
A Deeper Empirical Analysis of CBP Algorithm:
Grounding Is the Bottleneck

Shrutika Poyrekar and Sriraam Natarajan and Kristian Kersting*
School of Computing and Informatics, Indiana University, USA

* Department of Computer Science, Technische Universitat Dortmund, Germany

Abstract
In this work-in-progress, we consider a lifted inference
algorithm and analyze its scaling properties. We com-
pare two versions of this algorithm – the original im-
plementation and a newer implementation built on a
database. Our preliminary results show that construct-
ing the factor graph from the relational model rather
than the construction of the compressed model is the
key bottleneck for the application of lifted inference in
large domains.

1 Counting Belief Propagation
Recent years have seen a surge of interest in lifted prob-
abilistic inference algorithms that exploit redundancies
to speed up inference, ultimately avoiding explicit state
enumeration by manipulating first-order state representa-
tions directly. Lifted inference exploits the observation that
ground models obtained by instantiating a set of logical
models exhibit a large degree of symmetry, which leads to
repeating the same set of computations multiple times. Ac-
cordingly, lifted algorithms operate on predicate level so that
the inference is performed at a higher level instead of at the
instance level. There have been several different algorithms
proposed recently, ranging from exact algorithms (Choi, de
Salvo Braz, and Bui 2011; de Salvo Braz, Amir, and Roth
2005; den Broeck et al. 2011; Milch et al. 2008; Poole 2003;
Sen, Deshpande, and Getoor 2008), deterministic approx-
imation of exact algorithms (Gogate and Domingos 2013;
Ahmadi, Kersting, and Sanner 2011; Ahmadi, Kersting, and
Hadiji 2010; Kersting, Ahmadi, and Natarajan 2009; Nath
and Domingos 2010; Singla and Domingos 2008), sampling
algorithms (Milch and Russell 2006; Poon, Domingos, and
Sumner 2008; Zettlemoyer, Pasula, and Kaelbling 2008),
search-based algorithms (Gogate and Domingos 2011; Van
den Broeck et al. 2011) and pre-processing (Shavlik and
Natarajan 2009).

We had earlier developed Counting Belief Propagation
based on message passing that is illustrated in Figure 1. The
left-most graph in this figure shows a factor-graph represen-
tation of a graphical model. A factor graph is a bi-partite
graph with random-variable nodes and factor nodes. For in-
stance, in the first graph of the Figure 1, the circles with “A”,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Counting Belief Propagation (CBP). From left to right,
the steps of compressing a simple factor graph assuming no ev-
idence. The shaded/colored small circles and squares denote the
groups and signatures produced running CBP. On the right-hand
side, the resulting compressed factor graph is shown.

“B”, and “C” in them represent random variables, and the
squares represent the factors, which are essentially functions
that encode the probabilistic relationships between two ran-
dom variables. The belief-propagation (BP) algorithm works
by passing real-valued functions called “messages” along
the edges between the nodes. For the factor graph in the
figure, let us assume that the nodes A, B, and C all send
the same message to factors f1 and f2, which send the mes-
sage back to the nodes. As can be seen after first iteration,
nodes A and C send the same message back while B sends
two copies of the same message. This allows us to cluster
the nodes A and C to a single node and the factors to a sin-
gle factor. Hence, message passing can now take place on a
smaller network. This is a simple example of a lifted infer-
ence algorithm from a message passing perspective.

This algorithm has now been widely applied to several
tasks - from model counting and temporal inference (Ker-
sting, Ahmadi, and Natarajan 2009) to computing personal-
ized page ranks and Kalman filters (Ahmadi, Kersting, and
Sanner 2011) to clustering on demand (Neumann, Ahmadi,
and Kersting 2011) to solving linear programs (Mladenov,
Ahmadi, and Kersting 2012). While this is successful in
many real tasks, some important questions remain in under-
standing the scalability of the algorithm. Specifically, there
is prevalent criticism that compression of the ground factor
graph can be a bottleneck for this algorithm. In this paper,
we explore this hypothesis in detail and investigate the rela-
tionship between construction of a ground factor graph and
the compression of this factor graph in several domains. We
show empirically that if there exists a robust, fast ground-
ing technique, this is in fact a very practical algorithm. This

Statistical Relational AI: Papers from the AAAI-14 Workshop

83



also opens up the potential research direction of construct-
ing a fast (and possibly approximate) grounding algorithm.
The results in this work are preliminary and help identify
important future research directions.

We next present the experimental domains and the results
of the evaluation in these domains. We then conclude by out-
lining some future research directions.

