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Abstract 

Complex decision making scenarios require maintaining 
high level of concentration and acquiring knowledge about 
the context of the task in hand. Focus of attention is not only 
affected by contextual factors but also by the way operators 
interact with the information. Conversely, determining 
optimal ways to interact with this information can augment 
operators’ cognition. However, challenges exist for 
determining efficient mathematical frameworks and sound 
metrics to infer, reason and assess the level of attention 
during spatio-temporal complex problem solving in hybrid 
human-machine systems. This paper proposes a 
computational framework based on a Bayesian approach 
(BAN) to infer users’ focus of attention based on physical 
expression generated from embodied interaction and further 
support decision-making in an unobtrusive manner. 
Experiments involving five interaction modalities (vision-
based gesture interaction, glove-based gesture interaction, 
speech, feet, and body balance) were conducted to assess 
the proposed   framework’s   feasibility   including   the  
likelihood of assessed attention from enhanced BAN and 
task performance. Results confirm that physical expressions 
have a determining effect in the quality of the solutions in 
spatio-navigational type of problems. 

 Introduction    
There is currently a lack of fundamental theories and 
methods to analytically express the relationship between 
user physical interaction, attention and task performance. 
This is in spite of existing evidence in the cognitive 
psychology literature that these are tightly related (Bailey 
et al., 2001). Nevertheless, the multivariate nature of 
attention, makes its quantitative, objective and evidence 
based assessment be a hard challenge. To assess the effects 
and levels of users’ attention, traditional tools rely on 
subjective metrics (e.g. SAGAT (Endsley 1998)). The 
existing limitation of such methods is that they are 
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disruptive and therefore, add a confounding effect to the 
measured variable (Endsley, Pina, and Cummings 2009). 
Other approaches relying on physiological signatures (e.g. 
ocular movements (Poole and Ball 2006) and pulse) 
require the operator to stay seated so physical expressions 
such as hand movements do not interfere with the acquired 
signals. This opposes to the current trend in complex image 
analysis to use more the human bodies (Vogel and 
Balakrishnan 2005) to interact with spatio-navigational 
information, rather than passive analysis (users seated 
continuously in front of the computers). 
 This paper’s main contribution is presenting a rigorous 
mathematically, biologically and psychologically-inspired 
method for assessing attention from disparate raw signals. 
These methods include a systematic characterization of 
operators’   interaction   during   complex   problem   solving; 
probabilistic modeling of the links between attention and 
task performance; evolutionary inspired approaches for 
network generation. A key feature of our work is inferring 
users’ focus of attention dynamically, in a non-intrusive 
fashion. This is done through the design of Bayesian 
Attentional Networks (BANs) along with its topology 
structure and parameters. This methodology is expected to 
have less confounding results compared to former studies. 
Our methodology addresses a key question in AI related to 
the design of cognitive experience interfaces: how to 
determine the optimal combination of control and feedback 
modalities to augment operators’ cognition, enhance their 
performance, thus leading to better decision-making. 
 Figure 1 shows the system architecture of the BAN 
framework. It infers the user focus of attention based on 
the probability distribution of the query variable (attention 
– the dependent variable), given values from evidence 
variables (observations – the independent variables). To 
determine the probabilistic models for inferring users’ 
focus of attention, a systematic approach is developed that 
integrates operator’s  knowledge  and  an  automatic  learning  
process. The   enhanced   BAN   is   further   used   to   infer   the  
probability  of  attention  in  different  interaction  scenarios. 
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Figure 2: A 8-city TSP. The distance between two cities is marked as 
a text in green color .The exponential decay function, 𝛾(𝑡జ) =
𝑒ି௧ഔ/ ೘் expresses the change of rewards as visiting city 𝜐 at time 𝑡జ 
(𝑇௠ is the maximum time allotted for visiting). Total reward function 
is given by ∑ 𝜋జ𝛾(𝑡జ)ே
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 Figure 1: System Architecture of constructing the representative BAN 

Contextual Framework  

In this paper, the spatial navigation decision making 
problem used is the traveling salesman problem (TSP), 
where a salesman must visit N different cities using the 
shortest path without visiting any city more than once. 
Studies (Bureš,    Burešová,    and Nerad 1992; Tenbrink and 
Wiener, 2009)  indicate that people (and animals) can find 
near-optimal solutions to computer generated versions of 
the TSP using perceptual information, however there is a 
large variability on the strategies adopted by each 
individual. This is the reason why it is of paramount 
importance to investigate how humans solve this problem 
and what factors affect their solution. For example, it was 
also found that symmetry of the city layout and other 
aesthetic factors have an effect on the optimality of the 
solutions given by each individual (MacGregor et al. 2004; 
Vickers et al. 2006). In this paper the TSP layout will 
follow the Symmetric with Rewards setup (Blum et al. 
2003), in which the distances between two cities are 
exactly the same in each direction; and there are prizes 
(rewards 𝜋జ) assigned to the cities 𝜐 (see Fig. 2). The goal 
is to find a path such that minimizes the total distance and 
it maximizes the reward collected subject to the selections 
of the cities. 

