
Feature Reinforcement Learning: State of the Art

Mayank Daswani and Peter Sunehag and Marcus Hutter
Research School of Computer Science

Australian National University,
Canberra, ACT, 0200, Australia.,

first.last@anu.edu.adu

Abstract

Feature reinforcement learning was introduced five years ago
as a principled and practical approach to history-based learn-
ing. This paper examines the progress since its inception. We
now have both model-based and model-free cost functions,
most recently extended to the function approximation setting.
Our current work is geared towards playing ATARI games us-
ing imitation learning, where we use Feature RL as a feature
selection method for high-dimensional domains.

This paper is a brief summary of the progress so far in
the Feature Reinforcement Learning framework (FRL) (Hut-
ter 2009a), along with a small section on current research.
FRL focuses on the general reinforcement learning problem
where an agent interacts with an environment in cycles of
action, observation-reward. The goal of the agent is to max-
imise an aggregation of the reward. The most traditional
form of this general problem constrains the observations
(and rewards) to be states which satisfy the Markov property,
i.e. P (ot|o1:t−1) = P (ot|ot−1) and is called a Markov De-
cision Process (MDP) (Puterman 1994). A less constrained
form is Partially Observable Markov Decision Processes
(Kaelbling, Littman, and Cassandra 1998) when these ob-
servations are generated from some unobservable underly-
ing Markov Decision Process.

Feature Reinforcement Learning (Hutter 2009a) is one
way of dealing with the general RL problem, by reducing it
to an MDP. It aims to construct a map from the history of an
agent, which is its action-observation-reward cycles so far,
to an MDP state. Traditional RL methods can then be used
on the derived MDP to form a policy (a mapping from these
states to actions). FRL fits in the category of a history-based
approach. U-tree (McCallum 1996) is a different example of
the history-based approach which uses a tree-based repre-
sentation of the value function where nodes are split based
on a local criterion. The cost in FRL is global, maps are ac-
cepted or rejected based on an evaluation of the whole map.

While the idea behind FRL is simple, there are several
choices to be made. What space do we draw the maps from,
and how do we pick the one that fits our data so far? In the
best case, we’d like to choose a map φ from the space of
all possible (computable) functions on histories, but this is

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

intractable in practice and the choice of a smaller hypothe-
sis class can encode useful knowledge and improve learning
speed. We define a cost-function that ideally measures how
well φ maps the process to an MDP. The problem of search-
ing through the map class for the best map φ∗ is addressed
via a stochastic search method.

Taking a step back from the history-based learning prob-
lem, we can frame the general RL problem as trying to find a
map from a very-high dimensional input space, namely that
of all possible histories to a policy representation that allows
us to perform well in the given environment. This policy
representation is often in the form of a value function but it
does not have to be. The model-based feature RL framework
(Hutter 2009a; 2009b) tries to build an MDP space first, and
then find a value function for that MDP. A model-free ap-
proach (Daswani, Sunehag, and Hutter 2013) goes straight
for the value function representation without trying to build
an MDP model. This approach easily extends to function ap-
proximation.

Note that this representation of a general RL problem as
a problem in a very-high dimensional input space allows us
to use feature RL in the traditional learning setting for fea-
ture selection in function approximation problems. Instead
of features of the history, our features are now that of the
MDP state. The cost function now selects for the smallest
subset of features that can represent our model or the value-
function. Our current work is on using the value-based cost
both in the off-policy and on-policy setting to deal with do-
mains within the scope of the Arcade Learning Environment
(Bellemare et al. 2013).

The outline of this paper is as follows. Section 1 outlines
some notation and relevant background, Section 2 deals with
some related work, Section 3 looks at the Cost functions
that have been examined in the FRL setting so far, and sum-
marises the successes of the method. We conclude in Section
4.

Preliminaries

Agent-Environment Framework. The notation and frame-
work is taken from (Hutter 2009a; 2004). An Agent acts
in an Environment Env by choosing from actions a∈A. It
receives observations o∈O and real-valued rewards r ∈R
where A,O and R are all finite. This observation-reward-

Sequential Decision-Making with Big Data: Papers from the AAAI-14 Workshop

2

action sequence happens in cycles indexed by t= 1,2,3,....
We use x1:n throughout to represent the sequence x1...xn.
The space of histories is H := (O×R×A)∗×O×R. The
history at time t is given by ht=o1r1a1...ot−1rt−1at−1otrt.
The agent (or policy) is then formally a (stochastic) function
Agent :H;A where Agent(ht) :=at. Similarly, the envi-
ronment can be viewed as a (stochastic) function of the his-
tory, Env :H×A;O×R, where Env(ht−1,at−1) :=otrt.

