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Abstract
We highlight our work on lifted inference for the asymmetric
Weighted First-Order Model Counting problem (WFOMC),
which counts the assignments that satisfy a given sentence
in first-order logic. This work is at the intersection of proba-
bilistic databases and statistical relational learning. First, we
discuss how adding negation can lower the query complex-
ity, and describe the essential element (resolution) necessary
to extend a previous algorithm for positive queries to han-
dle queries with negation. Second, we describe our novel di-
chotomy result for a non-trivial fragment of first-order CNF
sentences with negation. Finally, we discuss directions for fu-
ture work.

Overview
Our work is concerned with weighted first-order model
counting (WFOMC), where we sum the weights of assign-
ments that satisfy a sentence (or query) in finite-domain
first-order logic. This reasoning task underlies efficient al-
gorithms for probabilistic reasoning in AI, with statistical
relational representations such as Markov logic (Van den
Broeck et al. 2011; Gogate and Domingos 2011) and prob-
abilistic programs (Van den Broeck, Meert, and Darwiche
2014). Moreover, WFOMC uncovers a deep connection be-
tween AI and database research, where query evaluation in
probabilistic databases (PDBs) (Suciu et al. 2011) essen-
tially considers the same task. A PDB defines a probabil-
ity, or weight, for every possible world, and each database
query is a sentence encoding a set of worlds, whose com-
bined probability we want to compute. We refer to our set-
ting as asymmetric WFOMC, because it allows the weights
of each atom to be distinct. This subsumes the symmetric
setting considered in AI, where probabilities are set per re-
lation.

The WFOMC task captures query answering in proba-
bilistic database. Take for example the database:

Prof(Anne) : 0.9 Prof(Charlie) : 0.1

Student(Bob) : 0.5 Student(Charlie) : 0.8

Advises(Anne,Bob) : 0.7 Advises(Bob,Charlie) : 0.1
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and the monotone DNF query:

Q = ∃x,∃y, Prof(x) ∧ Advises(x, y) ∧ Student(y).

If we set ∆ = Q and weight function w to map each literal
to its probability in the database, then our query answer is:

Pr(Q) = WFOMC(∆, w) = 0.9 · 0.7 · 0.5 = 0.315.

We refer to the general case above as asymmetric WFOMC,
because it allows w(Prof(Anne)) to be different from
w(Prof(Charlie)). We use symmetric WFOMC to refer to
the special case where w simplifies into two weight func-
tions w?, w̄? that map predicates to weights, instead of liter-
als, that is:

w(`) =

{
w?(P ) when ` is of the form P (c)

w̄?(P ) when ` is of the form ¬P (c)

Symmetric WFOMC no longer directly captures PDBs.
Yet it can still encode many SRL models, including
parfactor graphs (Poole 2003), Markov logic networks
(MLNs) (Richardson and Domingos 2006) and probabilistic
logic programs (De Raedt et al. 2008). We refer to (Van den
Broeck, Meert, and Darwiche 2014) for the details.

We introduce a new WFOMC algorithm LiftR that ex-
tends the algorithm of (Dalvi and Suciu 2012). This lat-
ter algorithm only supports queries without negation, but
comes with strong theoretical guarantees in the form of a
dichotomy theorem. LiftR applies to general CNF queries,
with arbitrary negation, by introducing a resolution oper-
ation to discover new prime implicates. As we show be-
low, this step is crucial to proving completeness of the al-
gorithm for a subclass of CNF sentences with negation. Our
algorithm performs lifted inference, meaning that it exploits
the relational structure of the query. Moreover, it performs
domain-lifted inference, because it runs in time polynomial
in the database size (Van den Broeck 2013). LiftR is outlined
in figure 1; see (Gribkoff, Van den Broeck, and Suciu 2014)
for a full description

Negation Can Lower the Complexity
The presence of negations can lower a query’s complexity,
and LiftR exploits this. To see this, consider the query

Q = ∀x∀y (Tweets(x) ∨ ¬Follows(x, y))

∧ ∀x∀y (Follows(x, y) ∨ ¬Leader(y)).
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Algorithm LiftR

Input: Ranked and shattered query Q

Probabilistic DB with domain D

Output: Pr(Q)

1 S tep 0 : I f Q i s a s i n g l e ground l i t e r a l ` , r e t u r n i t s

p r o b a b i l i t y Pr(`) i n PDB

2 Step 1 : Wr i t e Q as a union−CNF : Q = Q1 ∨Q2 ∨ · · · ∨Qm

3 S tep 2 : I f m > 1 and Q can be p a r t i t i o n e d i n t o two s e t s

Q = Q′ ∨Q′′ wi th d i s j o i n t r e l a t i o n s y m b o l s , r e t u r n

1− (1− Pr(Q1)) · (1− Pr(Q2))

4 /∗ Decomposable D i s j u n c t i o n ∗ /

5 S t ep 3 : I f Q c a n n o t be p a r t i t i o n e d , r e t u r n∑
s⊆[m] Pr(

∧
i∈s Qi)

