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Abstract 

We present several epistemic views of ideation in scientific 
discovery that we have investigated: conceptual classification, 
abductive explanation, conceptual modeling, analogical 
reasoning, and visual reasoning. We then describe an 
experiment in computational ideation through model 
construction, evaluation and revision. We describe an 
interactive tool called MILA–S that enables construction of 
conceptual models of ecological phenomena, agent-based 
simulations of the conceptual model, and revision of the 
conceptual model based on the results of the simulation.  The 
key feature of MILA–S is that it automatically generates the 
simulations from the conceptual model. We report on a pilot 
study with 50 middle school science students who used MILA–
S to discover causal explanations for an ecological 
phenomenon. Initial results from the study indicate that use of 
MILA–S had a significant impact both on the process of model 
construction and the nature of the constructed models.  We posit 
that MILA–S may enable scientists to construct, evaluate and 
revise conceptual models of ecological phenomena.  

Background, Motivations, and Goals 
We may adopt several epistemic views of ideation in 

scientific discovery. We have developed computational 
techniques and tools for supporting some of these epistemic 
views. Here we briefly present these epistemic views as 
background and motivation for the present work. 

Conceptual Classification 
Classification of data into concepts is ubiquitous in 

science. We all know about Linneas’ classic work on 
classification in biology. Classification continues to be 
important in modern biology (e.g., Golub et al. 1999). 
Classification also is one of the most  studied topics in 
cognitive science, artificial intelligence and machine 
learning (e.g., Langley 1996; Mitchell 1997; Stefik 1995; 
Thagard 2005; Winston 1993). The classic DENDRAL 
system (Lindsay et al. 1980) classified mass spectroscopy 
data into chemical molecules that produced the data. 
Chandrasekaran & Goel (1988) trace the evolution of early 
knowledge-based theories of classification. 

We have studied both top-down hierarchical classification 
in which a concept is incrementally refined based on data 
(Goel, Soundarajan & Chandrasekaran 1987), and bottom-
up hierarchical classification in which features of data are 
incrementally abstracted into a concept (Bylander, Goel & 
Johnson 1991). In recent work, we have developed a 
computational technique that grounds the concepts in 
bottom-up classification in perception and uses meta-
knowledge of this perceptual grounding for repairing the 
semantics of the concepts when the classification results in 
an error (Jones & Goel 2012). The Augur system uses this 
meta-reasoning technique for revising almost-correct 
classification hierarchies in a variety of domains. 

Abductive Explanation 
Scientific theory formation often entails abductive 

inference (Magnini 2001), i.e., inference to the best 
explanation for a set of data. Artificial intelligence research 
has studied abduction from multiple perspectives (e.g., 
Charniak & McDermott 1985; Josephson & Josephson 
1996). The classic BACON system (Langley et al. 1987) 
abduced physical laws, such as the gas law, from data. 
Bylander et al. (1991) have analyzed the computational 
complexity of the abduction task.   

We have studied computational techniques for abductive 
explanation that assemble composite explanations for 
explaining a set of data from elementary explanations that 
explain subsets of the data (Goel et al. 1995). The RED 
system uses this technique for identifying red-cell 
antibodies in a patient’s blood serum (Fischer et al 1991). 
RED uses domain-independent heuristics such as the 
essentialness heuristic for assembling a composite 
explanation from elementary explanations: this heuristic 
says that if some data item can be explained by only one 
elementary hypothesis, then the hypothesis should be 
directly included in the composite explanation. 

 
Conceptual Modeling 

Conceptual models too are ubiquitous in science (e.g., 
Clement 2008; Darden 1998, 2006; Nersessian 2008). 
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Conceptual models are abstract representations of the 
elements, relationships, and processes of a complex 
phenomenon or system. Research in both cognitive science 
and artificial intelligence has extensively studied conceptual 
modeling in several forms (e.g., Davis 1990; Johnson-Laird 
1983; Lenat 1995; Novak 2010; Schank & Abelson 1977; 
Stefik 1995; Winston 1993).  
    We have developed conceptual models of complex 
systems that specify the way a system works, i.e., the way 
the system’s structure produces its behaviors that achieve its 
functions (Goel & Stroulia 1996; Goel, Rugaber & Vattam 
2009). We have used SBF modeling to model both 
engineering systems (Goel & Bhatta 2004) and natural 
systems (Goel et al. 2012) for supporting a variety of 
reasoning processes in design and invention as well as in 
science education (Goel et al. 2013; Vattam et al. 2011). 

