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Abstract

A matroid is a notion of independence that is closely related
to computational efficiency in combinatorial optimization. In
this work, we bring together the ideas of matroids and multi-
armed bandits, and propose a new class of stochastic combi-
natorial bandits, matroid bandits. A key characteristic of this
class is that matroid bandits can be solved both computation-
ally and sample efficiently. We propose a practical algorithm
for our problem and bound its regret. The regret scales favor-
ably with all quantities of interest. We evaluate our approach
on the problem of learning routing networks for Internet ser-
vice providers. Our results clearly show that the approach is
practical.

Introduction
A multi-armed bandit (Lai and Robbins 1985) is a popular
framework for solving learning problems that require explo-
ration. Multi-armed bandits have been successfully applied
to a wide range of problems, including stochastic (Gai, Kr-
ishnamachari, and Jain 2012) and adversarial (Cesa-Bianchi
and Lugosi 2012) combinatorial optimization. The number
of feasible solutions in a combinatorial bandit can be huge.
In particular, a typical objective is to choose K items out of
L, subject to combinatorial constraints. So the total number
of potential solutions can be as high as

(
K
L

)
. Therefore, it is

challenging to design a practical learning algorithm.
In this paper, we propose the first algorithm for solving a

broad class of combinatorial bandits that is guaranteed to be
computationally and sample efficient. We refer to this class
of problems as matroid bandits. A matroid (Whitney 1935)
is a generalization of linear independence in combinatorial
optimization which is closely related to computational effi-
ciency. In particular, it is well known that the maximum of
a constrained modular function can be found greedily if and
only if all feasible solutions to the problem are the indepen-
dent sets of a matroid (Edmonds 1971). Many optimization
problems, such as finding a minimum spanning tree, can be
formulated as maximizing a modular function on a matroid.
As a result, they can be solved greedily.

In this work, we study a learning variant of maximizing a
modular function on a matroid. We formalize this problem
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as finding a maximum-weight basis of a matroid, where all
items e in the ground set of the matroid are associated with
stochastic weights w(e). The weights are drawn i.i.d. from
some joint probability distribution P . The distribution P is
initially unknown, and we learn it by interacting repeatedly
with the environment.

We make three contributions. First, we bring together the
ideas of matroids (Whitney 1935) and bandits (Lai and Rob-
bins 1985; Auer, Cesa-Bianchi, and Fischer 2002), and pro-
pose a novel learning problem of matroid bandits. Second,
we propose a conceptually simple algorithm for solving our
problem, which explores based on the optimism in the face
of uncertainty. We refer to the algorithm as Optimistic Ma-
troid Maximization (OMM). OMM is computationally efficient,
because the maximum-weight basis in each episode can be
found in O(L logL) time, where L is the number of items.
OMM is also sample efficient, because its regret is at most lin-
ear in all parameters of interest and sublinear in the number
of episodes. Finally, we evaluate OMM on a real-world prob-
lem and demonstrate that it is practical.

Combinatorial bandits have been studied extensively. Gai
et al. (2012) proposed a UCB-type algorithm for stochastic
combinatorial bandits and proved that its expected cumula-
tive regret is O(K3L(1/∆2) log n). This upper bound was
later reduced to O(K2L(1/∆) logn) by Chen et al. (2013).
COMBAND (Cesa-Bianchi and Lugosi 2012) and OSMD
(Audibert, Bubeck, and Lugosi 2014) are two recently pro-
posed algorithms for adversarial combinatorial bandits. The
main limitation of both algorithms is that they are not guar-
anteed to be computationally efficient. In particular, OSMD
projects to the convex hull of exponentially many solutions
and COMBAND needs to sample from the distribution over
these solutions.

