ controls the effect of the penalty term. We minimize
the above objective function by considering that 0 ≤ wi ≤ 1
for all 1 ≤ i ≤ N . We define the negative log-likelihood
function `(T (w),D) as

`(T (w),D) = −
M∑
j=1

logP (Ij |T (w)) .

It is simply defined as the logarithm of the product of the
probabilities P (Ij |T (w)) for j = 1, . . . ,M . We define the
penalty function h(w) as

h(w) =
N∑
i=1

{log (wi + ε) + log (1− wi + ε)} , (2)

where ε is a small positive value that is added to avoid the
function becoming −∞ at wi = 0 or wi = 1. The penalty
term takes smaller values when wi is near 0 or 1, hence we
can encourage wi to take 0 or 1 by adding h(w) to the nega-
tive log-likelihood g(T (w),D). Hence this penalty term can
contribute to reduce the number of parameters. We show an
example of h(w) when N = 1 in Fig.1.

The minimization problem of only negative log-
likelihood function `(T (w)) is the same as the problem
solved in the LFI-ProbLog algorithm shown in (Gutmann,
Thon, and De Raedt 2011), and it can be solved efficiently by
using the Expectation Maximization (EM) algorithm. The
difference between the LFI-ProbLog algorithm and ours is
the use of the penalty term h(w). This addition makes EM
algorithm inapplicable for our problem. We therefore intro-
duce a new optimization method that is based on the pro-
jected gradient algorithm.
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Figure 1: Shape of the penalty term h(w), whereN = 1 and
ε = 0.001.

Algorithm 1 A projected gradient parameter learning algo-
rithm

1: Initialize w0, set k ← 0.
2: while k is less than the iteration limit do
3: xk ← wk − αk∇g(wk)
4: wk+1 ← proj(xk)
5: if converged(wk, wk+1) then
6: return wk

7: k ← k + 1
8: return wk

Projected Gradient Algorithm
The minimization problem we introduced in the previous
section cannot be solved with the EM algorithm, we there-
fore propose a new method that is based on the projected
gradient algorithm. The projected gradient algorithm (Bert-
sekas 1999) is used for minimization problems with the con-
straint that the variables must be contained in a convex set.
In the present case, wi must satisfy 0 ≤ wi ≤ 1, and hence
the region in which w is contained is convex. We can there-
fore employ the projected gradient method for our problem.

The projected gradient algorithm is an extension of a gra-
dient descent algorithm, and it solves optimization prob-
lems by repeating gradient computation and projection onto
a convex set. Algorithm 1 shows the projected gradient al-
gorithm. After initializing w0 (line 1), it repeatedly updates
wk until it converges (lines 2 to 7). First we compute xk

from the current wk and the gradient∇g(wk) (line 3). This
step is the same as an ordinary gradient descent algorithm,
then we project xk into the domain that satisfies 0 ≤ wi ≤ 1
(1 ≤ i ≤ N) to obtain wk+1. Here, function proj(x) is
a projection function that maps x to w such that satisfies
0 ≤ wi ≤ 1 for all 1 ≤ i ≤ N and minimizes ||x−w||2. In
this case, the i-th element [proj(x)]i is defined as

[proj(x)]i =

{
0 if xi ≤ 0
xi if 0 < xi < 1
1 if xi ≥ 1

, (3)

i.e., we simply map xi to 0 or 1 if it is not in the 0 ≤ xi ≤ 1
range.
αk is the step size used for the k-th iteration. Setting an

appropriate αk is important since it determines the conver-
gence of the projected gradient algorithm. We set αk by us-
ing a simple line search based procedure called the Armijo
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rule along the projection arc, as described in (Bertsekas
1999; 1976). It defines αk as αk = βtk , where β ∈ (0, 1),
and tk is the first non-negative integer t that satisfies

g(wk)−g(wk(βtk)) ≤ σ∇g(wk)T (wk−wk(βtk)) , (4)

where wk(βtk) is proj(wk − βtk∇g(wk)), and σ is a pa-
rameter that satisfies σ ∈ (0, 1). In the experiments, we use
parameters σ = 0.2 and β = 0.5, as these values are sug-
gested in the textbook (Bertsekas 1999). By using αk se-
lected with this rule, it is proved that the projected gradient
algorithm converges to a stationary point after several itera-
tions(Bertsekas 1999; Calamai and Moré 1987) even if the
objective function is nonconvex. Hence Alg. 1 converges af-
ter finite numbers of iterations.