Bayesian Attention Network (BAN) 

 The  Bayesian  network  represents  the  operators’  attentional  
levels   while   solving   spatial   navigation   and   decision  
making   problems   in   time   sensitive   scenarios.   Such   a  
Bayesian  model  can  capture  cognitive  key  processes  which  
are   characteristic   to   strategies   issued   by   the   operators   to  
solve   decision-making   problems   and   their   effect   on  

attention.  The  representative  Bayesian  network,  describing  
an   operator’s   attentional   behavior,   is   obtained   by   (1)  
selecting  an  operator  highly  familiar  with  the  task  in  hand  
(Korb   and   Nicholson   2003)   (e.g. radiologist,   intelligence  
analysts,   air   traffic   controllers),   or   by   (2)   adopting   a  
genetic   programming   paradigm   whereas   the   network 
evolves automatically as a result of genetic operations 
towards an incumbent solution.  The   structure  of   the  BAN  
is   defined   as   an   assignment   over   𝑁   variables   <
𝑋ଵ, 𝑋ଶ, … , 𝑋ே > ,   each   of   which   takes   a   binary   value   in  
finite   domain  {0,1}.   The   description   of   a   BAN  𝔹  consists  
of   the   directed   acyclic   graph  𝔾   which   includes   directed  
edges  between  variables  and  associated  parameters  vectors  
Θ  that   specify   the  associated  conditional  dependencies.   In  
this   paper,   the variables include observations of the user 
while solving a spatial decision-making problems using 
embodied interaction. Let us define a variable 𝑋௜ 
(i=1,..,k,..,N) such that its value 𝜆௜ = 𝑓(𝑋௜) is a Boolean. 
Also let 𝑋ଵ  be the query variable (focus of attention). 

𝔹𝒙 = 𝑩𝒙𝟏, 𝑩𝒙𝟐, … , 𝑩𝒙𝒎

𝑩𝒙𝒊 is defined over < 𝑿𝟏,… ,𝑿𝑵 >

< 𝑿𝟏,… , 𝑿𝑵 >
Gathering Observations (M Samples)

𝑺𝟏
𝑺𝟐
⋮

{𝑺𝒋: 𝑿𝟏,… , 𝑿𝑵 } ∈ {𝝀𝟏, 𝝀𝟐}𝑿𝟏
⋮
𝑿𝑵
𝑿𝟏
⋮
𝑿𝑵

  𝑫𝟐  𝑫𝟏

𝔹𝒗 = {𝑩𝒗𝟏, 𝑩𝒗𝟐, … ,𝑩𝒗𝒎}
𝒔𝒄𝒐𝒓𝒆𝑩𝒗𝒊 𝔾,𝑫 = 𝑷(𝔾|𝑫)

⋯   𝑫𝒌 𝑫𝑻⋯

∑ 𝒙𝒊𝒋
(𝒌)

𝒌 > 𝜹

𝚯(𝒑|𝑩ᇱ)

Structure Learning

Representative 
Network
(𝑩ᇱ, 𝚯)

Query Variable Inference

Relevant Variable Set 

Determining Structure by 
Evolutionary Learning

Determining Structure By
Operators

Goal: Posterior Probability 𝑷 𝑿𝟏 𝑽
𝑿𝟏: query variable of (𝑩ᇱ, 𝜣)
𝑽: evidence of (𝑩ᇱ, 𝜣)

Node Consensus Model

Parameter Learning

Graph 𝑩ᇱ
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Attention can be discretized in states {0,1} (representing 
“High   attention”,   and   “Low   attention”,   respectively).  We 
use sensors to collect raw instances 𝑆  about the users’ 
physical behavior (body movements), and contextual 
information (e.g. task completion time) during the 
experiment. Those raw instances are transformed into the 
states’   value   of   the   variables,  𝑓(𝑆) → 𝑋ଶ, 𝑋ଷ,⋯  , 𝑋ே  (see 
Table 1).  

