
Towards an Extended Declarative
Representation for Camera Planning

Thomas W. Price and R. Michael Young
North Carolina State University

Department of Computer Science
Raleigh, NC 27606

twprice@ncsu.edu, young@csc.ncsu.edu

Abstract
This paper presents a language by which authors can
define cinematic sequences declaratively at a high level,
while taking advantage of low level camera planning
techniques and some procedural elements.

Introduction
As high-quality graphics capabilities become more avail-
able, 3D virtual worlds find increasing applications in enter-
tainment, education and storytelling. In many of these appli-
cations, it is necessary to generate cinematic sequences that
capture events of importance in the virtual world and con-
vey them to the viewer. An author may wish to define how
these sequences are filmed, but the exact state of the virtual
world during these events, including the positions of the ac-
tors, may not be known beforehand. For example, an author
may wish to define the cinematic properties of a cutscene
in a video game, but exactly when and where that cutscene
is triggered might be determined by the player’s actions. A
similar need arises in filming narratives with procedurally
generated plots, where an author might wish to define how
certain types of story events are filmed, but the context of
these events, including the actors and their locations, cannot
be determined in advance.

To address this, we present a language by which authors
can define meaningful shot sequences, or Idioms, at a high
level, while taking advantage of low level camera placement
techniques. Once defined, these Idioms can be interpreted by
a camera planning system to film scenes in a dynamic con-
text. Our language builds upon past approaches to this prob-
lem (Christianson et al. 1996; He, Cohen, and Salesin 1996;
Amerson, Kime, and Young 2005) that define this high level
structure declaratively. It also allows for the integration of
existing camera placement and path planning techniques, as
well as the inclusion of some procedural elements to achieve
increased expressivity. These components and their related
work are addressed in more detail in the following sections.

Declarative Representation
Declarative representations are often used to define an id-
iom (or a similar structure), specifically how it is composed

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of lower-level components. The Declarative Camera Control
Language (DCCL) (Christianson et al. 1996), for instance,
allows an author to define a simple linear ordering of cam-
era fragments to comprise an idiom. THE VIRTUAL CIN-
EMATOGRAPHER (He, Cohen, and Salesin 1996) extends
this idea by using a finite state machine (FSM) to allow for
more complex transitions between camera modules based
on the state of the virtual world. The camera fragments or
modules in these examples are primitive camera routines
which have been hard-coded into the camera planner. These
primitives are often parameterized with relevant informa-
tion, such as which actor to film, e.g. closeUp(actor1).
The FILM system (Amerson, Kime, and Young 2005) uses
a similar declarative structure; however, FILM’s low-level
components are defined as sets of constraints on the cam-
era’s placement to be solved by the camera planner at run-
time.

Our language encapsulates these low-level components
into a single concept called a Shot, similar to the way
Drucker and Zeltzer (1995) use generic camera modules. We
define a Shot as any function which outputs a Virtual Cam-
era (VC), as defined by its position, orientation and field of
view. In addition, a Shot may take as input any number of pa-
rameters, such as which actor to film or constraints on how
the shot should be composed. A Shot could represent a hard-
coded routine or a complex constraint solving system. Just
as DCCL and the VIRTUAL CINEMATOGRAPHER provide
a list of available primitives to the author, a camera plan-
ner implementing our language would also provide a set of
available Shots. Simple examples of Shots include:

• LookAt(p1, p2): positions the VC at position p1 and
orients it towards position p2.

• ApexShot(a1, a2): places the VC such that actor a1
is centered on one side of the screen, and actor a2 is cen-
tered on the other side.

We further define a Transition to be a specialized Shot
which takes as input two VCs and a percentage, p ∈ [0,1].
The function interpolates between the two cameras, transi-
tioning from one to the other over the value of p. For exam-
ple:

• Cut(c1, c2, p): returns c1 if p < 0.5; otherwise re-
turns c2

Intelligent Cinematography and Editing: Papers from the AAAI-14 Workshop

61



• SimplePan(c1, c2, p): starts at c1 and linearly in-
terpolates that camera’s orientation to that of c2 (assumes
c1 and c2 share a position).

Our language defines the Idiom itself in two parts. First,
the author declares a list of VCs, defined using the available
Shot functions. Then the author defines a FSM, similar to
that found in the VIRTUAL CINEMATOGRAPHER, in which
each VC declared earlier is a state, and the VCs are con-
nected by Transitions, triggered by changes in the virtual
world. A Transition might be triggered, for instance, when
an actor begins talking, when a given amount of time has
elapsed, or when an actor becomes occluded. The underly-
ing camera planner would need to disclose available Tran-
sition triggers, as it does with available Shots. Like Shots,
Idioms may be parameterized, taking inputs such as which
actor(s) to film.