Analogical Reasoning 
Scientific discovery often entails analogical reasoning 

(Clement 2008; Nersessian 2008). We all know about 
Bohr’s famous analogy between the atomic structure and the 
solar system. Modern scientists too frequently use analogies 
in their everyday practices (Clement 1988; Dunbar 1997). 
Cognitive science and artificial intelligence research have 
developed several theories of analogical reasoning (e.g., 
Bhatta & Goel 2004; Hofstader 1996; Holyoak & Thagard 
1996; Gentner & Markman 1997; Indurkhya 1992; Keane 
1996; Mitchell 1993; Prade & Gilles 2014; Thagard et al. 
1990). AI research on analogy however is not yet as mature 
as that on, say, classification.  

We have studied analogical reasoning in scientific 
problem solving (Griffith, Nersessian & Goel 1996, 2000). 
Starting from verbal protocols of physicists addressing 
problems with spring systems (Clement 1988), we 
developed an AI system called Torque that emulates some 
of the problem solving behavior of the physicists.  Torque 
addresses a key question about spring systems by making an 
analogy to bending beams. A critical ability of Torque is 
problem transformation: Torque imagines various 
transformations of the spring system so that a specific 
transformation (a spring stretched so much that it become 
linear) reminds it until it is reminded of the beam (Griffith, 
Nersessian & Goel 2000).  

Visual Reasoning 
Scientific discovery often engages visual  representations 

and reasoning (Clement 2008; Magnini, Nersessian & 
Thagard 1999; Nersessian 2008). Although cognitive 
science and artificial intelligence research has explored 
visual representations and reasoning (e.g., Glasgow & 
Papadias 1992; Glasgow, Narayanan & Chandrasekaran 
1995), AI research on visual representations and reasoning 
is not as robust or mature as on conceptual representations 
and reasoning. We have developed a language for 
representing visual knowledge, a computational technique 

for reasoning about visual analogies (Davies, Goel & Yaner 
2008), and analysis of the use of visual analogy in 
Maxwell’s construction of the unified theory of 
electromagnetism (Davies, Nersessian & Goel 2005). 
 
 Goals   
  In general, the AI methods of classification, abduction,  
analogy, conceptual modeling,  and visual reasoning 
provide few guarantees of correctness of their results. 
Further, these methods do not by themselves evaluate their 
results. This raises an important question for developing AI 
techniques and tools for supporting the above epistemic 
views of scientific discovery: how may an AI method for 
scientific discovery evaluate its results or enable a human to 
evaluate the results? As an example, let us suppose a human 
scientist uses an interactive system to develop a conceptual 
model of a phenomenon; how might the system evaluate the 
model and provide useful feedback to the scientist?  
   In this paper, we describe an experiment in computational 
ideation through model construction, evaluation and 
revision. We describe an interactive tool called MILA–S 
that enables rapid construction of conceptual models of 
ecological phenomena, agent-based simulations of the 
conceptual model, and revision of the conceptual model 
based on the results of the simulation.  The key feature of 
MILA–S is that it automatically generates the simulations 
from the conceptual model. We report on a pilot study with 
50 middle school science students who used MILA–S to 
discover causal explanations for an ecological phenomenon.  