Computation of gradient
To compute gradient ∇g(T (w),D), we must compute
∇`(T (w),D) and ∇h(w). Let [∇`(T (w),D)]i be the i-th
element of the gradient∇`(T (w),D), then it becomes

[∇`(T (w),D)]i = −
N∑
j=1

∑
L∈Lj

[∇P (L|T (w))]i

P (Ij |T (w))
. (5)

Here we use Lj as the set that contains all possible as-
signments L ⊆ LT that are consistent with Ij . We define
∇P (L|T (w)) as

[∇P (L|T (w))]i =

Ki∑
k=1

(2δ(fiθi,k ∈ L)− 1)∏
fnθn,k∈L−i,k

wn
∏

fnθn,k∈L−i,k
T \L

(1− wn),

where δ(fiθi,k ∈ L) = 1 if the condition is satisfied, other-
wise 0, and L−i,k is L\{fiθi,k}.∇h(w) is easy to compute
and [∇h(w)]i becomes

[∇h(w)]i =
1

wi + ε
− 1

1− wi + ε
.

The computation of gradient∇`(T (w),D) involves sum-
mation over L ∈ Lj . Since Lj consists of all the possible
combinations of ground probabilistic facts LT , its size be-
comes 2LT in the worst case and the naive computation of
gradients is intractable with a large LT . Hence we use the
knowledge compilation technique to compute them.

Knowledge compilation (Darwiche and Marquis 2002) is
an approach that can be used for efficient computation in-
volving propositional models. It first compiles a proposi-
tional model so as to represent it in a form that is suitable for
specific operations such as probabilistic inference. Although
knowledge compilation incurs the additional cost of compil-
ing a model, once a compiled model is obtained, we can ef-
ficiently perform several operations by using it. In previous
work, a ProbLog program was compiled into binary decision
diagrams (BDD) (Bryant 1986), and a deterministic, decom-
posable negation normal form (d-DNNF) (Darwiche and
Marquis 2002; Darwiche 2009). With a ProbLog program
compiled into a BDD or a d-DNNF, we can compute the

probability P (I|T (w)) in time proportional to the size of
the compiled representation. This computation is also used
when employing EM style algorithms (Fierens et al. 2013;
Gutmann, Thon, and De Raedt 2011).

We use compiled knowledge representations for com-
puting the gradients of the negative log-likelihood func-
tion ∇`(T (w),D). Although both BDD and d-DNNF can
be used for computing gradients, we chose d-DNNF as
a compiled knowledge representation since it performed
well in the previously reported parameter learning algo-
rithms (Fierens et al. 2013).

We briefly introduce d-DNNF. d-DNNF is a kind of nega-
tion normal form (NNF) that satisfies decomposability and
determinism. An NNF is a rooted directed acyclic graph in
which each leaf node is labeled with a literal, true or false,
and each internal node is labeled with a conjunction or dis-
junction. For any node n in an NNF graph, vars(n) denotes
all propositional variables that appear in the subgraph rooted
at n, and ∆(n) denotes the formula represented by n and
its descendants. We say an NNF satisfies decomposability if
vars(ni)∩ vars(nj) = ∅ holds for any two children ni and
nj (i 6= j) of an and-node n, and NNF satisfies determinism
when ∆(ni) ∧ ∆(nj) is logically inconsistent for any two
children ni and nj (i 6= j) for an or-node n.

Given the set of interpretations D, the process of com-
piling a ProbLog program into d-DNNFs is the same as
for the parameter learning method proposed in (Fierens et
al. 2013): We first make a ground ProbLog program and
convert it into a conjunctive normal form (CNF), and then
convert it into d-DNNF with a d-DNNF compiler that con-
verts a CNF into the corresponding d-DNNF. After obtain-
ing N different d-DNNFs that correspond to each interpre-
tation I1, . . . , IN , we use them to compute the probability
P (Ij |T (w)) and ∇P (L, T (w)), which is the numerator of
(5). We use the inference algorithm shown in (Darwiche
2009), which was originally used for computing conditional
probabilities and gradients for graphical models. These al-
gorithms can compute P (Ij |T (w)) by traversing all the
nodes of a d-DNNF once, and can compute ∇P (L|T (w))
by traversing all the nodes twice. As a result, we can effi-
ciently compute∇g(T (w),D).

Discussion
Our sparse parameter learning algorithm can be applied to
other PLP models whose probabilistic parameters take val-
ues in [0, 1]. For example, PRISM, SLP, and ICL are in this
class of PLP models. A major difference between ProbLog
and these models is that these models employ the multino-
mial distribution, while ProbLog programs give probabilis-
tic distribution based on the Bernoulli distribution defined
on probabilistic facts.

