
Preference Trees: A Language for Representing
and Reasoning about Qualitative Preferences

Xudong Liu and Miroslaw Truszczynski
Department of Computer Science

University of Kentucky
Lexington, KY USA
{liu,mirek}@cs.uky.edu

Abstract

We introduce a novel qualitative preference representation
language, preference trees, or P-trees. We show that the lan-
guage is intuitive to specify preferences over combinatorial
domains and it extends existing preference formalisms such
as LP-trees, ASO-rules and possibilistic logic. We study rea-
soning problems with P-trees and obtain computational com-
plexity results.

Introduction
Preferences are essential in areas such as constraint satis-
faction, decision making, multi-agent cooperation, Internet
trading, and social choice. Consequently, preference repre-
sentation languages and algorithms for reasoning about pref-
erences have received much attention. When there are only a
few objects (or outcomes) to compare, it is both most direct
and feasible to represent preference orders by their explicit
enumerations. The situation changes when the domain of
interest is combinatorial, that is, its elements are described
in terms of combinations of values of issues, say x1, . . . , xn
(also called variables or attributes), with each issue xi as-
suming values from some set Di — its domain.

Combinatorial domains appear commonly in applications.
Since, their size is exponential in the number of issues, they
are often so large as to make explicit representations of pref-
erence orders impractical. Therefore, designing languages
to represent preferences on elements from combinatorial do-
mains in a concise and intuitive fashion is important. Sev-
eral such languages have been proposed including penalty
and possibilistic logics (Dubois, Lang, and Prade 1991),
conditional preference networks (CP-nets) (Boutilier et al.
2004), lexicographic preference trees (LP-trees) (Booth et
al. 2010), and answer-set optimization programs (ASO-
theories) (Brewka, Niemelä, and Truszczynski 2003).

In this paper, we focus our study on combinatorial do-
mains with binary issues. We denote by {x,¬x} the domain
of each binary issue x. Thus, outcomes in the combinatorial
domain determined by the set I = {x1, . . . , xn} of binary
issues, we denote it by CD(I), are simply complete and
consistent sets of literals over I. We typically view them as
truth assignments (interpretations) of the propositional lan-
guage over the vocabulary I. This allows us to use proposi-
tional formulas over I as concise representations of sets of

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

outcomes from the domain CD(I). Namely, each formula ϕ
represents the set of outcomes that satisfy ϕ (make ϕ true).

To give an example, we will consider preferences on pos-
sible ways to arrange a vacation. We will assume that vaca-
tions are described by four binary variables:

1. activity (x1) with values hiking (x1) or water sports (¬x1)
2. destination (x2) with values Florida (x2) or Colorado

(¬x2)
3. time (x3) with values summer (x3) or winter (¬x3), and
4. the mode of travel (x4) could be car (x4) or plane (¬x4).
A complete and consistent set of literals {x1,¬x2, x3, x4}
represents the hiking vacation in Colorado in the summer to
which we travel by car. To describe sets of vacations we
can use formulas. For instance, vacations that take place in
the summer or involve water sports can be described by the
formula x3 ∨ ¬x1, and vacations in Florida that we travel to
by car by the formula x2 ∧ x4.

Explicitly specifying strict preference orders on CD(I)
becomes impractical even for domains with as few as 7 or
8 issues. However, the setting introduced above allows us
to specify total preorders on outcomes in terms of desirable
properties outcomes should have. For instance, a formula
ϕ might be interpreted as a definition of a total preorder in
which outcomes satisfying ϕ are preferred to those that do
not satisfy ϕ (and outcomes within each of these two groups
are equivalent). More generally, we could see an expression
(a sequence of formulas)

ϕ1 > ϕ2 > . . . > ϕk

as a definition of a total preorder in which outcomes satis-
fying ϕ1 are preferred to all others, among which outcomes
satisfying ϕ2 are preferred to all others, etc. This way of
specifying preferences is used (with minor modifications) in
possibilistic logic and ASO programs. In our example, the
expression

x3 ∧ x4 > ¬x3 ∧ ¬x2

states that we prefer summer vacations where we drive by
car to vacations in winter in Colorado, with all other vaca-
tions being the least preferred.