 
Model Construction, Evaluation and Revision 
Cognitive science theories of scientific discovery describe 

scientific modeling as an iterative process entailing four 
related but distinct phases: model construction, use, 
evaluation, and revision (Clement 2008; Nersessian 2008; 
Schwarz et al. 2009). Thus, a model is first constructed to 
explain some observations of a phenomenon. The model is 
then used to make predictions about other aspects of the 
phenomenon. The model’s predictions next are evaluated 
against actual observations of the system. Finally, the model 
is revised based on the evaluations to correct errors and 
improve the model’s explanatory and predictive efficacy. 
Present in this process are a number of significant 
challenges to students and scientists alike; constructing 
initial models may be straightforward, but developing 
methods for formally evaluating those models and 
generating usable feedback for subsequent revision is a 
significant open issue. 

Scientific models can be of several different types, with 
each model type having its own unique affordances and 
constraints, and fulfilling specific functional roles in 
scientific inquiry (Carruthers, Stitch & Siegal 2002; 
Magnini, Nersessian & Thagard 1999). In this work, we are 
specifically interested in two kinds of models: conceptual 
models and simulation models. Conceptual models allow 
scientists to specify and share explanations of how a system 
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works, aided by the semantics and structures of the specific 
conceptual modeling framework. Conceptual models tend to 
rely heavily on directly modifiable representations, 
languages and visualizations, enabling rapid iterations of the 
model construction cycle.  

Simulation models capture relationships between the 
variables of a system such that as the values of input 
variables are specified, the simulation model predicts the 
temporal evolution of the values of other system variables. 
Thus, the simulation model of a system can be run 
repeatedly with different values for the input variables, the 
predicted values of the system variables can be compared 
with the actual observations of the system, and the 
simulation model can be revised to account for 
discrepancies between the predictions and the observations. 
A main limitation of simulation models is the complexity of 
the setting up a simulation, which makes it difficult to 
rapidly iterate on the model construction cycle.. 

AI research on science education has used both 
conceptual models (e.g., Bredeweg & Winkels 1998; 
Jacobson 2008; Novak 2010; vanLehn 2013) and simulation 
models (e.g., Bridewell et al. 2006; de Jong & van Joolingen 
1998; Jackson, Krajcik, & Soloway 2000) extensively and 
quite productively. However, AI research on science 
education typically uses the two kinds of models 
independently from each other: students use one set of tools 
for constructing, using, and revising conceptual models, and 
another tool set for constructing and using simulation 
models. Cognitive science theories of scientific inquiry, 
however, suggest a symbiotic relationship between 
conceptual models and simulation models (e.g., Clement 
2008; Nersessian 2008): scientists use conceptual models to 
set up the simulation models, and they run simulation 
models to test and revise the conceptual models.  

We have developed an interactive system called MILA–S 
that enables construction of conceptual models of 
ecosystems, use of the conceptual models to automatically 
generate simulation models of specific ecological 
phenomena, and the execution of the simulation models. 
Thus, MILA–S facilitates simulating conceptual models, 
allowing human users to exploit the symbiotic relationship 
between conceptual models and simulations without 
learning to program simulations.  

Project Description 
MILA–S is an extension of MILA (the Modeling & 

Inquiry Learning Application).. MILA is an exploratory 
learning environment that allows middle school students to 
investigate and construct models of complex ecological 
phenomena. While both MILA and MILA–S use both 
conceptual models and simulation models, only MILA–S 
allows students to simulate their conceptual models.  
    MILA and MILA–S build on a line of exploratory 
learning environments dating back almost ten years, all 
supporting learning about complex ecological systems 
through model construction and revision. Its predecessors, 

the ACT (Vattam et al. 2011; Goel et al. 2013) and EMT 
(Joyner et al. 2011), were shown to facilitate significant 
improvement in students’ deep, expert-like understanding of 
complex ecological systems.  

For conceptual modeling, ACT used Structure-Behavior-
Functions models that were initially developed in AI 
research on system design (Goel & Stroulia 1996; Goel, 
Rugaber & Vattam 2009). In contrast, EMT used 
Component-Mechanism-Phenomenon (or CMP) conceptual 
models that are variants of Structure-Behavior-Function 
models adapted for modeling ecological systems. Both ACT 
and EMT used NetLogo simulations as the simulation 
models (Wilsensky & Reisman 2006; Wilensky & Resnick 
1999). The NetLogo simulation infrastructure is well suited 
to MILA–S because ecological systems are inherently 
agent-based. An example of a NetLogo simulation can be 
seen in Figure 1. Users interact with the simulation using 
the controls on the level; the simulation can be started, 
stopped, reinitialized, and the variables present within it can 
be modified. In the center portion is a spatial depiction of 
the simulation, presenting the interactions amongst the 
agents explicitly and visually. The right side provides 
information on the counts of different components. 