2 Empirical Analysis
To empirically analyze the CBP algorithm, we used two im-
plementations: first is the original implementation of Ker-
sting et al. (Kersting, Ahmadi, and Natarajan 2009) in
Python. We focus here on the naive O(n2) version of color-
passing using flooding. Doing so is a sensible idea since
flooding is easy to parallelize. There indeed are quasi-
linear O((m + n) log n) algorithms for color passing on
graphs with n vertices and m edges due to asynchronous
color updates, see e.g. (Berkholz, Bonsma, and Grohe 2013;
Grohe et al. 2013) and references in there for more de-
tails, however, asynchronous updates are far more difficult
to parallelize and the overhead may actually spoil the bene-
fits of distributed computations. The second implementation
is a java-based algorithm that uses Tuffy (Niu et al. 2012),
a database implementation of Markov Logic networks that
employs PostgreSQL underneath. In this implementation,
we used Tuffy for grounding the MLN to a factor graph and
implemented the compression step using the data structures
(tables) provided by Tuffy. The aim was to answer the fol-
lowing two questions:

1. Does the use of a database system improve the perfor-
mance of CBP? Does it scale well compared to the origi-
nal implementation?

2. Which is the bottleneck? Construction of the factor graph
or its compression?

To answer these two questions, we considered four stan-
dard MLNs that are used widely by the StaRAI community.
They are (i) Smokers (ii) Cora entity resolution (iii) UW-
CSE and (iv) WebKB. These MLNs were obtained from the
alchemy website 1. We kept the evidence to about 10% of
the total groundings (this evidence is significantly high for
many lifted inference algorithms to handle). We increased
the number of objects in the domain to better understand the
scaling properties of the algorithms. The reported results are
averaged over 5 runs. It must be mentioned that the number
of MLN clauses in Smokers and WebKB domain are signif-
icantly smaller than the number of clauses in the other two
domains. Thus the algorithms scale better in these two do-
mains.

The results of the (initial) empirical analysis are presented
in Figure 2. Both the methods converged to the exact same
marginals for the queries indicating that there is no differ-
ence in the quality of the results. The second row of the re-
sults are the results in the 4 domains of the original CBP
implementation (we will call this as CBPP to denote CBP in
Python) and the first row is the Tuffy based implementation
(we will call this as CBPT) in Java. It can be observed in

1http://alchemy.cs.washington.edu/mlns/

all the domains of both the implementations that grounding
of the MLN to a factor graph is the key bottleneck com-
pared to that of the compression. This suggests that there is
a necessity in improving the grounding of the network for
efficient inference. Also, it can be observed that in some do-
mains, CBPP was not able to compress the factor graph as
it ran out of memory. Note that in all domains, the num-
ber of ground atoms is squared of the number of objects.
Hence, in Cora domain for example, CBPP could not com-
press with 1M ground atoms while CBPT was able to han-
dle 1B ground atoms. In WebKB, both methods were able
to handle 1B ground atoms as the number of clauses was
significantly small.

In both domains, CBPP is faster than CBPT due to its
faster implementation in C++ and Python as the list oper-
ations inside Python are faster. But as mentioned earlier,
the Tuffy based implementation is able to scale much bet-
ter than CBPP (1B vs 10k in Cora and 100M vs 100 in
UWCSE). This demonstrates that the use of a database un-
derneath helps in scaling up the lifted inference algorithm
by order of magnitude.

To summarize and answer the two questions (1) CBPT
scales significantly better than CBPP algorithm although the
latter is faster due to its implementation in Python and (2)
Construction of the ground factor graph is the significant
bottleneck in all the domains for both the algorithms.

3 Discussion
As far as we are aware, this is the first preliminary evalu-
ation of the scalability of a lifted inference algorithm. Our
goal was to evaluate whether the algorithms can handle a
scale of millions of ground atoms and evidence that can be in
millions of ground atoms. It is clear that with the use of un-
derlying data base technology, BP algorithm can scale well.

The results while initially promising also raise several
questions and challenges that need to be addressed before
the algorithm can be applied on larger data sets: ) (1) the full
grounding must be avoided to form the factor graph. Ap-
proaches such as FROG (Shavlik and Natarajan 2009) and
Tuffy’s default grounding require knowledge of the query to
avoid fully grounding the network. (2) It would be an in-
teresting research direction to determine how to incremen-
tally ground the data for compression of the factor graph.
(3) There is a necessity to parallelize the grounding oper-
ation to scale up inference. There has been prior work on
using MapReduce for the compression step (Ahmadi et al.
2013) but as we show here, the key bottleneck is still the
grounding process which needs to be sped up. (4) Finally,
combining incremental grounding with compression in the
same step would be an interesting direction for future re-
search.