This linear specification of preferred formulas is some-
times too restrictive. An agent might prefer outcomes that
satisfy a property ϕ to those that do not. Within the first
group that agent might prefer outcomes satisfying a prop-
erty ψ1 and within the other a property ψ2. Such preference
can be most naturally captured by a form of a decision tree

Multidisciplinary Workshop on Advances in Preference Handling: Papers from the AAAI-14 Workshop

55



as presented in Figure 1. Leaves, shown as boxes, represent
sets of outcomes satisfying the corresponding conjunctions
of formulas (ϕ ∧ ψ1, ϕ ∧ ¬ψ1, etc.).

ϕ

ψ1 ψ2

Figure 1: A decision tree

For instance, in the vacation example, a person may pre-
fer summer vacations to winter vacations and, within each
group, hiking to water sports. Such preferences can be rep-
resented by a decision tree (Figure 2a) which, in this case,
can be collapsed, due to identical subtrees, into a compact
representation in Figure 2b (we formally introduce collapsed
representations below).

x3

x1 x1

(a) Full

x3

x1

(b) Compact

Figure 2: Vacations

Such tree representation of preferences, which we call
preference trees, or P-trees, are reminiscent of LP-trees
(Booth et al. 2010). In fact, preference trees generalize LP-
trees. In this note, we formally introduce preference trees
and their compact representation that exploits occurrences
of identical subtrees (as illustrated in Figure 2). We discuss
the relationships between preference trees, LP-trees, possi-
bilistic logic theories and ASO preferences. We study the
complexity of problems of comparing outcomes with respect
to orders defined by preference trees, and of problems of
finding optimal outcomes. We conclude by outlining some
future research directions.

Preference Trees
In this section, we introduce preference trees and discuss
their representation. Let I be a set of binary issues. A pref-
erence tree (P-tree, for short) over CD(I) is a binary tree
whose all nodes other than leaves are labeled with proposi-
tional formulas over I. Each P-tree T defines a natural strict
order �T on the set of its leaves, the order of their enumer-
ation from left to right.

Given an outcome M ∈ CD(I), we define the leaf of M
in T as the leaf that is reached by starting at the root of T
and proceeding downwards. When at a node N labeled with
ϕ, if M |= ϕ, we descend to the left child of N ; otherwise,
we descend to the right node of N . We denote the leaf of M
in T by lT (M).

We use the concept of the leaf of an outcome M in a P-
tree T to define a total preorder on CD(I). Namely, for

M ′,M ′′ ∈ CD(I), we set M ′ �T M ′′ if lT (M ′) �T
lT (M ′′), and M ′ �T M ′′, M ′ is strictly preferred to M ′′,
if lT (M ′) �T lT (M ′′). (We overload the relations �T and
�T by using it both for the order on the leaves of T and
the corresponding preorder on the outcomes from CD(I)).
We say that M ′ is equivalent to M ′′, M ′ ≈T M ′′, if
lT (M ′) = lT (M ′′). Finally, M ′ is optimal if there exists
no M ′′ such that M ′′ �T M ′.

Let us consider a person planning her vacation. She
prefers vacations that take place in summer or involve hik-
ing (ϕ1 = x1 ∨ x3) to all others, and this is the most desir-
able property to her. Among those vacations that satisfy ϕ1,
our vacation planner prefers hiking vacations in Colorado
(ϕ2 = x1 ∧ ¬x2) over the remaining ones in that group.
Provided ϕ1 is satisfied, this is her second most important
consideration. Her next concern for vacations satisfying ϕ1

is the mode of transportation. She prefers driving to fly-
ing for summer vacations and flying to driving, otherwise
(ϕ3 = (x3 → x4) ∨ (¬x3 → ¬x4)). Among vacations
that do not have the property ϕ1, that is, the vacations that
are in winter and involve water sports, the planner prefers to
drive to Florida for her vacation (ϕ′2 = x2 ∧x4). The result-
ing preference preorder on vacations can be represented as
a P-tree T shown in Figure 3a. This preorder has six clus-
ters of equivalent outcomes (vacation choices) represented
by the six leaves, with the decreasing preference for clusters
of outcomes associated the leaves as we move from left to
right. To compare two outcomes, M = (x1, x2,¬x3,¬x4)
andM ′ = (¬x1,¬x2, x3,¬x4), we walk down the trees and
find that lT (M) = l3 and lT (M ′) = l4. Thus, M �T M ′

since l3 precedes l4.