Table 1 
Definition of Discrete States for Each Variable 

Variable Description States 

𝑋ଵ Focus of Attention {High Attention, Low Attention} 
𝑋ଶ Torso Orientation Detection of frontal torso 

{True, False} 
𝑋ଷ Face Orientation Detection of frontal face 

{True, False} 
𝑋ସ Hand Gesture {Evoked, Not evoked} 
𝑋ହ Utterance {Present, Not present} 
𝑋଺ Feet in location {Yes, No} 
𝑋଻ Inter-command 

Elapsed Time (𝑡) 
{|𝑡 − 𝜇| ≤ 𝜎, |𝑡 − 𝜇| > 𝜎} a 

𝑋଼ Error in Use {Wrong command delivered, 
Correct command delivered} 

a 𝜇 : mean of the inter-command elapsed time of all observation; 
𝜎:  standard deviation of the inter-command elapsed time  

Determining the BAN Structure through 
Operators’  Knowledge  

In   the   operator-centered based   modeling,   each   of   the  
networks   is   elicited   by   operators   who   have   domain  
knowledge,  considering  the  systems’  requirement  and  user  
centric  preferences.  The  consideration  of  having  operators  
be   responsible   for   the  design  of   the  BAN   is   rooted   in   the  
fact   they  have  experience  not  only  with  effective  problem  
solving   in   the   given   domain,   but   they   are   highly   familiar  
with   the   interaction  process   itself.  The procedure used by 
the operators for building the networks is described in the 
Algorithm 1. 

Determining the BAN Structure through 
Evolutionary Learning 

Evolutionary-based   modeling   was   used   to   construct   the  
Bayesian   network   in order to obtain several candidate 
BANs.   This   method   is   based   on   the   concept   of   Genetic  
Programming  (GP)  where  the  dependencies  between  nodes  
are   inducted   following   GP's   operations.   Thus, to build a 
number of BANs through evolutionary learning, the 
observations collected during the experiment were used to 
construct the datasets (𝐷ଵ, 𝐷ଶ, … , 𝐷்) . Each dataset 𝐷௜  is 
constituted by a number of feature vectors   𝜳 ∈ ℝெ , in 
other words, 𝐷௟ ∈ ℝெ,ேିଵ , where 𝑀  is the number of 
observations assigned to 𝐷௜ . An observation is defined as a 
feature vector 𝛹 = {𝜆ଶ, … , 𝜆ே}  where the binary value 
𝜆௞ = 𝑓(𝑋௞)  corresponds to the 𝑋௞ evidence variable 
computed   from   the   operator’s   evoked   command.   The  

feature vector only contains the variables whose states are 
observable, and therefore 𝜆ଵ is not included (since it is 
inferred).  
 

Algorithm 1: Constructing BAN through Operators 

Input: A set of relevant variables < 𝑋ଵ, 𝑋ଶ,… , 𝑋ே > that describe the 
problem domain 

Step 1. Start by placing the children nodes of the network (raw 
evidence) at the lower level arranged in the same level 

    Step 2. Add the highest node of the network, Attention, in the top 
level.  

    Step 3. Assign a variable 𝑋௜ with its description to each node  
    Step 4. Add nodes in between the lowest level and the highest level, 

exhibiting a cause-effect relation, from the bottom to the top.  
       Step 4.1 For each node added, determine its connection between 

node 𝑋௜ and the set of nodes already in the network.  
       Step 4.2 If a cycle exists, remove the last node.  

Step 5. Return to Step 4 until all the nodes have been placed and all 
variables are assigned to nodes       

 
 In the evolutionary-based modeling, first, an initial 
population was generated randomly. Then, selected 
individuals were used to generate a new generation. This 
was done through genetic operators: crossover and 
mutation. Assume   that   a  BAN  with  graph  𝔾  consists  of  𝑁  
nodes,   where   𝑣௜   indicates   the   𝑖 -th   node.   An   arc   𝑥௜௝ =
(𝑣௜, 𝑣௝)  equals  to  1  if  it  is  directed  from  𝑣௜  to  𝑣௝,  whereas  0  
if   it   is   not   directed.   The   directed   acyclic   graph   was  
represented   as   a   bit   string   (Larrañaga   et   al.   1996),  
𝑥ଵଶ𝑥ଵଷ … 𝑥ଶ௞ … 𝑥ேିଵ,ே .   The   individuals   remaining   (each  
individual   is   a   single   Bayesian   network)   are   those   which  
outperform   the   antecedents   in   terms   of   a   given  
performance  metric.   The   fitness   (the   performance  metric)  
of   the   individual   is   assessed   using   a   scoring  measure   (1),  
which   is   the  probability  of   observing   the  dataset  𝐷௟  by  an  
individual  in  each  population  (Friedman  1997): 

