
Learning Tractable Statistical Relational Models

Aniruddh Nath and Pedro Domingos
Department of Computer Science & Engineering

University of Washington
Seattle, WA 98195, U.S.A.

{nath, pedrod}@cs.washington.edu

Abstract

Intractable inference has been a major barrier to the
wide adoption of statistical relational models. Exist-
ing exact methods suffer from a lack of scalability,
and approximate methods tend to be unreliable. Sum-
product networks (SPNs; Poon and Domingos 2011)
are a recently-proposed probabilistic architecture that
guarantees tractable exact inference, even on many
high-treewidth models. SPNs are a propositional ar-
chitecture, treating the instances as independent and
identically distributed. In this paper, we extend SPNs
to the relational setting, resulting in Relational Sum-
Product Networks (RSPNs). Previous tractable statis-
tical relational models (Domingos and Webb 2012;
Webb and Domingos 2013) defined their models over a
pre-determined set of objects, and therefore could not be
generalized to new mega-examples. In contrast, RSPNs
can be learned and applied to previous unseen exam-
ples. We present a learning algorithm for RSPNs; in
preliminary experiments, RSPNs outperform Markov
Logic Networks (Richardson and Domingos 2006) in
both running time and predictive accuracy.

Introduction
Graphical probabilistic models compactly represent a joint
probability distribution among a set of variables. Unfortu-
nately, inference in graphical models is intractable. In prac-
tice, using graphical models for most real-world applications
requires either using approximate algorithms, or restricting
oneself to a subset of graphical models on which inference
is tractable. A common restriction that ensures tractability
is to use models with low treewidth (e.g. Bach and Jor-
dan 2001; Chechetka and Guestrin 2007). However, not all
tractable models have low treewidth. Poon and Domingos
(2011) recently proposed Sum-Product Networks (SPNs), a
tractable probabilistic architecture that guarantees efficient
exact inference. SPNs subsume most known tractable prob-
abilistic models, and can compactly represent some high-
treewidth distributions. SPNs can be seen as a deep ar-
chitecture with alternating layers of sum nodes and prod-
uct nodes. Since their introduction, several SPN learning
algorithms have been proposed, and SPNs have been ap-
plied to a variety of problems (Delalleau and Bengio 2011;
Gens and Domingos 2012; Dennis and Ventura 2012; Amer

and Todorovic 2012; Peharz, Geiger, and Pernkopf 2013;
Gens and Domingos 2013).

Besides intractability, one other key restriction of most
widely used graphical models is their reliance on the i.i.d.
assumption. In many real-world applications, training in-
stances are not truly independent, and can be better modeled
if their interactions are taken into account. This is one of
the key insights of the Statistical Relational Learning (SRL)
community. In recent years, SRL techniques have been ap-
plied to a wide variety of tasks, including collective classifi-
cation, link prediction, vision, natural language processing,
etc. However, most SRL methods are built on top of graph-
ical models (e.g. Markov logic networks; Richardson and
Domingos 2006), and suffer from the same computational
difficulties; these are compounded by the additional prob-
lem of modeling interactions between instances.

In this paper, our goal is to combine these two lines of re-
search: tractable probabilistic models (in this case, SPNs)
and relational learning. One piece of related research is
Flach and Lachiche’s (2004) work on Naı̈ve Bayes classi-
fication in structured domains. Their work was limited to
classification, and was very limited in expressiveness (be-
ing a Naı̈ve Bayes model). The first non-trivial tractable
probabilistic relational representation was Tractable Markov
Logic (TML; Domingos and Webb 2012), a subset of
Markov logic on which efficient inference could be guaran-
teed. TML is surprisingly expressive, subsuming most pre-
vious tractable models. However, a TML knowledge base
determines the set of possible objects in the domain, and the
relational structure among them. This limits the applicabil-
ity of TML to learning; a TML knowledge base cannot be
learned on one set of objects and applied to another mega-
example with different size or structure.