Markov Decision Process (MDP). If Pr(otrt|ht−1,at−1)
= Pr(otrt|ot−1at−1), the environment is said to be a dis-
crete MDP (Puterman 1994). In this case, the observations
form the state space of the MDP. Formally an MDP is a
tuple 〈S,A,T ,R〉 where S is the set of states, A is the
set of actions and R : S×A;R is the (possibly stochas-
tic) reward function which gives the (real-valued) reward
gained by the agent after taking action a in state s. T :
S×A×S→[0,1] is the state-transition function. The agent’s
goal is to maximise its expected future discounted reward,
where a geometric discount function with rate γ is used. In
an episodic setting, the discounted sum is truncated at the
end of an episode. The value of a state-action pair accord-
ing to a stationary policy is given by Qπ(s,a)=Eπ[Rt|st=
s,at = a] where Rt =

∑tend
k=0γ

krt+k+1 is the return and
tend indicates the end of the episode containing time t.
We want to find the optimal action-value function Q∗ such
that Q∗(s,a) = maxπQ

π(s,a), since then the greedy policy
π∗(s)=argmaxaQ

∗(s,a) is the optimal policy.

Arcade Learning Environment (ALE). The reinforcement
learning community has lacked a set of general environ-
ments that can be used for testing new algorithms in a robust
manner. (Veness et al. 2011) introduced a set of small chal-
lenging problems, but several algorithms can no longer be
differentiated based on them. The recently introduced ALE
(Bellemare et al. 2013) attempts to address this big gap in
the field by utilising games made for the ATARI 2600 as
a testbed for reinforcement learning algorithms. The envi-
ronments in this setting are games made for humans which
can be relatively complex, but due to the space/processing
limits of the ATARI console, still feasible for current RL
techniques. The ALE consists of an interface to Stella which
is an open-source Atari 2600 games emulator. The interface
provides access to the screen pixel matrix and the internal
state representation of the ATARI games themselves.

Related Work

MC-AIXI-CTW. The Monte Carlo (MC) AIXI Context
Tree Weighting (CTW) algorithm (Veness et al. 2011) is an
approximation of the theoretically optimal universal agent
AIXI (Hutter 2004). It uses a mixture over all suffix trees
with the weights based on their code lengths. It uses the
Krichevsky-Trofimov estimator to estimate the probabilities
of symbols occurring in each context of the tree and by using
properties of CTW (Wilems, Shtarkov, and Tjalkens 1995) it
calculates the probability of a history sequence in a compu-
tationally efficient way. The (action-conditional) CTW tree
maintains a model of the world. A Monte-Carlo Tree Search
(MCTS) algorithm UCT (Kocsis and Szepesvári 2006) is

used to determine which action to take next, by using the
current mixture of suffix trees as a generative model. The
drawback is that the policy representation is not explicit,
hence we need to call UCT whenever we want to choose an
action, which makes MC-AIXI-CTW computationally ex-
pensive.

Predictive Representations of State. PSRs are an alterna-
tive approach that also attempt to find sufficient statistics
from the history to represent some notion of state. A test
is a sequence of possible future observations. In a PSR, the
dynamics of a system are represented by probability dis-
tributions over tests (τ) given histories. In theory, having
a complete (infinite) matrix of the probabilities of all tests
conditioned on all possible histories would completely de-
fine the system we are trying to model. Obviously this is
infeasible, but one can aim to find a set of sufficient tests
of which all other tests are (linear) projections. Learning
these core tests is a difficult problem, but there has recently
been much progress, first through transformed PSRs (Rosen-
crantz, Gordon, and Thrun 2004; Boots, Siddiqi, and Gordon
2010) which are based on spectral-learning algorithms and
most recently compressed versions of these TPSRs which
use ideas from compressed sensing (Hamilton, Fard, and
Pineau 2013).