𝑠𝑐𝑜𝑟𝑒(𝐷௟, 𝔾ு) = 𝑃(𝐷|𝔾ு) =෍ 𝑃(𝑑௜|𝔾ு)
ଶಾ

௜
 (1)  

 

𝑃(𝑑௜|𝐺ு) =   ෑෑ Γ൫𝑁௜௝൯
Γ൫𝑁௜௝ + 𝑀௜௝൯

௤೔

௝ୀଵ

ே

௜ୀଵ
ෑΓ(𝑎௜௝௞ + 𝑠௜௝௞)

Γ൫𝑎௜௝௞൯

௥೔

௞ୀଵ
 (2)  

where  𝔾ு = (𝑉 ∪ 𝐻, 𝐸) are   the  disjoint   sets  of  observable  
variables  (𝑉 = {𝑋ଶ, … , 𝑋଼})  and  the  latent  variable  (level  of  
attention)   is  𝐻 = {𝑋ଵ} ,   with   edges  𝐸   (between   pairs   of  
variables).  In  Eq.  (1),  the  computation  of  the  scoring  metric  
takes   exponential   time   in   terms   of  𝑀 .   To   tackle   this  
problem,   an   efficient   calculation   (Neapolitan   2004)   was  
carried  out  consisting  of  computing  𝑃(𝑑௜|𝔾ு)  of  repetitive  
observations  in  the  dataset  only  once,  and  then,  multiplying  
the   derived   probability   by   the   number   of   its   occurrences.  
This   process   does   not   affect   their   statistical   effect   on   the  
latent   variable.   A   number   of   observation   tables   can   be  
generated  by  concatenating  the  original  table  𝐷௟   with  a  new  
column  𝑐௜ ∈ ℝெ,ଵ each time. More formally, 𝐵௜ = 𝐷௟ ∪ 𝑐௜, 
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𝑖 = 1…2ெ , 𝐵௜ ∈ ℝெ,ே .   The overall procedure of 
evolutionary-based modeling for building the networks is 
described in the algorithm below:  
 

Algorithm 2: Constructing BAN through Evolutionary Approach 

Input:  
        Table 𝑫𝒊 – binary values of observable  variables 
        𝑀 – number of iterations; i – iteration index; ϵ − threshold 
Initialization: generate a set of feasible 𝔾ு

c solutions randomly  
while score(𝑫𝒍, 𝔾ு

(௜)∗) - score(𝑫𝒍,𝔾ு
(௜ିଵ)∗) ≥   ϵ do 

      𝔾ு
(௜) ← 𝑐𝑟𝑜𝑠𝑠𝑂𝑣𝑒𝑟൫𝔾ு

(௜)൯ 
      𝔾ு

(௜) ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛൫𝔾ு
(௜), 𝑝௠൯ // 𝑝௠ as mutation probability 

      𝔾ு
(௜)∗ ← 𝑒𝑙𝑖𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛൫𝔾ு

(௜)൯ 
     if 𝑎𝑛𝑦൫𝔾ு

(௜)൯ is infeasible then 
      update 𝔾ு

(௜) //replace a infeasible solution 𝑏𝑦  𝑎  𝑛𝑒𝑤 random one 
end if 

    increment i 
end while 
Output: Incumbent DAG  𝔾ு

(௠)∗ 

Node Consensus Model (NCM) 