Integrating Existing Techniques
Our definition of a Shot is quite broad, and this is a pur-
poseful attempt to allow authors to utilize a wider variety
of existing camera planning techniques in their Idioms. For
example, many camera planning systems have addressed the
problem of positioning a VC to achieve a desired shot com-
position. These systems often use a set of constraints to de-
fine the camera’s position, which might include onscreen
properties of a character, such as framing (medium or close-
up), orientation (front or profile) and occlusion. A typical
approach is to translate these properties into a set of math-
ematical constraints, which are then optimized to yield the
camera’s position and orientation.

CONSTRAINTCAM (Bares and Lester 1998) employs this
technique with a visualization interface that allows the user
to request shots with specified “viewing goals” that constrain
the camera’s placement. The CAMPLAN system (Halper and
Olivier 2000) can compute a single shot based on a variety
of more complex constraints, including relative constraints
on the positions or sizes of two objects onscreen. An al-
ternate approach calculates Semantic Volumes (Christie and
Normand 2005) that define regions where given camera con-
straints are satisfied, rather than finding a single ideal shot,
though further refinement can be used to select a single cam-
era shot from these volumes. Systems like these could easily
be reimagined as Shot functions, taking constrains as inputs,
and providing a well-positioned and well-composed VC as
output.

An Example
Suppose an author would like to construct an Idiom for film-
ing a conversation between a father and a son. The scene
should begin with an apex shot to establish the characters
(Shot A), then cut to the father after two seconds (Shot B),
and finally cut to the son (Shot C) when he begins talking. If
the conversation goes on, the camera should continue to cut
back and forth between shots B and C. Further, in order to
emphasize the status of the father, he should be shown from
a lower angle, and the son should be shown from a higher an-
gle. Let us assume that the camera planner provides a prim-
itive ApexShot function as described earlier, as well as a

SolveShot function, which films a single actor and can
be provided with additional compositional constraints, sim-
ilar to CONSTRAINTCAM or CAMPLAN. With these Shots
defined, we can create the Conversation Idiom as shown in
Figure 1.

Conversation(Actor father, Actor son):

Declarations:
VC shotA← ApexShot(father, son)
VC shotB← SolveShot(father, angleY = −10◦)
VC shotC← SolveShot(son, angleY = 10◦)

FSM:

Figure 1: The Conversation Idiom uses both primitive and
constraint-solving Shots.

The Idiom first declares three VCs representing shots
A, B and C, and defines them using the ApexShot and
SolveShot functions. Special constraint parameters are
passed to the SolveShot function to achieve the desired
vertical viewing angle. The transitions are then defined using
a FSM, where the edges are labeled with both the condition
for transitioning and the Transition function to use.

Procedural Elements
As with other declarative structures, Idioms are designed to
allow authors to the define desired properties of a shot se-
quence, rather than how those properties are achieved by the
camera planner. However, sometimes the increased expres-
sivity offered by a procedural representation can be desir-
able. To address this, our language allows authors to declare
additional variables in the declaration section of an Idiom
and pass these variables as arguments to Shot functions. As
Pickering and Olivier (2003) suggest, we incorporate vari-
able typing into our representation and allow authors to ref-
erence properties of variables. For instance, a VC is com-
posed of a position, orientation and field of view, so if an au-
thor has declared a VC variable called cam, the author could
also reference cam.position. In this paper, we will not
attempt to enumerate all data types the language should sup-
port, but our examples will make references to Actors, VCs
and Positions.

As an example of the utility of this convention, consider
the following situation: An author would like to create an Id-
iom representation for a “whip pan,” a shot which portrays
two actors side by side, starting with a view of one actor
(Shot A), and then panning quickly over to the second actor
(Shot B). The position of the camera remains fixed. Using
existing Shot functions, an author could calculate the de-
sired VC for both Shot A and Shot B, but there would be
no guarantee that these shots would share a position, as re-
quired for a whip pan. Alternately, one could define a new

62



Shot specifically for a whip pan, but this might be a labor-
intensive process and would involve modifying the camera
planner. However, using the LookAt and ApexShot func-
tions defined earlier, we can construct a whip pan Idiom us-
ing our language, as shown in Figure 2.

WhipPan(Actor A, Actor B):

Declarations:
Position pos← ApexShot(A, B).position
VC shotA← LookAt(pos, A.position)
VC shotB← LookAt(pos, B.position)

FSM:

Figure 2: The WhipPan Idiom uses additional variable dec-
larations to create two shots that share a position.