Our problem is a stochastic combinatorial bandit, where
all feasible solutions are the independent sets of a matroid.
Our gap-dependent regret bound is O(L(1/∆) logn), a fac-
tor of K2 tighter than the best bound for stochastic combi-
natorial bandits. Our gap-free bound is O(

√
KLn log n), a

factor of
√

log n worse than the regret bound of OSMD. In
practice,

√
log n is small and negligible. On the other hand,

OSMD may not be computationally efficient.
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Matroid
A matroid is a pair M = (E, I), where E = {1, . . . , L} is
a set of L items, called the ground set, and I is a family of
subsets of E, called the independent sets. The family I has
three properties. First, ∅ is an independent set. Second, all
subsets of an independent set are independent. Finally, for
all X ∈ I and Y ∈ I such that |X| = |Y | + 1 there exists
an item e ∈ X \ Y such that Y ∪ {e} ∈ I. This is known as
the augmentation property. We denote by:

E(X) = {e : e 6∈ X,X ∪ {e} ∈ I} (1)

the set of items that can be added to set X such that the set
remains independent.

A maximal independent set of a matroid is its basis. It is
well known that all bases of a matroid have the same cardi-
nality, the rank of a matroid (Whitney 1935). In this paper,
we denote the rank by K.

A weighted matroid is a matroid associated with a vector
of non-negative weights w ∈ (R+)L. The e-th entry of w,
w(e), is the weight of item e. The total weight of items in a
set A ⊆ E is:

f(A,w) =
∑
e∈A

w(e). (2)

A classical problem in combinatorial optimization is to find
a maximum-weight basis of a matroid:

A∗ = arg max
A∈I

f(A,w) = arg max
A∈I

∑
e∈A

w(e). (3)

The basis A∗ can be constructed greedily (Edmonds 1971)
as follows. First, A∗ is initialized to ∅. Second, A∗ is itera-
tively expanded by the items with the highest weight that do
not make A∗ dependent, until |A∗| = K.

Matroids are common in combinatorial optimization. For
instance, a cycle matroid is the set of all forests in a graph.
The ground set of this matroid are the edges of the graph. A
set of edges is considered independent if it does not contain
a cycle. The basis is a spanning tree. So naturally, the basis
with the lowest weight is a minimum spanning tree, a well-
known problem in combinatorial optimization.

The weights of the items may not be always known. For
instance, suppose that we want to build a spanning tree for
network routing where the delays of the links are unknown
and have to be learned. In this work, we propose a learning
algorithm that can address this type of problems.

Matroid Bandits
We formalize our learning problem as a matroid bandit. A
matroid bandit is a pair (M,P ), where M is a matroid and
P is a probability distribution over the weights w ∈ RL of
the items in the ground set E of M . The e-th entry of w,
w(e), is the weight of item e. We assume that the weights
w are drawn i.i.d. from P . The mean weight is denoted by
w̄ = E[w] and we assume that w̄(e) ≥ 0 for all e ∈ E.

Each item is associated with an arm and we assume that
multiple arms can be pulled. A set of arms A can be pulled
if and only if it is an independent set. The return for pulling
arms A is f(A,w) (Equation 2), the sum of the weights of

all items in A. After the arms A are pulled, we observe the
individual return of each arm, {w(e) : e ∈ A}. This model
of feedback is commonly known as semi-bandit (Audibert,
Bubeck, and Lugosi 2014).

We assume that the matroid is known and that the distri-
bution of weights P is unknown. Without loss of generality,
we assume that the support of P is bounded and is a subset
of [0, 1]L. We would like to stress that we do not make any
structural assumptions on P .

The solution to our problem is a maximum-weight basis
A∗ in expectation:

A∗ = arg max
A∈I

Ew[f(A,w)] = arg max
A∈I

∑
e∈A

w̄(e). (4)

From the mathematical point of view, this objective is iden-
tical to Equation 3. As a result, the maximum-weight basis
in expectation can be also found greedily.

Our learning problem is episodic. In episode t, we select
basis At and then gain f(At,wt), where wt is a realization
of the weights in episode t. Our goal is to design a policy, a
sequence of bases At, that minimizes the expected cumula-
tive regret in n episodes:

R(n) = Ew1,...,wn

[
n∑

t=1

Rt(wt)

]
, (5)

where Rt(wt)=f(A∗,wt)− f(At,wt) is the difference in
the returns of the optimal and suboptimal bases.

Algorithm

Our solution is designed based on the optimism in the face
of uncertainty principle (Munos 2012). More specifically, it
is a greedy method for finding a maximum-weight basis of
a matroid where the expected weights w̄(e) are substituted
for their optimistic estimates Ut(e). We refer to our method
as Optimistic Matroid Maximization (OMM).