Cost functions

ΦMDP. Feature RL (Hutter 2009a) is a framework that ex-
tracts features from the history that are useful in predicting
future consequences of actions. It finds a map φ:H→S such
that the state at any time step st=φ(ht) is approximately a
sufficient statistic of the history. It selects the map φ from
a class of such maps, minimising a cost function by using a
stochastic search method. We will discuss the various cost
functions used in the following subsections.

State-reward prediction cost
The first proposed cost was inspired by the minimum de-
scription length principle (Rissanen 1978). The cost is the
sum of the code lengths of state and reward sequences given
actions. This cost is used within a global stochastic search
technique (for example simulated annealing (Liu 2008)) to
find the optimal map. The standard cost is defined by

Cost(φ|hn) :=CL(s1:n|a1:n)+CL(r1:n|s1:n,a1:n)+CL(φ)

where CL(s1:n|a1:n) is the code length of the state se-
quence given the action sequence, etc (Hutter 2009a). Cost is
well-motivated since it balances between coding states and
coding rewards. A state space that is too large results in poor
learning and a long state coding, while a state space that
is too small can obscure structure in the reward sequence
resulting in a long code for the rewards. The consistency
of this cost criterion was proven by (Sunehag and Hutter
2010). CTΦMDP (Nguyen, Sunehag, and Hutter 2011) uses
the above cost with simulated annealing over the space of
context trees to find the best map. It then finds the best pol-
icy via approximate value iteration.

3

CTMRL. The Context Tree Maximising (CTM) for Rein-
forcement Learning (RL) algorithm (Nguyen, Sunehag, and
Hutter 2012) uses the CTM approach to sequence prediction
that analytically finds the context-tree model by the mini-
mum description length principle (Rissanen 1978). The se-
quence prediction setting is adapted for RL by predicting
the state-reward sequence conditioned on the actions. For
large domains such as Pocman, the CTMRL approach bi-
narises the percept (observation, reward) space, and addi-
tionally adds an “unseen” context, whose action value is ini-
tialised based on the value of the first subsequent seen state.
Due to the high space requirements of the CTM method in
such environments the algorithm discards all the context tree
maximisers (CTMs) at the start of every learning loop. New
CTMs must then be created from only the history gained in
the previous loop. This results in a significant loss in data
efficiency. Function approximation is a better alternative to
deal cleanly with large observation spaces.

Feature Dynamic Bayesian Networks. One can use fac-
tored MDPs (or Dynamic Bayesian Networks) to represent
the model more compactly (Hutter 2009b). This introduces
more complexity to the problem, since we must learn the
best structure of the DBN for each φ, and then evaluate its
cost. For a fixed φ the above cost reduces to the Bayesian
Information Criterion (BIC). Finding the best structure for a
DBN that minimises the BIC is NP-complete. However, in-
troducing additional constraints on the DBN can allow this
to be pseudo-polynomial in practice.

Value-based cost : Off-policy TD Cost
The value-based cost was introduced in (Daswani, Sunehag,
and Hutter 2013). For each φ, a Q-table based on the state
space given by φ is defined. We denote this Q-table by Qφ :
H×A→ R and it is of the form Q(φ(h),a). We use the
squared pathwise Q-learning error to find a suitable map φ :
H→S by selecting φ to minimise the following cost,

CostQL(φ)=min
Qφ

1

2

n∑
t=1

(∆
Qφ
t)2+Reg(φ)

where ∆
Qφ
t =rt+1+γmaxaQφ(ht+1,a)−Qφ(ht,at).

This is similar to the objective function in Regularised
Least Squares Fitted Q-iteration (Farahmand et al. 2008),
with differences in regularisation.

This off-policy cost is designed to select features that can
represent the optimal policy in an iterative manner based
on any behaviour policy that might also be changing. It
can be extended easily to the function approximation set-
ting by approximating Q(φ(ht),at) by ξ(ht,at)

Tw where
ξ :H×A→Rk for some k∈R.

Current work : On-policy Monte-Carlo cost, imitation
learning. Another scenario is imitation learning, where one
has existing trajectories sampled from a good policy and
one wants to select features that can accurately represent the
value function of that policy. Then one can continue to im-
prove by a traditional algorithm like SARSA or Q-learning.