To address this, we propose Relational Sum-Product Net-
works (RSPNs), a new tractable relational probabilistic ar-
chitecture. RSPNs generalize SPNs by modeling a set of in-
stances jointly, allowing them to influence each other’s prob-
ability distributions, as well as modeling the probabilities of
relations between objects. We also introduce LearnRSPN,
the first algorithm for learning tractable statistical relational
models. Intractable inference has historically been a major
obstacle to the wider adoption of statistical relational meth-
ods; the development of learning and inference algorithms
for tractable relational models could go a long way towards

Statistical Relational AI: Papers from the AAAI-14 Workshop

62

making SRL more widely applicable.

Background
Sum-Product Networks
A sum-product network (SPN) is a rooted directed acyclic
graph with univariate distributions at the leaves; the internal
nodes are (weighted) sums and (unweighted) products.

Definition 1. (Gens and Domingos 2013)

1. A tractable univariate distribution is an SPN.
2. A product of SPNs with disjoint scopes1 is an SPN.
3. A weighted sum of SPNs with the same scope is an SPN,

provided all weights are positive.
4. Nothing else is an SPN.

A univariate distribution is tractable iff its partition func-
tion and mode can be computed in O(1) time.

Intuitively, an SPN can be thought of as an alternating
set of mixtures (sums) and decompositions (products) of the
leaf variables. If the values at the leaf nodes are set to the par-
tition functions of the corresponding univariate distribution,
then the value at the root is the partition function (i.e. the
sum of the unnormalized probabilities of all possible assign-
ments to the leaf variables). This allows the partition func-
tion to be computed in time linear in the size of the SPN.

Similarly, if some of the leaves are known, setting their
values to their probabilities (according to the correspond-
ing univariates) yields the unnormalized probability of the
evidence. This can be divided by the partition function to
obtain the normalized probability. The most probable state
of the SPN, viewing sums as marginalized-out hidden vari-
ables, can also be computed in polynomial time.

The first learning algorithms for sum-product networks
used a fixed network structure, and only optimized the
weights (Poon and Domingos 2011; Amer and Todorovic
2012; Gens and Domingos 2012). The network structure
is domain-dependent; applying SPNs to a new problem re-
quired manually designing a suitable network structure.

More recently, several algorithms have been proposed that
learn both the weights and the network structure, allowing
SPNs to be applied out-of-the-box to new domains. Den-
nis and Ventura (2012) suggested an algorithm that builds
an SPN based on a hierarchical clustering of variables. Gens
and Domingos (2013) construct SPNs top-down, recursively
partitioning instances and variables. Peharz, Geiger, and
Pernkopf (2013) construct SPNs bottom-up, greedily merg-
ing SPNs into models of larger scope. These algorithms have
been shown to perform well on a variety of domains, mak-
ing more accurate predictions than conventional graphical
models, while guaranteeing tractable inference.

Statistical Relational Learning
SPNs are a propositional representation, modeling instances
as independent and identically distributed (i.i.d.). Although
the i.i.d. assumption is widely used in statistical machine
learning, it is often an unrealistic assumption. In practice,

1The scope of an SPN is the set of variables that appear in it.

objects usually interact with each other; Statistical Rela-
tional Learning algorithms can capture dependencies be-
tween objects, and make predictions about relationships be-
tween them.

Markov Logic Networks (MLNs; Richardson and Domin-
gos 2006) are a widely-used representation used for rela-
tional learning. An MLN is a first-order representation of
the dependencies between objects in a domain. Given a
mega-example (a set of related objects), an MLN can be
grounded into a propositional graphical model represent-
ing a joint probability distribution over the attributes and
relations among those objects. Unfortunately, the resulting
graphical model is typically high treewidth, and inference is
intractable. In practice, users of SRL methods typically re-
sort to approximate inference algorithms based on MCMC
or loopy belief propagation, resulting in long runtimes and
unreliable predictions. Like propositional graphical models,
statistical relational models can be trivially restricted to the
low-treewidth case, but this comes at great cost to the repre-
sentational power of the model.