The   representative   graph   structure   is   obtained   from  
candidate   BANs   previously   found   using   operator-based  
modeling   and   the   evolutionary   approach.   The   procedure  
used,   coined   Node   Consensus   Model   (NCM),   consists   of  
iteratively   deriving   an   agreed   graph   among   most   of   the  
candidates.   The   NCM   attempts   to   find   a   BAN   with  
consensus  among  the  majority  of  the  candidate  BANs.  The  
enhanced   network   is   derived   iteratively   by   examining   the  
existence   (and   popularity)   of   edges   among   each   BAN  
candidates.  Assume  there  are  𝐾  BANs  in  the  candidate  set,  
and  for  each,  an  adjacency  matrix  𝑨𝒌with each element 𝑥௜௝ ,  
where   𝑖, 𝑗 ∈ {1…𝑁} ,   is constructed to represent the 
network. This   means   that   an   entry   “1”   assigned   to   𝑥௜௝   
means that nodes 𝑖 and 𝑗 are connected, an “0”   otherwise.  
The  representative  BAN  starts  from  an  initial  empty  graph  
in   which   nodes   are   not   connected   (𝑨𝒌  with all entities 
equal to 0).  Let  us  hypothesize   that   there   is  an  edge   from  
two   nodes   𝑣௜   and  𝑣௝ .   Then,   we   ask   how   many   of   the  
remaining   graphs   agree   with   this   hypothesis.   Thus   the  
existence   of   an   edge   is   decided   by   iteratively   examining  
the   consensus   among   the   remaining   graphs.   The   edge  
reaches   a   consensus   if   and   only   if   the   number   of   graphs  
which  have   the  same  connectivity  exceed  some   threshold.  
For  example,  the  value  of  10  at  entry  (𝑖, 𝑗)  indicates  that  10  
BANs   agreed   that   there   is   a   link   (cause-effect)   between  
node  𝑖  and  node  𝑗.  Figure  3   shows   the  resulting  adjacency  
matrix  of   the  optimal  BAN.  Each  entry   in  each  adjacency  
matrix   of   a   BAN   included   only   0-1   values,   and   thus   the  
total  values  for  entry  (𝑖, 𝑗)  can  be  at  most  10.  For  example,  
the  top  left  value  indicates  that  10  BANs  agreed  that  there  
is   a   link   (cause-effect)   between   attention   and   torso  
orientation.  This  process  is  summarized  in  Algorithm  3. 
 

Algorithm 3: Node Consensus Method 

Input:  
        𝑨𝒌 matrices representing a set of 𝑘 graphs each with order 𝑁 
         𝐾 – the number of iterations performed 
for all 𝑖, 𝑗 ≤ 𝑁 do // given i,j as the source and destination indices of 
nodes 𝑥 
      𝑛𝐶𝑜𝑛 ← ∑ 𝑥௜௝(௞)௄

௞  
      if 𝑛𝐶𝑜𝑛 > 𝐾/2 then // majority is more than 50% agreement 
             𝓐(𝒊, 𝒋) ← 𝑛𝐶𝑜𝑛   
     end if 
end for 
𝒢 ← Mat2Dag(𝒜) // convert the adjacency matrix to the directed 
graph 
𝒢 ≔ optimal graph with majority consensus 
Output: optimal graph 𝒢 with adjacency matrix 𝓐 = [𝑥௜௝] 

Experimental Results 

Experiments   were   conducted   to   assess   the   validity   of   the  
framework. Twenty graduate and undergraduate students 
were recruited, including 13 males and 7 females, all 20 to 
30 years old. The users were given instances of the TSP 
problem to solve. Each user was given 20 different TSPs to 
solve in 4 different scenarios (5 TSPs in each scenario). In 
each scenario, the subject used a different interaction and 
feedback modality, which was randomly assigned in 
advance. Each   user   acted   as   an   “operator”. The five 
modalities adopted included gross gestures (recognized by 
Kinect), fine gesture (finger configurations recognized 
through a data glove), speech, feet configuration (on dance 
pad controller), and body stance (using a Wii balance 
board). Those sensors were used to collect evidence 
including: torso and face orientations, hand gesture, 
utterance, body stance and elapsed time, which served as 
the raw observations (evidences). 
 The instances of the TSP problems presented included 
the layout of cities, labeled edges representing the distance 
between cities and the reward assigned to each city in a bar 
graph. As the subject travels to the next city using one of 
the aforementioned interaction modalities, feedback is 
displayed or read back to the subject through a text-to-
speech program (Microsoft SAM). The feedback 
information provided consisted of the overall travelled 
distance. With this information, the subjects were better 
equipped to estimate possible alternatives that would lead 
to shorter distances. 