Like most interactive tools for supporting modeling in 
science education (vanLehn 2013), both ACT and EMT 
provided one set of tools for constructing and revising 
conceptual models and another tool set for using 
simulations. Researchers constructed the simulations in 
ACT and EMT based on expert input; the students only 
experimented with the simulations. One version of ACT 
could simulate portions of a conceptual model (Vattam, 
Goel & Rugaber 2011). However, this integrated version 
was never actually used in classrooms.  

The present intervention had two main parts. In the first 
part, 10 classes with 237 students in a metro Atlanta middle 
school used MILA for two weeks. During this time, students 
worked in small teams of two or three to investigate two 
phenomena: a recent massive and sudden fish death in a 
nearby lake and the record high temperatures in the local 
area over the previous decade. In the second part, two 
classes with 50 students used MILA–S to more deeply 
investigating the phenomenon of massive, sudden death of 
fish in the lake.  

Technology Description 
As mentioned above, MILA–S uses Component-

Mechanism-Phenomenon (or CMP) conceptual models that 
are variants of the Structure-Behavior-Function models. In 
order to facilitate generation of simulations, MILA–S 
augments these models with a set of additional information 
necessary to create dynamic, interactive simulations, 
including ranges for variables and visual representations for 
components, leading to an extension we refer to as CMP*. 
In CMP models, mechanisms explain phenomena such as 
fish dying in a lake. Mechanisms arise out of interactions 
among components and relations among them. The 
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representation of each component in CMP* includes a set of 
variables such as population, age, birth rate, and energy for 
biotic components, and quantity for abiotic components. 

In the CMP model of a system, representations of 
components (and their variables) are related together 
through different kinds of relations. MILA–S provides the 
modeler with a set of prototype relations. For example, 
interactions between a biotic component like 'Fish' and an 
abiotic component like 'Oxygen' could be 'consumes', 
'produces', or 'destroys'. Connections have directionality; a 
connection from 'Oxygen' to 'Fish' would have a different 
set of prototypes, including 'poisons'. Representations of 
relations are also annotated with parameters to facilitate the 
simulation, such as energy provided for 'consumes' and rate 
of production for 'produces'.  

After constructing a CMP conceptual model, a student 
clicks a 'Run Sim' button to initialize MILA–S and pass 
their model for simulation generation. MILA–S iterates 
through some initial boilerplate settings, then gathers 
together all the components for initialization along with 
their individual parameters. At this point, each individual 
component is created according to a prototype for its 
category (biotic or abiotic); with this prototype comes a set 
of assumptions generalized to be true about all instances of 
that category. For biotic organisms, for example, it is 
assumed that all biotic organisms must eat, breathe, and 
reproduce. These assumptions do not hold true for all 
ecological systems, and thus they may limit the systems that 

MILA–S can address; however, the quick transition between 
conceptual models and simulation models is facilitated by 
these assumptions, and they have covered the vast majority 
of systems that have been examined within the tool. 

After creating the components of the conceptual model 
within the simulation model according to the assumptions 
and parameters given, MILA–S writes functions governing 
interaction amongst components based on the relations 
specified in the CMP model. As before, these functions are 
created as instances of prototypes of interactions amongst 
agents, and those prototypes carry certain assumptions. For 
example, it is assumed that when one organism consumes 
another, that the target organism dies. Other relationships 
are assumed, but can be altered; for example, if one 
organism eats another, it is assumed that the target provides 
energy to the consumer, but the assumed relationship can be 
modified to provide instances of the target poisoning the 
consumer. MILA–S also assumes that species will continue 
to reproduce to fulfill their carrying capacity rather than 
hitting arbitrary limitations. These assumptions do limit the 
range of simulations that MILA–S can generate, but they 
also facilitate the higher-level rapid model revision process 
that is the learning objective of this project. Several 
common ecological relationships are not inferred or 
assumed by MILA–S, but may be supplied in the model.  