Tractable Markov Logic (TML; Domingos and Webb
2012) is a subset of Markov logic that guarantees
polynomial-time inference, even in certain cases where the
ground propositional model would be high in treewidth.
TML is expressive enough to capture several cases of in-
terest, including junction trees, non-recursive PCFGs, hier-
archical mixture models etc. A TML knowledge base is a
generative model that decomposes the domain into parts,
with each part drawn probabilistically from a class hierar-
chy. Each part is further probabilistically decomposed into
subparts (according to its class). Inference in TML is carried
out using probabilistic theorem proving (Gogate and Domin-
gos 2011). The key limitation of TML is that the knowledge
base fully specifies the set of possible objects in the domain,
and their class and part structure. A TML knowledge base
cannot be learned from one mega-example and applied to
another example with different size or structure.

This paper uses some first-order logic terminology. For
our purposes, ‘predicate’ refers to a first-order logic predi-
cate. (Our representation and algorithm support numeric at-
tributes and relations as well, but for simplicity we focus on
the Boolean case.) A grounding of a predicate (or a ground
atom) is a replacement of all its variables by constants.

Relational Sum-Product Networks
Exchangeable Distribution Templates
Before we define RSPNs, we first define the notion of an
Exchangeable Distribution Template (EDT).

Definition 2. Consider a finite set of variables
{X1, . . . , Xn} with joint probability distribution P .
Let S(n) be the set of all permutations on {1, . . . , n}.
{X1, . . . , Xn} is a finite exchangeable set with respect to P
if and only if P (X1, . . . , Xn) = P (Xπ(1), . . . , Xπ(n)) for
all π ∈ S(n). (Diaconis and Freedman 1980).

Note that finite exchangeability does not require indepen-
dence: a set of variables can be exchangeable despite hav-
ing strong dependencies. (e.g. binary variables X1, . . . , Xn,

63

Figure 1: Example sum-product network. Smokes and Cancer are Bernoulli distributions with probability 1; ¬Smokes and
¬Cancer are distributions over the same two variables, with probability 0.

with a uniform probability distribution over value assign-
ments with an even number of non-zero variables.)
Definition 3. An Exchangeable Distribution Template
(EDT) is a function that takes a set of variables
{X1, . . . , Xn} as input (n is unknown a priori), and re-
turns a joint probability distribution P with respect to which
{X1, . . . , Xn} are exchangeable. We refer to the probability
distribution P returned by the EDT for a given set of vari-
ables as an instantiation of that EDT.
Example 1. The simplest family of EDTs simply returns a
product of univariate distributions over each of X1, . . . , Xn.
For example, if the variables are binary, then an EDT might
model them as a product of Bernoulli distributions with
some probability p.
Example 2. Consider an EDT over a set of binary variables
X1, . . . , Xn (with n unknown a priori), returning the follow-
ing distribution:

P (X1, . . . , Xn) ∝
λk

k!
e−λ where k =

∑
Xi

1[Xi]

λ is a parameter of the EDT. This is an EDT with a Pois-
son distribution over the number of variables in the set with
value 1. (The probabilities must be renormalized, since the
set of variables is finite.) Note that this EDT does not assume
independence among variables.

Intuitively, EDTs can be thought of as probability distri-
butions that depend only on aggregate statistics, and not on
the values of individual variables in the set.