The WhipPan Idiom defines pos as a shared camera posi-
tion for Shots A and B by taking the position of an apex shot
of both actors. If our ApexShot function is well defined, it
will provide a clear view of both actors. For simplicity, Shots
A and B are defined by a LookAt shot, with the camera po-
sitioned at pos, filming the respective actor. The FSM starts
the sequence with Shot A, and then pans to Shot B when
actor B starts talking. Later it can pan back to Shot A when
actor A is talking again.

Execution
Our language does not explicitly define how or when an Id-
iom should be used, except for the requirement that an Id-
iom’s parameters must be specified; however, it is assumed
that an external system will be reasoning about this these
choices. For instance, a video game engine might start film-
ing an Idiom associated with a specific cutscene when that
cutscene is triggered. Alternately, in the context of proce-
dural narrative, an author might annotate Idioms with rele-
vant properties, so that a visual discourse planner (e.g. Jhala
and Young 2010) could select an appropriate Idiom to film
a scene. Once an Idiom is selected, the camera planner is
responsible for evaluating the current Shot function to deter-
mine the placement of the camera. It is also responsible for
triggering appropriate Transitions in the FSM.

Note that the language makes no commitment as to
whether the camera planner runs in real-time or not. If any
of the Shots or Transitions employed in an Idiom require
off-line calculation, the Idiom will as well, but this should
not change how the Idiom is declared. Similarly, any infor-
mation required by a Shot for calculation, such as the scene
geometry and the positions of possible occluders, would be
required by the camera planner implementing it. We do not
consider this additional information to be a parameter of the
Shot because it should be provided by the camera planner
at runtime and not the author at design time. The author of
an Idiom need not be concerned with how the camera plan-

ner implements Shots, so long as it is clear which Shots are
available. In fact, a camera planner could be continually up-
dated to provide new Shots, Transitions and Transition trig-
gers to authors, without changing the overall structure of the
language.

Conclusions and Future Work
The language presented in this paper attempts to take a step
towards integrating lower-level camera planning techniques
and procedural elements into a declarative representation of
an Idiom. However, there are some issues that future work
will need to address before the language can be implemented
in a camera planner and evaluated. A formal syntax and list
of data types will help to define the language more precisely,
and viable Shots and Transitions will need to be identified.
Additional consideration should also be given to the role of
time in the execution of an Idiom. For instance, should the
current Shot be evaluated at every frame? If so, would Shots
then be required to be continuous functions over time? Fur-
ther investigation is needed to answer these questions.

References
Amerson, D.; Kime, S.; and Young, R. M. 2005. Real-time
cinematic camera control for interactive narratives. In Pro-
ceedings of the 2005 ACM SIGCHI International Confer-
ence on Advances in Computer Entertainment Technology.
ACM.
Bares, W. H., and Lester, J. C. 1998. Intelligent multi-shot
visualization interfaces for dynamic 3D worlds. In Proceed-
ings of the 4th International Conference on Intelligent User
Interfaces, 119–126. ACM.
Christianson, D. B.; Anderson, S. E.; He, L.; Salesin, D. H.;
Weld, D. S.; and Cohen, M. F. 1996. Declarative camera
control for automatic cinematography. In Proceedings of the
Conference of the American Association for Artificial Intel-
ligence, 148–155.
Christie, M., and Normand, J.-M. 2005. A semantic space
partitioning approach to virtual camera composition. Com-
puter Graphics Forum 24:247–256.
Drucker, S., and Zeltzer, D. 1995. CamDroid: A System for
Implementing Intelligent Camera Control. In Proceedings
of the 1995 symposium on Interactive 3D graphics.
Halper, N., and Olivier, P. 2000. Camplan: A camera plan-
ning agent. In Smart Graphics 2000 AAAI Spring Sympo-
sium, 92–100.
He, L.; Cohen, M. F.; and Salesin, D. H. 1996. The vir-
tual cinematographer: a paradigm for automatic real-time
camera control and directing. In Proceedings of the 23rd
annual conference on Computer Graphics and Interactive
Techniques, 217–224. ACM.
Jhala, A., and Young, R. M. 2010. Cinematic vi-
sual discourse: Representation, generation, and evaluation.
IEEE Transactions on Computational Intelligence and AI in
Games 2(2):69–81.
Pickering, J., and Olivier, P. 2003. Declarative Camera Plan-
ning Roles and Requirements. In Proceedings of the Third
International Symposium on Smart Graphics.

63