ϕ1

ϕ2t

ϕ3 ϕ3

l3 l4

ϕ′2

(a) Full representation

ϕ1

ϕ2t

ϕ3

ϕ′2

(b) Compact representation

Figure 3: P-trees

Compact Representation of P-Trees. Sometimes P-trees
have special structure that allows us to collapse subtrees of
certain nodes. In many cases, it results in much smaller rep-
resentations. A compact P-tree over CD(I) is a tree such
that

1. every non-leaf node is labeled with a Boolean formula
over I; and every leaf node is denoted by a box 2, and

2. every non-leaf node t labeled with ϕ has either one outgo-
ing “straight down” edge, indicating the fact that the two
subtrees of t are identical and the formulas labeling every
pair of corresponding non-leaf nodes in the two subtrees
are the same, or two outgoing edges, with the left out-

56



going edge representing that ϕ is satisfied and the right
outgoing edge representing that ¬ϕ is satisfied.
Let t be a non-leaf node in a P-tree T . We denote by

Inst(t) the set of ancestor nodes of t in T that have two out-
going edges. In the P-tree in Figure 3a, the two subtrees of
node t and the formulas labeling the corresponding nodes
are identical. Thus, we can collapse them and achieve a
compact representation (Figure 3b), where Inst(t) contains
only the root of T .

Empty Leaves in P-Trees. Given a P-tree T one can prune
it so that all sets of outcomes corresponding to its leaves are
non-empty. However, keeping empty clusters may lead to
compact representations of much smaller (in general, even
exponentially) size.

A compact P-tree T in Figure 4a represents a full binary
tree T ′ in Figure 4b. The formulas labeling the non-leaf
nodes in T are ϕ1 = x1 ∨ x3, ϕ2 = x2 ∨ ¬x4 and ϕ3 =
x2 ∧ x3. We can check that leaves l1, l2 and l3 are empty,
that is, the conjunctions ϕ1 ∧¬ϕ2 ∧ϕ3, ¬ϕ1 ∧ϕ2 ∧ϕ3 and
¬ϕ1 ∧ ¬ϕ2 ∧ ϕ3 are unsatisfiable.

ϕ1

ϕ2

ϕ3

(a) T

ϕ1

ϕ2

ϕ3 ϕ3

l1

ϕ2

ϕ3

l2

ϕ3

l3

(b) T ′

ϕ1

ϕ2

ϕ3

ϕ2

(c) T ′′: pruned T ′

Figure 4: P-trees with empty leaves

If we prune all empty leaves in T ′ (and the nodes whose
all descendants are empty leaves), we obtain a P-tree T ′′ in
Figure 4c. No leaf in T ′′ is empty. It is clear, that it has a
larger representation size than the original tree T . That ex-
ample generalizes and leads to the question of finding small
sized representations of P-trees. From now on, we assume
that P-trees are given in their compact representation.

P-Trees and Other Formalisms
In this section we compare the preference representation lan-
guage of P-trees with other preference languages.

P-Trees Extend LP-Trees. LP-trees (Booth et al. 2010;
Lang, Mengin, and Xia 2012; Liu and Truszczynski 2013)
offer a simple and intuitive way to represent strict total or-
ders over combinatorial domains. An LP tree T over the set
of issues I is a full binary tree. Each node t in T is labeled
by an issue from I, denoted by Iss(t), and with preference
information of the form a > b or b > a indicating which of
the two values a and b comprising the domain of Iss(t) is
preferred. We require that each issue appears exactly once
on each path from the root to a leaf.

Intuitively, the issue labeling the root of an LP tree is
of highest importance. Outcomes with the preferred value

of that issue are preferred over outcomes with the non-
preferred one. The two subtrees refine that ordering. The
left subtree determines the ranking of the preferred “upper
half” and the right subtree determines the ranking of the
non-preferred “lower half.” In each case, the same princi-
ple is used, with the root issue being the most important one.
The precise semantics of an LP tree T captures this intuition.
Given an outcomeM , we find its preference ranking in T by
traversing the tree from the root to a leaf, moving to the left
if M assigns the issue of the current node as the preferred
value and to the right, otherwise.

In some cases, these decision trees can be collapsed to
much smaller representations. For instance, if for some node
t, its two subtrees are identical (that is, the corresponding
nodes are assigned the same issue), they can be collapsed
to a single subtree, with the same assignment of issues to
nodes. To retain preference information, at each node t′ of
the subtree we place a conditional preference table, and each
preference in it specifies the preferred value for the issue
labeling that node given the value of the issue labeling t. In
the extreme case when for every node its two subtrees are
identical, the tree can be collapsed to a path.