𝒜 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡0 10 7 5 5 4 3 4
0 0 4 6 2 3 4 3
0 0 0 5 6 3 0 6
0 0 0 0 4 3 5 6
0 0 0 0 0 4 5 8
0 1 1 1 1 0 1 2
0 1 0 0 0 2 0 5
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Figure 3: The adjacency matrix of the representative BAN for the 10 
candidate BANs in Figure 4. 
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Figure 4: Bayesian  Attentional  Network’s  structure  obtained  by  (a)  – (e) Operator based, (f) – (j) Evolutionary learning (k) NCM method 
 

 
Figure 5:  The adjacency matrix of BANs obtained by (a) – (e) Operator based, (f) – (j) Evolutionary Learning 
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 Five topologies were acquired using the evolutionary 
BANs approach from 100 observations in each dataset. 
Additionally another 5 BANs were obtained by operators. 
The parameters (conditional probability distribution for 
each node) that quantify relationships between connected 
nodes were computed using the Expectation-Maximization 
(EM) algorithm (Friedman 1997). Figure 4 (a) – (j) shows 
the example BANs elicited by 5 operators and learned 
through the evolutionary process, respectively. The 
adjacency matrix for each BAN represents the connection 
between nodes in Figure 5 (a) – (j). The representative 
BAN determined by NCM method is shown in Figure 4 (k), 
and its adjacency matrix is shown in Figure 3. Figure 6 
shows the evolutionary learning process of five BANs in 
each generation, obtained through Algorithm 2. The figure 
shows the best scores among the populations in each 
generation. From the figure can be learnt that after 170 
generations, the solution increased significantly (25.08% at 
most, and 9.77% at least) from their initial values. 

 Additionally, the inferred probability  of  attention  at   the  
state  of  “high  focus  of  attention”  𝑃(𝑋ଵ|𝑉)  in  10  difference  
scenarios   is   presented   in   Table   2.   The   highest   value   of  
probability  of  attention  occurred  when  using  step  gestures  
as   the   input   modality,   and   speech   as   feedback.   Also   the  
second   best   combination   was   step   gesture   and   visual  
feedback.   In   order   to   show   the   optimal   scenario   (or  
alternatively   the   worst)   to   be   significant,   the   ANOVA  
(Analysis   of   variance)   is   conducted   on   each   independent  
trial.  Results  of  one-way  ANOVA  (F(9,190)=96.16,  p<  .05)  
indicated   that   there   are   statistically   differences   between  
group  means.  

Discussion 

 In  this  paper  we  applied  inference  and  reasoning  to  assess  
the   level   of   operators’   attention   using   BANs.   The   main  
experimental   result   consists   of   a   network   automatically  
created   based   on   consensus   between   the   candidate  
solutions.   This   network   was   obtained   through   the   NCM  
method  proposed.  It  explains  why  the  focus  of  attention  not  
only   affects   the   physical   action   but   also   the   task  
performance  (elapsed  time,  and  operator  error).  Moreover,  
the  torso  orientation  determined  largely  the  direction  where  
the   user   was   facing   and   her   feet   movement.   The   gesture  
and   utterance   were   determined   significantly   by   the  
orientation  of   the  users’   face   (which   in   turn   is  a  proxy  of  
focus   of   attention).   The   elapsed   time   varied   among   users  
depending   on   the   time   taken   to   evoke   the   gestures   or  
utterances.  Through the use of cause-effect networks, five 
types of interaction modalities and two feedback 
modalities were cross-compared through a set of 
experiments. The results show that using step gestures on 
the dance pad controller lead to higher focus of attention 
than using other three interfaces (fine gestures recognized 
through a data glove, gross gesture recognized by Kinect, 
and speech) for control.  

Conclusion 

Bayesian attentional networks (BANs) are a structure 
describing the cause-effect relationship between operator’s  
focus of attention, physical action and decision-making in 
a spatio-temporal complex and time-sensitive problem. 
The proposed framework considers both operators’  
knowledge and a biologically inspired method to compute 
the BAN with the highest performance metric. This BAN 
was obtained through an innovative method called Node 
Consensus Method (NCM). This method automatically 
creates a representative BANs based on the consensus level 
among the candidate solutions. Results showed that using 
step gestures allowed operators to solve spatial 
navigational problem while keeping high level of attention. 
Future work involves incorporating feedback information 
and testing this approach with a larger dimensional 
decision making problem (tools for visualizing cyber-
operations). In addition, multiple modalities of user 
command and feedback will be adopted for operator-
machine interaction. 
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Figure 6: Convergence characteristics of 5 evolutionary 
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Table 2 
Inferred  probability  of  attention  at  the  state  of  “high  focus  of  attention”   

in different scenarios  
 Step Glove Kinect Speech Wii 

Visual 0.5967 0.4821 0.4690 0.3438 0.5747 
Speech 0.6079 0.4871 0.4663 0.3290 0.5559 
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