The pseudocode of our method is given in Algorithm 1.
In each episode t, the method consists of three main steps.
First, we compute an upper confidence bound (UCB) on the
expected weight of each item:

Ut(e) = ŵe,Te(t−1) + ct−1,Te(t−1), (6)

where ŵe,Te(t−1) is our estimate of the mean weight w̄(e)

from the first t − 1 episodes, ct−1,Te(t−1) =
√

2 log(t−1)
Te(t−1) is

the radius of the confidence interval around ŵe,Te(t−1), and
Te(t − 1) is the number of times that item e is chosen prior
to episode t.

Second, we order all items e by their UCBs (Equation 6),
from the highest to the lowest, and greedily add them to the
independent set At in this order. The item can be added to
the set At only if it does not make the set dependent. Since
our problem is a matroid, the final set At is a basis and is of
cardinality K. Finally, we choose the basis At, observe the
weights of its items, and update our model of the world.
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Algorithm 1 OMM: Optimistic matroid maximization.
Input: Matroid M = (E, I)

// Initialization
Observe w0 ∼ P
ŵe,1 ← w0(e) ∀e ∈ E
Te(0)← 1 ∀e ∈ E

for all t = 1, . . . , n do
// Compute UCBs
Ut(e)← ŵe,Te(t−1) + ct−1,Te(t−1) ∀e ∈ E

// Find a maximum-weight basis with respect to Ut

Let et1, . . . , e
t
L be an ordering of items such that:

Ut(e
t
1) ≥ . . . ≥ Ut(e

t
L)

At ← ∅
for all i = 1, . . . , L do

if (eti ∈ E(At)) then
At ← At ∪ {eti}

end if
end for
Observe {wt(e) : e ∈ At}, where wt ∼ P

// Update statistics
Te(t)← Te(t− 1) ∀e ∈ E
Te(t)← Te(t) + 1 ∀e ∈ At

ŵe,Te(t) ←
Te(t− 1)ŵe,Te(t−1) + wt(e)

Te(t)
∀e ∈ At

end for

Analysis
We prove two upper bounds on the expected cumulative re-
gret of OMM. These bounds can be summarized as:

Gap-dependent bound: O(L(1/∆) logn)

Gap-free bound: O(
√
KLn log n),

(7)

where ∆ = min
e

min
k∈Oe

∆e,k and ∆e,k is the gap between the

expected weights of the k-th item with the highest weight in
A∗ and suboptimal item e. An item is suboptimal if it does
belong to A∗. The set Oe = {k : ∆e,k > 0} are the indices
of items in A∗ whose expected weight is higher than that of
item e. Please refer to Kveton et al. (2014) for more details
and the proofs of the bounds.

Our theoretical results are significant for several reasons.
First, both of our regret bounds are at most linear in K and
L, and sublinear in n. In other words, they scale favorably
with all quantities of interest and therefore we expect them
to be practical.

Second, the total number of solutions in a matroid bandit
is usually on the order of

(
K
L

)
, exponential in K. Note that

our regret bounds do not depend linearly on this quantity.
Finally, we note that our gap-dependent regret bound has

the same form as the regret bound of Auer et al. (2002) for
multi-armed bandits. As a result, we may conclude that the
problem of learning a maximum-weight basis of a matroid
is not much harder than identifying the best arm in a multi-

armed bandit. This result is surprising, because it may seem
that the combinatorial structure of a problem could prevent
efficient exploration by simple policies, like OMM. This can-
not happen in matroid bandits.

Experiments
In this section, we evaluate OMM on the problem of learning
routing networks for Internet service providers. Please refer
to Kveton et al. (2014) for additional results.

Our goal is to learn a routing network for an Internet ser-
vice provider (ISP) that minimizes the expected sum of la-
tencies on its edges. We formulate this problem as learning
a minimum spanning tree. We experiment with 6 networks
from the RocketFuel dataset (Spring, Mahajan, and Wether-
all 2004). These networks contain up to 300 nodes and one
thousand edges (Table 1). The latency of edge e is modeled
as w(e) = w̄(e) − 1 + ε, where w̄(e) is the mean latency,
which is recorded in our dataset; and ε ∼ Exp(1) is noise.
The mean w̄(e) ranges from 1 to 64 milliseconds (Table 1).
The main reason for choosing our noise model is that most
of the latency in ISP networks can be explained by distance
(Choi et al. 2004), the mean latency w̄(e). The noise is typ-
ically small, on the order of several hundred microseconds,
and high latency due to noise is unlikely.