Let us consider the vacation example and assume that to
an agent planning a vacation, her most important issue is
activity, for which she prefers hiking to water sports. No
matter whether the vacation is about hiking or water sports,
the next most important issue is time, where summer is pre-
ferred to winter. If the vacation is in summer, the next issue
to consider is destination, with Colorado being more desir-
able. The least important issue is transportation, where pref-
erences are conditioned upon how the destination is evalu-
ated. On the other hand, if the vacation is in winter, the
agent treats transportation as more important than destina-
tion, and gives unconditional preferences on both of them.
These preferences can be described by an LP-tree L in Fig-
ure 5a. It induces a total order on vacations ranging from the
leftmost leaf (most desirable vacation) to the rightmost one
(least desirable vacation).

x1x1 > ¬x1

x3x3 > ¬x3

x2¬x2 > x2

x4
x2 : x4 > ¬x4

¬x2 : ¬x4 > x4

x4¬x4 > x4

x2x2 > ¬x2

(a) An LP-tree L

x1

x3

¬x2

ϕ

¬x4

x2

(b) The P-tree TL

Figure 5: P-trees extend LP-trees

This LP-tree L can be translated into a P-tree TL shown
in Figure 5b, where ϕ = (x2 → x4) ∨ (¬x2 → ¬x4).
Clearly, the trees L and TL represent the same ordering over
vacations. The example generalizes and allows us to express

57



ϕ1

ϕ2

ϕm

Figure 6: A P-tree Tr (TP )

any LP-tree as a P-tree, compiling conditional preference
tables into formulas labeling nodes. This discussion shows
that P-trees encompass LP-trees and do so in a more uniform
way, with no need for conditional preference tables.

P-Trees Extend ASO-Rules. The formalism of ASO-
rules (Brewka, Niemelä, and Truszczynski 2003) provides
an intuitive way to express preferences over outcomes as
total preorders. An ASO-rule partitions outcomes into or-
dered clusters according to the semantics of the formalism.
Formally, an ASO-rule r over I is a preference rule of the
form

C1 > . . . > Cm ← B, (1)

where all Ci’s and B are propositional formulas over I. For
each outcome M , rule (1) determines the satisfaction de-
gree. It is denoted by SDr(M) and defined by

SDr(M) =


1, M |= ¬B
m+ 1, M |= B ∧

∧
1≤i≤m ¬Ci

min{i : M |= Ci}, otherwise.

We say that an outcome M is weakly preferred to an out-
come M ′ (M �r M ′) if SDr(M) ≤ SDr(M

′). Thus, the
notion of the satisfaction degree (or, equivalently, the prefer-
ence r) partitions outcomes into (in general)m+1 clusters.1

Let us consider the domain of vacations. An agent may
prefer hiking in Colorado to water sports in Florida if she
is going on a summer vacation. Such preference can be de-
scribed as an ASO-rule:

x1 ∧ ¬x2 > ¬x1 ∧ x2 ← x3.

Under the semantics of ASO, this preference rule specifies
that the most desirable vacations are summer hiking vaca-
tions to Colorado and all winter vacations, the next preferred
vacations are summer water sports vacations to Florida, and
the least pleasant vacations are summer hiking vacations to
Florida and summer water sports vacations to Colorado.

Given an ASO-rule r of form (1), we will show how r
is encoded in a P-tree. From the ASO-rule r, we build a
P-tree Tr in Figure 6, where ϕ1 = ¬B ∨ C1, ϕi = Ci
(2 ≤ i ≤ m), and the dashed edge represents nodes labeled
by the formulas ϕ3, . . . , ϕm−1 and every formula ϕi, 3 ≤
i ≤ m− 1, is constructed such that the parent of ϕi is ϕi−1,
the left child of ϕi is 2, and the right child of ϕi is ϕi+1.

1This definition is a slight adaptation of the original one.

Theorem 1. Given an ASO-rule r, the P-tree Tr is built
in time polynomial in the size of r such that for every two
outcomes M and M ′

M �ASO
r M ′ iff M �Tr

M ′

Proof. The P-tree Tr induces that the outcomes in the 1st
cluster satisfy formula ϕ1, the ones in the 2nd cluster satisfy
formula ¬ϕ1 ∧ ϕ2, etc. Note that the right most leaf has
formula ¬ϕ1 ∧ . . . ∧ ¬ϕm which means that if outcome M
satisfies B and falsifies all Ci’s, M is the least preferred and
belongs to cluster m+ 1.