With these multinomial distribution PLP models, the set
of probabilistic parameters can be represented as w =
{w1, . . . ,wN}, where wi (i = 1, . . . , N) is a Ki di-
mensional vector wi = (wi1, . . . , wiKi

) and it satisfies∑Ki

j=1 wij = 1 and wij ≥ 0 for j = 1, . . . ,Ki. Here we
make an assumption that we can compute the gradient of
the negative log-likelihood function `(w,D), given a set of
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training examples D. Then we apply our algorithm by only
modifying the penalty function h(w) defined in (2) as

h(w) =
N∑
i=1

Ki∑
j=1

log (wij + ε) .

If Ki = 2 for all i = 1, . . . , N , the above definition of h(w)
is equivalent to that in (2). It is also easy to compute∇h(w).

we also need to modify the projection function proj(x) to
perform our projected gradient algorithm. We have to project
aKi dimensional real value vector xi onto a probability sim-
plex, i.e., project onto aKi dimensional vector wi that satis-
fies

∑Ki

j=1 wij = 1 and wij ≥ 0 for all j = 1, . . . ,Ki. This
type of projection also can be efficiently performed (Parikh
and Boyd 2014).

Experiments
Settings
We conducted experiments to evaluate our proposed learn-
ing algorithm. Our aim was to answer the following ques-
tions:

1. (Q1) Can we learn a compressed ProbLog program with
our proposed algorithm?

2. (Q2) How do the estimated model changes when we
change the parameter λ ?

3. (Q3) Can the proposed algorithm recover true distribu-
tions with a sufficient number of training examples?

We compare our proposed method with the LFI-ProbLog
algorithm, which is an EM-style algorithm for estimat-
ing parameters from interpretations (Gutmann, Thon, and
De Raedt 2011). We also compared our algorithm with an
gradient projection algorithm, which simply minimizes the
negative log-likelihood function.

Since our algorithm has much in common with the
LFI-ProbLog algorithm, we implemented our algorithm on
ProbLog2 (Renkens et al. 2012), a ProbLog implementation
that supports several inference methods and parameter learn-
ing algorithms. We use grounding, CNF conversion, and a
d-DNNF compilation algorithm implemented in ProbLog2,
and run our projected gradient algorithm on a compiled d-
DNNF to estimate the parameters. We also use the LFI-
ProbLog algorithm implemented in ProbLog2.

We use two datasets, WebKB and Smokers for evaluat-
ing our parameter learning algorithm. The WebKB dataset1
(Craven and Slattery 2001) is a real dataset that consists of
labeled Web pages from the computer science departments
of four universities. Every web page is marked with one of
the following categories, student, faculty, project, course,
staff, and other. The task is to predict the classes of pages
given the words contained in each page and the link struc-
ture between pages. Following the setting used in (Fierens et
al. 2013), we use the following ProbLog program.

p::link class(P,P2,c1,c2) :- links to(P,P2).
p::word class(P,w1,c1) :- has word(P,w1).

1http://www.cs.cmu.edu/~webkb/

Table 1: Negative Log-Likelihood (lower is better) and the
number of probabilistic parameters contained on the We-
bKB learning experiment.

Method NLL Num. params
LFI 1387.28 39.0
PG 1299.30 38.0
PG+P (λ = 0.001) 1318.96 25.0
PG+P (λ = 0.01) 1445.37 18.0

p::learnable prior(P,c1) :- page(P).
0.001::fixed prior(P,c1):-page(P),class(c1).
has class(P,C) :- word class(P,W,C).
has class(P,C) :- has class(P2,C2),

link class(P,P2,C,C2).
has class(P,C) :- fixed prior(P,C).
has class(P,C) :- learnable prior(P,C).

Where the probabilistic fact link class/4 represents
the effect of the link structure, and word class/3 rep-
resents the effect of words contained in a page. We also
added probabilistic facts learnable prior/2 to represent
the probabilistic distribution on labels that are indepen-
dent with the link structure and words. Finally we add
fixed prior/2 for avoiding log-likelihood to become in-
finity in the test data. For computational reasons, we selected
20 words that show the highest information gain with the
class labels. We therefore have in total 6× 20 + 6× 6 + 6 =
162 probabilistic parameters to be estimated from the data.
We conduct four-fold cross validation by using the dataset
for three universities as a training set and use the other uni-
versity as the test set.

The Smokers dataset (Domingos and Lowd 2009) rep-
resents the relationships between people, and contains the
following probabilistic facts and rules.

0.2::stress(P) :- person(P).
0.3::influences(P1,P2) :- friend(P1,P2).
0.1::cancer spont(P) :- person(P).
0.3::cancer smoke(P) :- person(P).
smokes(P) :- stress(P).
smokes(P) :- smokes(P2), influences(P2, P).
cancer(P) :- cancer spont(P).
cancer(P) :- smokes(P), cancer smoke(P).