Relational Sum-Product Networks
Relational Sum-Product Networks (RSPNs) jointly model
the attributes and relations among a set of objects. RSPNs
inherit TML’s notion of parts and classes. Unlike TML, an
RSPN class’s parts may be unique or exchangeable. An ob-
ject’s unique parts are those that play a special role, e.g. the
commander of a platoon, the queen of a bee colony, or the
hub of a social network. The exchangeable parts are those
that behave interchangeably: soldiers in a platoon, worker
bees in a colony, spokes in a network, and so on.
Definition 4. A class definition for RSPN class C consists
of:

Figure 2: Partial SPN for the ‘Nation’ class (example 3),
modeling all a nation’s parts as independent conditioned on
the ‘HighGDP’ attribute.

• A set of attributes: unary predicates of the form A(x),
where x ∈ C.
• A set of unique parts, each associated with a class.
• A set of exchangeable parts, each associated with a class.
• A set of relations between subparts: predicates of the form
R1(P1, P2) or R2(C,P1), where P1 and P2 are either
unique or exchangeable parts of C. (Predicates may be
of any arity.)

• A class SPN whose leaves are in one of three sets:
– U

(C)
A , univariate distributions over unary predicates in-

volving C (i.e. attributes of the form A(C));

– U
(C)
R , EDTs over groundings of binary (or higher-

order) predicates involving C and/or its subpart types
(e.g. relations of the form R1(P1, P2) or R2(C,P1),
where P1 and P2 are parts of C);

– U
(C)
P , sub-SPNs for subparts.

Example 3. The following is a partial class specification for
a simple political domain. A ‘Region’ consists of an arbi-
trary number of nations, and relationships between nations
are modeled at this level. A ‘Nation’ has a unique govern-
ment and an arbitrary number of people. National properties

64

Figure 3: Example grounding of the ‘Nation’ class, with the
class SPN from figure 2.

such as ‘High GDP’ are modeled here. The ‘Supports’ rela-
tion can capture a distribution over the number of people in
the nation who support the government.

c l a s s Region :
e x c h a n g e a b l e p a r t N a t i o n
r e l a t i o n A d j a c e n t (Nat ion , Na t i o n)
r e l a t i o n C o n f l i c t (Nat ion , Na t i o n)

c l a s s N a t io n :
un iq ue p a r t Government
e x c h a n g e a b l e p a r t P e r son
a t t r i b u t e HighGDP
r e l a t i o n S u p p o r t s (Person , Government)

See figure 2 for an example class SPN.

Grounding an RSPN
Like MLNs, RSPNs are templates for propositional models.
To generate a ground SPN from an RSPN, we take as input a
part decomposition, which is a tree of typed objects. A part
decomposition D is consistent with RSPN class C iff:

• The root object of D is of class C;

• The root object has one child ou for each unique part Cu
of C, and the subtree rooted at ou is consistent with Cu;

• Each remaining child object oe is of a type matching some
exchangeable part Ce of C, and the subtree rooted at oe is
consistent with Ce.

To ground a class SPN is to instantiate the template for
a specific set of objects. Given a class C and a part decom-
position D (rooted at object o), grounding C’s SPN yields
a propositional SPN whose leaf distributions are over at-
tributes and relations involving the objects inD. This is done
recursively as follows:

• For leaves inU (C)
A : replace the univariate distribution over

predicate A(C) in the class SPN with a univariate distri-
bution over A(o) in the ground SPN.

• For leaves in U
(C)
R : replace the EDT over R(X,Y) in

the class SPN with an instantiation of that EDT over the
groundings of R.

• For leaves inU (C)
P : recursively ground P ’s class SPN over

each type-P child of object o. Replace the sub-SPN inC’s
SPN with a product over groundings of P .

See figure 3 for an example of a ground SPN.

Representational Power
The main limitation of the RSPN representation is that indi-
vidual relational atoms are not modeled directly, but through
aggregations. In this respect, it is similar to Probabilistic
Relational Models (PRMs, Friedman et al. 1999)—though
RSPNs guarantee tractable inference, unlike PRMs. Aggre-
gations are extremely useful for capturing relational depen-
dencies (Natarajan et al. 2012). For example, a person’s
smoking habits may depend on the number of friends she
has who smoke, and not the smoking habits of each individ-
ual friend. Nevertheless, aggregations are not well-suited to
capturing relational patterns that depend on specific paths of
influence, such as Ising models.