Clearly, the size of Tr is linear in the size of the in-
put r. There are other ways of translating ASO-rules to
P-trees. For instance, it might be beneficial if the transla-
tion produced a more balanced tree. Keeping the defini-
tions of ϕi, 1 ≤ i ≤ m, as before and setting ϕm+1 =
B ∧ ¬C1 ∧ . . . ∧ ¬Cm, we could proceed as flollows. First,
create the root node N of T br and label it with the formula∨

1≤i≤bm+2
2 c

ϕi. Then, proceed recursively to constructN ’s
left subtree T1 for ϕ1, . . . , ϕbm+2

2 c
, andN ’s right subtree T2

for ϕbm+2
2 c+1, . . . , ϕm+1.

For example, ifm = 6, we build the P-tree T br in Figure 7,
where ψ1 = ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4, ψ2 = ϕ1 ∨ ϕ2, ψ3 = ϕ1,
ψ4 = ϕ3, ψ5 = ϕ5∨ϕ6, and ψ6 = ϕ5. The indices i’s of the
formulas ψi’s indicate the order in which the corresponding
formulas are built recursively.

ψ1

ψ2

ψ3 ψ4

ψ5

ψ6

Figure 7: T br when m = 6

This P-tree representation of a preference r of the form
(1) is balanced and its height is dlog2(m + 1)e. Moreover,
Theorem 1 also holds for the balanced T br .

Representing P-Trees as RASO-Theories. Preferences
represented by compact P-trees cannot in general be cap-
tured by ASO preferences without a significant (in some
cases, exponential) growth in the size of the representa-
tion. However, any P-tree can be represented as a set of
ranked ASO-rules, or an RASO-theory (Brewka, Niemelä,
and Truszczynski 2003), aggregated by the Pareto method.

We first show how Pareto method is used to order out-
comes with regard to a set of unranked ASO-rules. Let
M and M ′ be two outcomes. Given a set P of unranked
ASO-rules, M is weakly preferred to M ′ with respect to P ,
M �uP M ′, if SDr(M) ≤ SDr(M

′) for every r ∈ P .
Moreover, M is strictly preferred to M ′, M �uP M ′, if
M �uP M ′ and SDr(M) < SDr(M

′) for some r ∈ P ,
and M is equivalent to M ′, M ≈uP M ′, if SDr(M) =
SDr(M

′) for every r ∈ P .

58



In general, the resulting preference relation is not total.
However, by ranking rules according to their importance in
some cases, total preorders can be obtained. Let us assume
P = {P1, . . . , Pg} is a collection of ranked ASO prefer-
ences divided into g sets with each Pi consisting of ASO-
rules of the same rank. A rank is a positive integer such that
ASO-rules of smaller ranks are more important. We define
M �rkP M ′ w.r.t P if for every i, 1 ≤ i ≤ g, M ≈uPi

M ′,
or if there exists a rank i such that M ≈uPj

M ′ for every j,
j < i, and M �uPi

M ′.
Given a P-tree T , we construct an RASO-theory ΦT as

follows. We start with ΦT = ∅. For every node ti in a P-
tree T , ΦT = ΦT ∪ {ϕi

di← conditions}, where ϕi is the
formula labeling node ti, di, rank of the ASO-rule, is the
depth of node ti starting with 1 as the depth of the root, and
conditions is the conjunction of formulas ϕj or ¬ϕj for all
nodes tj such that tj ∈ Inst(ti). Whether ϕj or ¬ϕj is
used depends on how the path from the root to ti determines
whether descending left (ϕj) or right (¬ϕj) at tj .

For instance, the P-tree T in Figure 3b gives rise to the
following RASO-theory:

x1 ∨ x3
1←

x1 ∧ ¬x2
2← x1 ∨ x3

x2 ∧ x4
2← ¬(x1 ∨ x3)

(x3 → x4) ∨ (¬x3 → ¬x4)
3← x1 ∨ x3

Theorem 2. Given a P-tree T , there exists an RASO-theory
ΦT of size polynomial in the size of T such that for every
two outcomes M and M ′

M �RASO
ΦT

M ′ iff M �T M ′

Proof of Theorem 2 is omitted due to space constraint.