The imitation problem can be reduced to a supervised
learning problem, with the training samples being (φ(ht,at),

return). Our current work involves learning from an expert
trajectory in an ATARI 2600 game provided by an MCTS
algorithm such as UCT, but trying to find the best possible
policy representation given our current feature class. Using
only the training samples from the UCT trajectory is not
enough to build an estimate of the value function, since a
perfect UCT agent does not tell us anything about potential
mistakes. We instead force UCT to make suboptimal choices
with some probability, which gives us a richer trajectory to
learn form.

Doing feature RL in this supervised form allows us to
learn a good explicit policy representation that can be used
to play the game without access to the game simulator. Ide-
ally we want the best policy representable by our class of
features. However, given a perfect regression, the quality of
the policy we learn depends on the ability of the feature set
to represent the UCT policy. Currently we use ε-SVMs with
LIBSVM (Chang and Lin 2011) to form a regression model
on the training set.

Part of our motivation for this approach was the large gap
between the planning (UCT) and learning (SARSA with lin-
ear function approximation) results reported in (Bellemare et
al. 2013), the first thorough comparison for the ALE. If the
problem is with the feature representation, then more sophis-
ticated algorithms are unlikely to provide much more bene-
fit. However, our preliminary results suggest that the features
themselves might not be the problem. We use SVMs with a
Gaussian kernel over the features and achieve good predic-
tion accuracy on the training set. However, it should be noted
that prediction accuracy on the training set is not necessarily
indicative of good performance. Additionally, a linear func-
tion approximation over these features, as used in SARSA,
is less expressive.

UCT can be used as an oracle. It provides both the cor-
rect action to take in any given state and also an estimate
of the return for each action in that state. The usual imita-
tion learning setting is to train a classifier based on an oracle
providing a correct action. We instead perform a regression
based on the return estimates provided by UCT. The agent is
then defined by acting greedily according to the resulting Q-
function, which can then be used for further training using
traditional RL methods.

Model-based value-based cost function. There is another
(so far unexamined) cost function that can be used, namely
the one that is model-based but optimises the above value-
based cost. It comes with the computation cost of estimating
the model and determining the value function.

Advantages and Disadvantages

Model-based cost vs. model-free cost. In a model-based
approach a sufficiently explorative policy is enough to learn
about all policies. Once we have a model, planning tech-
niques such as value-iteration and Monte Carlo Tree Search
can be used. Model-based methods can be more data effi-
cient, although less computationally efficient on a per-time-
step basis than model-free methods. The model-free cost is
easier to scale via function approximation. Scalability in the
model-based cost is in theory possible via factored MDPs

4

(Hutter 2009b), but in practice structure learning is a hard
problem and although potentially pseudo-polynomial, hav-
ing this in the inner loop of the algorithm is still computa-
tionally problematic.

Value-based cost vs. sequence prediction cost. The value-
based cost is more discriminative than the sequence predic-
tion one (it cares directly about predicting the value func-
tion). It can also flexibly be used for both model-based and
model-free purposes. The sequence prediction based cost,
which belongs purely in the model-based setting, can be led
astray by needing to predict features that are irrelevant to the
value. This could result in maps that are much larger than
needed. The distinction is similar to the difference between
generative versus discriminative learning.

Successes of FRL
FRL has so far been successful on a wide-variety of toy
problems, and the work is progressing towards scaling up-
wards. CTΦMDP (Nguyen, Sunehag, and Hutter 2011)
showed competitive results to the best performing MC-
AIXI-CTW agent on various small toy domains (Tiger,
Cheese Maze, etc). CTMRL (Nguyen, Sunehag, and Hut-
ter 2012) allowed some scaling to larger domains to com-
pete on POCMAN albeit with several caveats. LSTΦMDP
(Daswani, Sunehag, and Hutter 2012) extended the map
space to deal with long-term dependencies using looping
suffix trees, and solved problems such as T-Maze, which
were not viable for standard context-tree based approaches.
hQL (Daswani, Sunehag, and Hutter 2013) used the value-
based cost to scale up easily via function approximation, and
outperformed MC-AIXI-CTW on the POCMAN domain.
We are now working on much larger environments such as
the ALE.