This description provides merely a high-level overview of 
the way in which MILA–S generates simulation models 
directly from conceptual models; the intent here is to 

 
 

 
Figure 1: A conceptual model in MILA–S (top) showing relationships between fish, algae, and oxygen, and the 

simulation model (bottom) generated by MILA–S in NetLogo. This model was constructed by the team described 
in the third case study below; the simulation was generated and run from their model to obtain this screenshot. 
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provide sufficient information about the nature of the 
conceptual and simulation models to understand the 
educational impacts of interaction with this tool. A much 
more complete description of the algorithm can be found in 
Joyner, Goel, & Papin 2014, including a more exhaustive 
list of assumptions made, a detailed description of the 
available prototypes, and a thorough account of the 
instantiation of component and mechanism prototypes.  

Experiment Description 
Prior to engagement with MILA–S, the 50 students in our 

study received a two-week curriculum on modeling and 
inquiry, featuring five days of interaction with CMP 
conceptual modeling in MILA. In the first part of the study 
using MILA, students also used pre-programmed NetLogo 
simulations that did not respond to students' models, but 
nonetheless provided students experience with the NetLogo 
interface and toolkit. Thus, when given MILA–S, students 
already had significant experience with CMP conceptual 
modeling, NetLogo simulations, and the interface of MILA. 

A thorough, if initial, examination of the processes and 
results of model construction by the student teams provides 
two insights. Firstly, there exists a fundamental difference in 
the conceptual models that students constructed with 
MILA–S compared to the earlier models they constructed 
with MILA: while earlier models were retrospective and 
explanatory, models constructed with MILA–S models were 
prospective and dynamic. Secondly, the model construction 
process when students were equipped with MILA–S was 
profoundly different from their earlier process using MILA: 
whereas previously, conceptual models were used to guide 
investigation into sources of information such as existing 
theories or data observations, once equipped with MILA–S 
the students used the conceptual models to spawn 
simulations that directly tested the implications of their 
hypotheses and models thereof. 

Model Construction Process 
During prior engagement with MILA, we observed 

students engage in the model construction cycle. Model 
construction occurred as students constructed their initial 
hypotheses, typically connecting only a cause to a 
phenomenon with no mechanism in between. This was then 
used to guide investigation into other sources of information 
such as observed data or other theories to look for 
corroborating observations or similar phenomena. The 
conceptual model was then evaluated according to how well 
it matched the findings; in some cases, the findings directly 
contradicted the model, while in other cases, the findings 
lent evidence to the model. Finally, the conceptual models 
were revised in light of this new information, or dismissed 
in favor of stronger hypotheses. 

During engagement with MILA–S, however, we observed 
a profound variation on the model construction process. The 
four phases of model construction were still present, but the 

nature of model use and evaluation changed. Students 
started by constructing a small number of relationships they 
believe to be relevant in the system, the model construction 
phase. After some initial debugging and testing to become 
familiar with the way in which conceptual models and 
simulations fit together, students generated simulations and 
used them to test the implications of their conceptual 
models. After running the simulation a few times, students 
then evaluated how well the results of the simulation 
matched the observations from the phenomenon. This 
evaluation had two levels: first, did the simulation 
accurately predict the ultimate phenomenon (in this case, the 
fish kill)? Once this basic evaluation was met, an advanced 
evaluation followed: did other variables, trends, and 
relationships in the simulation match other observations 
from the phenomenon? For example, one team successfully 
caused a fish kill by causing the quantity of food available 
to the fish to drop, but evaluated this as a poor model 
nonetheless because nothing in the system indicated a 
disturbance to the fish's food supply. Finally, equipped with 
the results of this evaluation, students revised their models 
to more closely approximate the actual system. 