P-Trees Extend Possibilistic Logic. A possibilistic logic
theory Π over a vocabulary I is a set of pairs

{(φ1, a1), . . . , (φm, am)},
where every φi is a Boolean formula over I, and every ai
is a real number such that 1 ≥ a1 > . . . > am ≥ 0. Intu-
itively, ai means the importance of φi, the larger the more
importance. Denote by TD (φ,a)(M) the tolerance degree
of outcome M with regard to preference pair (φ, a), and we
have the following.

TD (φ,a)(M) =

{
1, M |= φ

1− a, M 6|= φ

Denote by TDΠ(M) the tolerance degree of outcome M
with regard to the possibilistic logic theory Π, and we define
that

TDΠ(M) = min{TD (φi,ai)(M) : 1 ≤ i ≤ m}.
The larger TDΠ(M), the more preferred M is.

For example, we have a theory of possibilistic theory
{(x1 ∧ x3, 0.8), (x2 ∧ x4, 0.5)} on the domain of vacations,
which expresses that vacations satisfying both preferences
are the most preferred, those satisfying x1 ∧ x3 but falsify-
ing x2∧x4 are the next preferred, and those falsifying x1∧x3

are the worst.

Like the case with ASO-rules, we can apply different
methods to encode a possibilistic logic theories in P-trees.
Here we discuss one of them. Given a possibilistic logic
theory Π, we now build an unbalanced P-tree TΠ (Figure 6
with different formula labels), where ϕ1 =

∧
1≤i≤m φi,

ϕ2 =
∧

1≤i≤m−1 φi ∧¬φm, ϕ3 =
∧

1≤i≤m−2 φi ∧¬φm−1,
and ϕm = φ1 ∧ ¬φ2.

Theorem 3. Given a possibilistic theory Π, the P-tree TΠ is
built in time polynomial in the size of Π such that for every
two outcomes M and M ′

M �Poss
Π M ′ iff M �TΠ

M ′

Proof. Note that both induce in general total preorders of
m + 1 clusters. It is clear that outcome M is in the i-th
cluster induced by Π if and only if it is in the i-th cluster
induced by TΠ.

Reasoning Problems and Complexity
In this section, we study decision problems on reasoning
about preferences described as P-trees, and provided com-
putational complexity results of these problems.

Definition 1. Dominance-testing (DOMTEST): given a P-
tree T and its two distinct outcomes M and M ′, decide
whether M ′ �T M .

Definition 2. Optimality-testing (OPTTEST): given a P-tree
T and an outcome M of T , decide whether M is an optimal
outcome.

Definition 3. Optimality-with-property (OPTPROP): given
a P-tree T and some property α expressed as a Boolean for-
mula over the vocabulary of T , decide whether there is an
optimal outcome M that satisfies α.

Theorem 4. The DOMTEST problem can be solved in time
linear in the height of the P-tree T .

Proof. The DOMTEST problem can be solved by walking
down the tree. The preference between M and M ′ is deter-
mined at the first non-leaf node n whereM andM ′ evaluate
ϕn differently. If such node does not exist before arriving at
a leaf, M ≈T M ′.

One interesting reasoning problem on optimality is to de-
cide if there exists an optimal outcome in a P-tree. This
problem is trivial because its solution is the solution to the
problem deciding whether there is any outcome at all.

Theorem 5. The OPTTEST problem is coNP-complete.

Proof Sketch. Need to show that deciding whether the given
outcome M is not an optimal outcome in a given P-tree T
is NP-complete. This complement problem is in class NP
because one can guess an outcome M ′ in polynomial time
and verify in polynomial time that M ′ �T M . Hardness
follows from a polynomial time reduction from SAT (Garey
and Johnson 1979). Details of the reduction is omitted due
to limited space.

Theorem 6. The OPTPROP problem is ∆P
2 -complete.