Conclusion
We reviewed the progress of feature reinforcement learning
over the five years since its introduction. Several approaches
based on different cost functions have been introduced, and
we discussed the advantages and disadvantages of each. We
have during these five years seen an increase in complexity
for the domains successfully attacked, with Atari games as
the next big challenge.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation Platform
for General Agents. Journal of Artificial Intelligence Research
47:253–279.
Boots, B.; Siddiqi, S. M.; and Gordon, G. J. 2010. Closing the
Learning-Planning Loop with Predictive State Representations. In
Proceedings of Robotics: Science and Systems.
Chang, C.-C., and Lin, C.-J. 2011. LIBSVM: A library
for support vector machines. ACM Transactions on Intelligent
Systems and Technology 2:27:1–27:27. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.
Daswani, M.; Sunehag, P.; and Hutter, M. 2012. Feature Rein-
forcement Learning using Looping Suffix Trees. JMLR Workshop
and Conference Proceedings : EWRL 2012 24:11–24.

Daswani, M.; Sunehag, P.; and Hutter, M. 2013. Q-learning for
history-based reinforcement learning. In Asian Conference on Ma-
chine Learning, 213–228.
Farahmand, A.; Ghavamzadeh, M.; Szepesvári, C.; and Mannor,
S. 2008. Regularized Fitted Q-Iteration: Application to Planning.
In Recent Advances in Reinforcement Learning, volume 5323 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg.
55–68.
Hamilton, W. L.; Fard, M. M.; and Pineau, J. 2013. Modelling
Sparse Dynamical Systems with Compressed Predictive State Rep-
resentations. In Proceedings of the 30th International Conference
on Machine Learning (ICML-13), volume 28, 178–186. JMLR
Workshop and Conference Proceedings.
Hutter, M. 2004. Universal Artificial Intelligence: Sequential De-
cisions based on Algorithmic Probability. Berlin: Springer.
Hutter, M. 2009a. Feature Reinforcement Learning: Part I: Un-
structured MDPs. Journal of Artificial General Intelligence 1:3–
24.
Hutter, M. 2009b. Feature Dynamic Bayesian Networks. In Proc.
2nd Conf. on Artificial General Intelligence (AGI’09), volume 8,
67–73. Atlantis Press.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998. Plan-
ning and acting in partially observable stochastic domains. Artifi-
cial Intelligence 101(1–2):99–134.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-Carlo
planning. In In The 17th European Conference on Machine Learn-
ing, 99–134.
Liu, J. S. 2008. Monte Carlo Strategies in Scientific Computing.
Springer, corrected edition.
McCallum, A. K. 1996. Learning to Use Selective Attention and
Short-Term Memory in Sequential Tasks. In From Animals to An-
imats 4: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior, 315–324. MIT Press.
Nguyen, P.; Sunehag, P.; and Hutter, M. 2011. Feature reinforce-
ment learning in practice. In Proc. 9th European Workshop on
Reinforcement Learning (EWRL-9), volume 7188 of LNAI, 66–77.
Springer.
Nguyen, P. M.; Sunehag, P.; and Hutter, M. 2012. Context Tree
Maximizing. In Hoffmann, J., and Selman, B., eds., AAAI. AAAI
Press.
Puterman, M. L. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York, NY, USA: John Wi-
ley & Sons, Inc.
Rissanen, J. J. 1978. Modeling by Shortest Data Description. Au-
tomatica 14(5):465–471.
Rosencrantz, M.; Gordon, G.; and Thrun, S. 2004. Learning low di-
mensional predictive representations. In Proceedings of the twenty-
first international conference on Machine learning, 88. ACM.
Sunehag, P., and Hutter, M. 2010. Consistency of Feature Markov
Processes. In Proc. 21st International Conf. on Algorithmic Learn-
ing Theory (ALT’10), volume 6331 of LNAI, 360–374. Canberra:
Springer, Berlin.
Veness, J.; Ng, K. S.; Hutter, M.; Uther, W.; and Silver, D. 2011.
A Monte Carlo AIXI Approximation. Journal of Artificial Intelli-
gence Research 40:95–142.
Wilems, F.; Shtarkov, Y.; and Tjalkens, T. 1995. The context tree
weighting method: Basic properties. In IEEE Transactions on In-
formation Theory.

5