Thus, students still constructed and revised conceptual 
models, but through the simulation generation framework of 
MILA–S, the model use and evaluation stages took on the 
practical rigor, repeatable testing, and numeric analysis 
facilitated by simulations. Rather than speculating on the 
extent to which their model could explain a phenomenon, 
students were able to directly test its predictive power. 
Then, when models were shown to lack the ability to 
explain the full spectrum of the phenomenon, students were 
able to quickly return and revise their conceptual models 
and iterate through the process again. 

Three Case Studies in Model Construction 
We present three case studies from our experiment to 

illustrate the above observations about the model 
construction process. These case studies were chosen to 
demonstrate variations in the process and connections to the 
underlying model of construction and revision. 

Case 1 
The first team speculated that chemicals were responsible 

for killing the algae in the lake, which then caused the fish 
population to drop. They began this hypothesis by 
constructing a model suggesting that algae produces 
oxygen, fish consume oxygen, and harmful chemicals 
destroy algae populations. They then used MILA–S to 
generate and use a simulation of this model to mimic the 
initial conditions present in the system (i.e. a fish 
population, an algae population, and an influx of chemicals). 
This simulation showed the growth of fish population 
continuing despite the dampened growth of algae population 
from the harmful chemicals. The team evaluated this to 
mean that the death of algae alone could not cause the 

31



massive fish kill to occur. The team then revised their model 
to suggest chemicals directly contributed to the fish kill by 
poisoning the fish directly, as well as killing the algae. 

The team then used MILA–S to generate another 
simulation. This time, when the team used the simulation 
under similar initial conditions, the fish population initially 
grew wildly, but the chemicals ate away at both the fish and 
algae. Eventually, the harmful chemicals finished eating 
away at the algae, the oxygen quantity plummeted, and the 
fish suffocated. Students evaluated that this simulation 
matched the observed phenomenon, but also evaluated that 
their model missed a relevant relation: based on a source 
present in the classroom, students posited that fish ought to 
consume algae. They revised their model, used their 
simulation again, found the same result, and evaluated that 
they had provided a model that could explain the fish kill. 

Case 2 
A second team started off by creating a simple set of 

relations that they believed was present due to their biology 
background and prior experience with MILA. First, they 
speculated that sunlight “produces” oxygen, and, then, that 
fish, in turn, consume the oxygen. Following these two 
initial relationships, they generated their first simulation 
through MILA–S and used it to mimic the believed initial 
conditions of the lake (i.e. a population of fish, available 
oxygen, available sunlight). Sunlight was inferred to be 
continuously available, and thus, at first, the population of 
fish expanded continuously without any limiting factor. 
However, when the population of fish hit a certain 
threshold, it began to consume oxygen faster than it was 
being produced. This led to the quantity of oxygen 
dropping, and subsequently, the population of fish dropping. 
The fish and oxygen populations instead began to fluctuate 
inversely, with oxygen concentration rebounding when fish 
population dropped, allowing the fish to recover. 

The team ran this simulation multiple times to ensure that 
this trend repeated itself. In one instance, the fish population 
crashed on its own simply due to the suddenness of the fish 
population growth and subsequent crash. However, the team 
evaluated that this was not an adequate explanation of what 
had actually happened in the lake. The team posited that if 
this kind of expansion and crash could happen without 
outside forces, it would be more common. Second, the team 
observed that their model contained faulty or questionable 
claims, such as the notion that sunlight “produces” algae. 
This evaluation based on both the simulation results and 
reflection on the model led to a phase of revision. An 
‘Algae’ component was added between sunlight and 
oxygen, representing photosynthesis. Students then used 
MILA–S to generate a new simulation, and used this new 
simulation to test the model. This time students found that 
their model posited that an oxygen crash would always 
occur in the system, and evaluated that while this  
successfully mimicked the phenomenon of interest, it failed 
to match the lake on other days. 