4 Acknowledgement
We like to acknowledge the work performed under
LongView International Inc. AFRL contract FA8750-14-C-
0022 under AFOSR STTR Topic AF13-AT11. The opinions
and conclusions do not reect the position of the Air Force,
AFOSR or AFRL. The authors also gratefully acknowledge

84



Fig. 2: Results of our evaluation. The top row presents the results of the CBPT algorithm while the bottom row presents the
results of CBPP algorithm. Columnwise, the first column is the Cora data set, the second is the Smokers data set, third is
UW-CSE and the last column is the WebKB data set.

discussions with the AFRL COTR James Nagy for his con-
structive feedback and support.

References
Ahmadi, B.; Kersting, K.; Mladenov, M.; and Natarajan,
S. 2013. Exploiting Symmetries for Scaling Loopy Belief
Propagation and Relational Training. Machine Learning.
Ahmadi, B.; Kersting, K.; and Hadiji, F. 2010. Lifted belief
propagation: Pairwise marginals and beyond. In P. Mylly-
maeki, T. Roos, T. J., ed., Proceedings of the 5th European
Workshop on Probabilistic Graphical Models (PGM–10).
Ahmadi, B.; Kersting, K.; and Sanner, S. 2011. Multi-
evidence lifted message passing with application to pager-
ank and the kalman filter. In IJCAI.
Berkholz, C.; Bonsma, P.; and Grohe, M. 2013. Tight lower
and upper bounds for the complexity of canonical colour re-
finement. In 21st Annual European Symposium on Algo-
rithms (ESA), 145–156.
Choi, J.; de Salvo Braz, R.; and Bui, H. 2011. Efficient
methods for lifted inference with aggregate factors. In AAAI
2011.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted First
Order Probabilistic Inference. In IJCAI, 1319–1325.
den Broeck, G. V.; Taghipour, N.; Meert, W.; Davis, J.; and
Raedt, L. D. 2011. Lifted probabilistic inference by first-
order knowledge compilation. In IJCAI, 2178–2185.
Gogate, V., and Domingos, P. 2011. Probabilistic theorem
proving. In Proc. 27th Conf. Uncertainty in AI.
Gogate, V., and Domingos, P. 2013. Structured message
passing. In UAI13.
Grohe, M.; Kersting, K.; Mladenov, M.; and Selman, E.
2013. Dimension reduction via colour refinement. In
arXiv:1307.5697.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting
Belief Propagation. In UAI.
Milch, B., and Russell, S. 2006. General-purpose mcmc
inference over relational structures. In Uncertainty in Artifi-
cial Intelligence, 349–358. AUAI Press.

Milch, B.; Zettlemoyer, L.; Kersting, K.; Haimes, M.; and
Pack Kaelbling, L. 2008. Lifted Probabilistic Inference with
Counting Formulas. In AAAI.
Mladenov, M.; Ahmadi, B.; and Kersting, K. 2012. Lifted
linear programming. In AISTATS, 788–797.
Nath, A., and Domingos, P. 2010. Efficient lifting for online
probabilistic inference. In AAAI.
Neumann, M.; Ahmadi, B.; and Kersting, K. 2011. Markov
logic sets: Towards lifted information retrieval using pager-
ank and label propagation. In AAAI.
Niu, F.; Zhang, C.; Re, C.; and Shavlik, J. 2012. Scaling in-
ference for markov logic via dual decomposition. In ICDM,
1032–1037.
Poole, D. 2003. First-Order Probabilistic Inference. In IJ-
CAI, 985–991.
Poon, H.; Domingos, P.; and Sumner, M. 2008. A general
method for reducing the complexity of relational inference
and its application to mcmc. In AAAI, 1075–1080.
Sen, P.; Deshpande, A.; and Getoor, L. 2008. Exploiting
shared correlations in probabilistic databases. Proc. VLDB
Endow. 1:809–820.
Shavlik, J., and Natarajan, S. 2009. Speeding up inference in
Markov logic networks by preprocessing to reduce the size
of the resulting grounded network. In IJCAI.
Singla, P., and Domingos, P. 2008. Lifted first-order belief
propagation. In AAAI, 1094–1099.
Van den Broeck, G.; Taghipour, N.; Meert, W.; Davis, J.;
and De Raedt, L. 2011. Lifted probabilistic inference by
first-order knowledge compilation. In IJCAI.
Zettlemoyer, L. S.; Pasula, H. M.; and Kaelbling, L. P. 2008.
Logical particle filtering. In Probabilistic, Logical and Re-
lational Learning - A Further Synthesis, number 07161 in
Dagstuhl Seminar Proceedings.

85