59



Proof. (Membership) The problem is in class ∆P
2 . Let T be

a given preference tree. To check whether there is an optimal
outcome that satisfies a property α, we start at the root of T
and move down. As we do so, we maintain the information
about the path we took by updating a formula ψ, which ini-
tially is set to > (a generic tautology). Each time we move
down to the left from a node t, we update ψ to ψ ∧ ϕt, and
when we move down to the right, to ψ ∧ ¬ϕt. To decide
whether to move down left or right form a node t, we check
ifϕt∧ψ is satisfiable by making a call to an NP oracle for de-
ciding satisfiability. If ϕt∧ψ is satisfiable, we proceed to the
left subtree and, otherwise, to the right one. We then update
t to be the node we moved to and repeat. When we reach a
leaf of the tree (which represents a cluster of outcomes), this
cluster is non-empty, consists of all outcomes satisfying ψ
and all these outcomes are optimal. Thus, returning YES, if
ψ ∧α is satisfiable and NO, otherwise, correctly decides the
problem. Since the number of oracle calls is polynomial in
the size of the tree T , the problem is in the class ∆P

2 .
(Hardness) The maximum satisfying assignment (MSA)

problem2 (Krentel 1988) is ∆P
2 -complete. We first show

in Lemma 1 that the problem remains ∆P
2 -hard if we

restrict the input to Boolean formulas that are satisfi-
able and has models other than the all-false model (i.e.,
{¬x1, . . . ,¬xn}).

Lemma 1. The MSA problem is ∆P
2 -complete when Φ is

satisfiable and has models other than the all-false model.

Proof. Given a Boolean formula Φ over {x1, . . . , xn}, we
define Ψ = Φ∨(x0∧¬x1∧. . .∧¬xn) over {x0, x1, . . . , xn}.
It is clear that Ψ is satisfiable, and has at least one model
other than the all-false one. Let M be a lexicographically
maximum assignment satisfying Φ and M has xn = 1.
Extending M by x0 = 1 yields a lexicographically maxi-
mum assignment satisfying Ψ and this assignment satisfies
xn = 1. Conversely, if M is a lexicographically maximum
assignment satisfying Ψ and xn = 1 is in M , it follows that
M |= Φ. Thus, restricted M to {x1, . . . , xn}, the assign-
ment is lexicographically maximal satisfying Φ.

We show the hardness of the OPTPROP problem by a re-
duction from this restricted version of the MSA problem.
Let Φ be a satisfiable propositional formula over variables
x1, . . . , xn that has at least one model other than the all-false
one. We construct an instance of the OPTPROP problem as
follows.

(1). The P-tree TΦ is shown in Figure 8, where every node
is labeled by formula Φ ∧ xi.

(2). The property α = xn.
Our P-tree TΦ induces a total preorder consisting of a se-

quence of singleton clusters, each containing an outcome
satisfying Φ, followed by a single cluster comprising all out-
comes that falsify Φ and the all-false model. By our assump-
tion on Φ, the total preorder has at least two clusters. More-
over, all singleton clusters preceding the last one are ordered

2Given a Boolean formula Φ over {x1, . . . , xn}, the maximum
satisfying assignment (MSA) problem is to decide whether xn = 1
is in Φ’s lexicographically maximum satisfying assignment. (If Φ
is unsatisfiable, the answer is no.)

Φ ∧ x1

Φ ∧ xn

Figure 8: The P-tree TΦ

lexicographically. Thus, the optimal outcome of TΦ satis-
fies α if and only if the lexicographical maximum satisfying
outcome of Φ satisfies xn.

Conclusion and Future Work
We introduced a novel qualitative preference representation
language, preference trees, or P-trees. We studied the prop-
erties of the language and several reasoning problems, and
obtained computational complexity results. For the future
work, we will study the relationship between P-trees and
CP-nets, and problems concerning preference learning and
reasoning (e.g., preference aggregation) for P-trees. For ag-
gregating P-trees, we will investigate the applicability of the
Pareto method as well as voting rules in social choice theory.

References
Booth, R.; Chevaleyre, Y.; Lang, J.; Mengin, J.; and Som-
battheera, C. 2010. Learning conditionally lexicographic
preference relations. In ECAI, 269–274.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: A tool for representing and reason-
ing with conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research 21:135–191.
Brewka, G.; Niemelä, I.; and Truszczynski, M. 2003. An-
swer set optimization. In IJCAI, 867–872.
Dubois, D.; Lang, J.; and Prade, H. 1991. A brief overview
of possibilistic logic. In ECSQARU, 53–57.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Krentel, M. W. 1988. The complexity of optimization prob-
lems. J. Comput. Syst. Sci. 36(3):490–509.
Lang, J.; Mengin, J.; and Xia, L. 2012. Aggregating condi-
tionally lexicographic preferences on multi-issue domains.
In CP, 973–987.
Liu, X., and Truszczynski, M. 2013. Aggregating con-
ditionally lexicographic preferences using answer set pro-
gramming solvers. In ADT, 244–258.

60