Case 3 
The third team began with an interesting hypothesis: algae 

serves as both the food for fish and the oxygen producer for 
fish. The team, thus, started with a simple three-component 
model with fish, algae, and oxygen: fish consume algae, fish 
consume oxygen, and algae produces oxygen. The team 
further posited that in order for algae populations to grow, 
they must have sunlight to feed their photosynthesis 
process. Sunlight, therefore, was drawn to produce algae. 
The team reasoned that if the fish population destroys the 
source of one type of ‘food’ (oxygen) in search for another 
type (actual food), it could inadvertently destroy its only 
source for a necessary nutrient. 

The team used MILA–S to generate a simulation based on 
this model and ran it several times under different initial 
conditions. Each time, algae population initially grew due to 
the influx of sunlight. As a result, fish populations grew, 
due to the abundance of both algae (as produced via 
sunlight) and oxygen (as produced by the algae). As the fish 
population spiked, the algae hit a critical point where it 
began to be eaten faster than it reproduced, and the rate of 
sunlight entering the system was insufficient to maintain 
steady, strong growth. This caused the algae population to 
plummet, and in turn, the fish population to plummet as the 
fish suddenly lacked both food and oxygen. Sometimes, the 
algae population subsequently bounced back even after the 
fish fully died off, while in others both species died entirely. 

Unlike the second team, this third team evaluated this to 
mean their model was accurate: under the initial conditions 
observed in the lake, their model predicted an algal bloom 
every single time. Thus, the third team provided two 
interesting variations on the model construction process 
observed in other teams: first, they overloaded one 
particularly component, demonstrating an advanced notion 
of how components can play multiple functional roles. 
Second, they posited that a successful model would predict 
that the same events would transpire under the same initial 
conditions every time. 

Summary, Conclusions, and Future Work 
Our hypothesis in this work was that affording students 

with the opportunity to automatically generate simulations 
from conceptual models and thus exploit the relationship 
between conceptual and simulation models will allow them 
to derive the benefits of experimentation and evaluation of 
the simulation models while maintaining the advantages of 
rapid construction and revision of the conceptual models, 
and thereby participate in the modeling process described in 
the literature of cognition of science. Initial results from this 
pilot study provide some evidence in favor of the 
hypothesis, although a controlled study is needed to 
conclusively verify these claims. Firstly, students 
approached the modeling process from a different 
perspective from the outset, striving to capture dynamic 
relationships among the components of the ecological 
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system. These relationships promoted a more abstract and 
general perspective on the system. Secondly, the process of 
model construction, use, evaluation, and revision presented 
itself naturally during this intervention, with the simulations 
playing a key role in supporting the cyclical process of 
constructing conceptual models. By using the simulations to 
test their predictions and claims, and by subsequently 
evaluating the success of their conceptual models by 
matching observations from the actual phenomenon, 
students engaged in a rapid feedback cycle that saw rapid 
model revision and repeated use for continued evaluation. 
   We are presently engaged in a full-scale controlled 
investigation to test these ideas and tools with college-level 
biology students. The objective of this investigation is to 
identify the effect of supporting conceptual modeling and 
simulation on understanding of individual systems and of 
the process of scientific investigation as a whole. We expect 
the new controlled study with college-level students to 
confirm that our technology for construction, evaluation and 
revision of conceptual models supports productive ideation 
in scientific discovery.   

Note that in addition to conceptual modeling, this project 
entails other processes of scientific discovery from the 
introduction. It engages abductive explanation as students 
explore multiple hypotheses for explaining an ecological 
phenomenon and construct the best explanation for the data. 
It also uses visual representations and reasoning: students 
construct a visual representation of their conceptual model 
of the ecological phenomenon (see Figure 1) and generate 
visualized simulations directly from the conceptual models.  

Boden (1990) makes a distinction between H-creativity 
and P-creativity. H-creativity is historical creativity that has 
never been done by anyone before; P-creativity is 
psychological creativity that is personal. Following Boden, 
we distinguish between H-discovery and P-discovery. Our 
experiment with MILA–S is an example of P-discovery. We 
posit by enabling scientists to rapidly and easily construct, 
simulate, and revise conceptual models of ecological 
phenomena, MILA–S may also enable H-discovery. 
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