6 /∗ I n c l u s i o n / E x c l u s i o n − pe r fo rm c a n c e l l a t i o n s

b e f o r e r e c u r s i o n ∗ /

7 S t ep 4 : Wr i t e Q i n CNF: Q = C1 ∧ C2 ∧ · · · ∧ Ck

8 S tep 5 : I f k > 1 , and Q can be p a r t i t i o n e d i n t o two

s e t s Q = Q′ ∧Q′′ wi th d i s j o i n t r e l a t i o n s y m b o l s ,

r e t u r n Pr(Q1) · Pr(Q2)

9 /∗ Decomposable Conjunct ion ∗ /

10 S tep 6 : I f Q has a s e p a r a t o r v a r i a b l e , r e t u r n∏
a∈D Pr(C1[a/x1] ∧ · · · ∧ Ck[a/xk])

11 /∗ Decomposable U n i v e r s a l Q u a n t i f i e r ∗ /

12 O t h e r w i s e FAIL

Figure 1: Algorithm for Computing Pr(Q)

The query says that if x follows anyone then x tweets, and
that everybody follows the leader1.

Our goal is to compute the probability Pr(Q), knowing
the probabilities of all (ground) atoms in the domain. We
note that the two clauses are dependent (since both refer to
the relation Follows), hence we cannot simply multiply
their probabilities; in fact, we will see that if we remove all
negations, then the resulting query is #P-hard; the algorithm
described by (Dalvi and Suciu 2012) would immediately get
stuck on this query. Instead, LiftR takes advantage of the
negation, by first computing the prime implicate

∀x Tweets(x) ∨ ∀y ¬Leader(y),

which is a disconnected clause (the two literals use disjoint
logical variables, x and y respectively). After applying dis-
tributivity we obtain:

Q = (Q ∧ (∀x Tweets(x))) ∨ (Q ∧ (∀y ¬Leader(y)))

= Q1 ∨Q2

and LiftR applies the inclusion-exclusion formula:

Pr(Q) = Pr(Q1) + Pr(Q2)− Pr(Q1 ∧Q2)

1To see this, rewrite the query as (Follows(x, y) ⇒
Tweets(x)) ∧ (Leader(y)⇒ Follows(x, y)).

After simplifying the three queries, they become:

Q1 = ∀x ∀y (Follows(x, y) ∨ ¬Leader(y))∧
∀x (Tweets(x))

Q2 = ∀x∀y (Tweets(x) ∨ ¬Follows(x, y))∧
∀y (¬Leader(y))

Q1 ∧Q2 = ∀x (Tweets(x)) ∧ ∀y (¬Leader(y))

The probability of Q1 can now be obtained by multiply-
ing the probabilities of its two clauses; same for the other
two queries. As a consequence, our algorithm computes the
probability Pr(Q) in polynomial time in the size of the do-
main and the probabilistic database.

If we remove all negations from Q and rename the predi-
cates we get the following query:

h1 = ∀x∀y (R(x) ∨ S(x, y)) ∧ (S(x, y) ∨ T (y))

It was proven in (Dalvi and Suciu 2012) that computing
the probability of the dual of h1 is #P-hard in the size
of the PDB. Thus, the query Q with negation is easy,
while h1 is hard, and LiftR takes advantage of this by ap-
plying resolution to find the disconnected prime implicate
∀x∀y Tweets(x) ∨ ¬Leader(y).

A Dichotomy for Type-1 Queries
We prove a novel dichotomy for a subclass of CNF queries.
First we review an earlier result, to put ours in perspective. In
(Dalvi and Suciu 2012), an algorithm and dichotomy result
for positive queries is shown. This result can be adapted to
show that LiftR restricted to monotone (i.e., negation-free)
queries admits a dichotomy, and the following theorem con-
tinues to hold.

Theorem 1 If algorithm LiftR FAILS on a Monotone CNF
query Q, then computing Pr(Q) is #P-hard.

However, the inclusion of negations in our query language
increases significantly the difficulty of analyzing query com-
plexities. Our major technical result extends Theorem 1 to a
class of CNF queries with negation.

Define a Type-1 query to be a CNF formula where each
clause has at most two variables denoted x, y, and each atom
is of one of the following three kinds:

– Unary symbols R1(x), R2(x), R3(x), . . .

– Binary symbols S1(x, y), S2(x, y), . . .

– Unary symbols T1(y), T2(y), . . .

or the negation of these symbols.
Our main result is:

Theorem 2 For every Type-1 query Q, if algorithm LiftR
FAILS then computing Pr(Q) is #P-hard.

The proof of this theorem required significant extension
of the techniques used by (Dalvi and Suciu 2012) to prove
Theorem 1. Details of our proof appear in (Gribkoff, Van
den Broeck, and Suciu 2014).
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Future Directions
Theorem 2 represents the first step towards proving the fol-
lowing conjecture: LiftR provides a dichotomy for proba-
bilistic queries on arbitrary universally-quantified CNF sen-
tences where negation can be applied anywhere. Future
work aims to prove this conjecture by expanding the exist-
ing dichotomy beyond Type-1 queries. We are also exploring
new types of queries, and different assumptions about the
probabilistic database, in particular symmetric probabilities,
and how they affect our algorithm and dichotomy.
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