Our learning problem can be solved as a matroid bandit.
The ground set of the matroid are the edges of the network.
A set of edges is independent if it does not contain a cycle.
The weight w(e) is the latency of edge e.

All experiments are episodic. The performance of OMM is
measured by the expected per-step cost in n episodes:

1

n
Ew1,...,wn

[
n∑

t=1

f(At,wt)

]
. (8)

Our approach is compared to two baselines. The first base-
line is a minimum-weight basis A∗. This basis is computed
based on the expected latencies w̄ and is our notion of opti-
mality. The second baseline is an ε-greedy policy, where the
parameter ε is set to 0.1. This setting is common in practice
and corresponds to 10% exploration.

In Figure 1, we report our results on three ISP networks.
We observe the same trends on all three networks. First, the
expected cost of OMM approaches the expected cost of A∗ as
the number of episodes increases. Second, OMM consistently
outperforms the ε-greedy policy in just a few episodes. The
expected costs on all networks are reported in Table 1. OMM
outperforms the ε-greedy policy, usually by a large margin.
OMM learns relatively quickly because all of our networks

are sparse. Specifically, the number of edges in all networks
is smaller than four times the number of edges in their span-
ning trees. Therefore, in theory, each edge can be observed
at least once in four episodes and OMM can quickly learn the
mean latency of each edge.

Conclusions
In this work, we study the problem of learning how to max-
imize a modular function on a matroid. The function is ini-
tially unknown and we learn it by interacting with the envi-

17



200 400 600 800 1000
304

305

306

307

308

309
ISP network 1221

Episode n

Ex
pe

ct
ed

 p
er
−s

te
p 

co
st

200 400 600 800 1000
620

640

660

680

700
ISP network 1239

Episode n
200 400 600 800 1000

190

195

200

205

210
ISP network 1755

Episode n

 

 
Optimal policy
ε−greedy policy
OMM

Figure 1: The expected per-step cost of building three minimum spanning trees up to episode n = 103.

ISP Number Number Minimum Maximum Average Optimal ε-greedy
network of nodes of edges latency latency latency policy policy OMM
1221 108 153 1 17 2.78 305.00 307.42± 0.08 305.49± 0.10
1239 315 972 1 64 3.20 629.88 676.74± 2.03 641.17± 0.18
1755 87 161 1 31 2.91 192.81 199.49± 0.16 194.88± 0.11
3257 161 328 1 47 4.30 550.85 570.35± 0.63 559.80± 0.10
3967 79 147 1 44 5.19 306.80 320.30± 0.52 308.54± 0.08
6461 141 374 1 45 6.32 376.27 424.78± 1.54 381.48± 0.07

Table 1: Six ISP networks from our experiments and the expected per-step cost of building minimum spanning trees on these
networks in episode n = 103. All latencies and costs are in milliseconds.

ronment. We propose a practical bandit algorithm for solv-
ing our problem and analyze its expected cumulative regret.
The regret grows sublinearly with time and is at most linear
in all quantities of interest. Finally, we evaluate our method
on a real-world problem and show that it is practical.

Matroids are a notion of independence that is closely re-
lated to computational efficiency in combinatorial optimiza-
tion (Papadimitriou and Steiglitz 1998). In a sense, they are
the hardest problems that can be solved in polynomial time.
Our paper shows that one of these problems, maximization
of a modular function on a matroid, is efficiently learnable.
The key ideas in the design and analysis of our solution are
general, and we strongly believe that they can be applied to
other problems that involve matroids. One such problem is
maximum-weight matching on bipartite graphs, which is an
instance of maximizing a modular function on the intersec-
tion of two matroids. Minimum-cost flows are an instance of
maximizing a modular function on a polymatroid, which is
a generalization of a matroid.
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