In addition to the above program, we add some ground
facts person/1 and friend/2 into the program. We add them
by first deciding the number of people in the domain, and
then randomly deciding friend relationships between people.
We set the number of people to 4.

Results
Table 1 shows the average negative log-likelihood and the
number of parameters for WebKB dataset. Here we use LFI,
PG, PG+P to represent the results of LFI-ProbLog, projected
gradient algorithm, and projected gradient algorithm with
penalty term (the proposed method), respectively. We can
see that PG+P shows comparable performance comparing
with the state-of-the-art method LFI when λ = 0.001, while
it can reduce the average number of parameters contained in
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Figure 2: Negative log-likelihood for different λ.
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Figure 3: The number of estimated probabilistic parameters
for different λ.
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Figure 4: KL divergence on Smokers dataset with different
numbers of evidences.

the learned model from 39 to 25. Following these results, we
can answer Q1 that the proposed method shows the infer-
ence performance that is comparable with the state-of-the-
art algorithm, while it can reduce the number of parameters.

For answering Q2, we show the results of the proposed al-
gorithm while changing the parameter λ in Fig.2 and Fig.3.
From the result of Fig.3, we can see that the number of pa-
rameters contained in the learned program monotonically
decreases when we use a large λ. This result reflects that the
parameters tend to take 0 or 1 if we add more weight to the
penalty term. Figure 2 shows that the performance decreases
as we use a large λ. This result suggests the performance
may decrease if we penalize too much.

To answer the Q3, we measured the KL divergence be-
tween the true probabilistic distribution and the distribu-
tion estimated by the proposed algorithm. We first make
10, 20, 50, 100, 200 different interpretations on smokes/1
and cancer/1 atoms of Smokers dataset, and then sam-
ple 20%, 50%, and 100% of them to make training data. We

evaluated the KL divergence between the true probabilistic
distribution on smokes/1 and cancer/1 atoms and the dis-
tribution estimated from the data. Figure 4 shows the results.
We can see that KL divergence decreases as the number of
interpretations increases. We therefore can say that the pro-
posed algorithm can estimate the true probabilistic distribu-
tion with a sufficient amount of training data (Q3).

Related Work
Many PLP models, such as ProbLog (De Raedt, Kimmig,
and Toivonen 2007), PRISM (Sato and Kameya 2001),
SLP (Muggleton 1996), ICL (Poole 2008), and parame-
ter learning algorithms for these models have been pro-
posed. Cussens proposed a parameter learning algorithm
for SLP (Cussens 2001), Sato (Sato and Kameya 2001)
proposed an EM learning algorithm for PRISM, and Gut-
mann et al. proposed two parameter learning algorithms for
ProbLog (Gutmann, Thon, and De Raedt 2011; Gutmann et
al. 2008). These algorithms exploit EM-learning or gradient
descent methods to optimize an objective function for esti-
mating parameters. Our proposed method differs in that we
add penalty terms to induce parameters to take a zero or one
probability. This feature resembles the sparse learning algo-
rithms (Bach et al. 2009) used in many machine learning
problems, but we believe that this paper is the first to ap-
ply a sparse learning method to a parameter learning prob-
lem for PLP models. `1-regularization is used in structure
learning for Markov Logic Networks (Huynh and Mooney
2011), however, the algorithm cannot be directly applied to
PLP models like ProbLog.

Our work is also similar to probabilistic theory compres-
sion (De Raedt et al. 2008) and the theorem revision meth-
ods (Zelle and Mooney 1994) in that it tries to compress a
theory into a more concise form. Our algorithm differs in
that it simultaneously removes probabilistic facts and infers
parameters in one operation.

Our algorithm can be seen as a kind of structure learn-
ing algorithm for PLP models, since it outputs a new PLP
model given a prototype program and training examples. A
previously reported structure learning algorithm for a PLP
program is a beam search based algorithm, and it makes it
necessary to solve the EM style parameter learning algo-
rithm many times (Bellodi and Riguzzi 2012). Obviously
we must conduct empirical comparisons, but we believe our
algorithm can be more efficient than the previous structure
leaning approach since it can find a program by just perform-
ing projection gradient based optimization.

Conclusion
We proposed a novel parameter learning algorithm for PLP
models that attempts to set the learned parameters so that
they take either 0 or 1 by adding a penalty term to an opti-
mization problem. With our algorithm, the learned ProbLog
program will have fewer probabilistic components, and in-
ference tasks performed with it become easier. We solved
the optimization algorithm by combining the gradient pro-
jection algorithm and the computation of gradients in a d-
DNNF based knowledge representation.
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