It is important to note than RSPNs (and SPNs) are not
simply tree-structured graphical models. The graph of an
RSPN is not a conditional dependency graph, but a graphical
representation of the computation of the partition function.
A ground RSPN can be converted into an equivalent graph-
ical model, but the resulting model may be high-treewidth,
and computationally intractable.

In effect, RSPNs are a way to compactly represent
context-specific independences in relational domains: differ-
ent children of a sum node may have different variable de-
compositions in their product nodes. These context-specific
independences are what give RSPNs more expressiveness
than low-treewidth tractable models.

Learning RSPNs
The learning task for RSPNs is to determine the structure
and parameters of all the class SPNs in the domain. In this
work, we assume that the part relationships among classes
are known, i.e. the user determines what types of unique and
exchangeable parts are allowed for each class. The input for
the learning algorithm is a set of part decompositions (trees
of objects), and an evidence database specifying the values
of the attributes and relations among those objects.

Our learning algorithm is based on the top-down Learn-
SPN algorithm (Gens and Domingos 2013). LearnSPN is
a propositional SPN learning algorithm, taking as input a
set of training instances T and variables V . It attempts to
decompose V into independent subsets V1, . . . , Vk (using
pairwise statistical independence tests); if successful, Learn-
SPN recurses over each subset, returning a product node
over the recursively learned sub-SPNs. If V does not de-
compose into independent subsets, LearnSPN instead clus-
ters the instances T , recursively learns a sub-SPN over each
subset T1, . . . , Tk, returning a sum-node over the sub-SPNs
weighted by the mixture proportions. Under certain assump-
tions, LearnSPN can be seen as a greedy search maximizing
the likelihood of the learned SPN.

65

Algorithm 1 LearnRSPN(C, T , V)
input: C, a class

T , a set of instances of C
V , a set of class attributes, relation aggregates,

and subparts
output: an RSPN for class C
if |V | = 1 then

if v ∈ V is an attribute then
return univariate estimated from v’s values in T

else if v is a relation aggregate then
return EDT estimated from v’s values in T

else
//v is a subpart
Cchild ← class of v
Tchild ← subparts of t ∈ T of type Cchild

Vchild ← attributes, relations and subparts of Cchild

return LearnRSPN(Cchild, Tchild, Vchild)
end if

else
partition V into approximately independent subsets Vj

if success then
return

∏
j LearnRSPN(C, T, Vj)

else
partition T into sets of similar subsets Ti

return
∑

i
|Ti|
|T | .LearnRSPN(C, Ti, V)

end if
end if

Given an RSPN classC, LearnSPN could be used directly
to learn an SPN overC’s attributes. However,C’s exchange-
able parts pose a problem for LearnSPN: the number of leaf
variables in the ground SPN can differ from one training in-
stance to another, and between training instances and test
instances. To address this, we propose the LearnRSPN al-
gorithm (Algorithm 1), a relational extension of LearnSPN.
(For the purpose of this discussion, subparts are assumed to
be exchangeable; attributes of unique subparts can be han-
dled the same way as attributes of the parent part, and repre-
sented as separate leaves in the class SPN.)

LearnRSPN is a top-down algorithm similar to Learn-
SPN; it attempts to find independent subsets from among
the object’s set of attributes, relations and subparts; if multi-
ple subsets exist, the algorithm learns a sub-SPN over each
subset, and returns a product over the sub-SPNs. If indepen-
dent subsets cannot be found, LearnRSPN instead clusters
the instances, returning a sum node over the components,
weighted by the mixture proportions.

LearnRSPN exploits the fact that predicates involving ex-
changeable parts are grounded into finite sets of exchange-
able variables. Instead of treating each ground atom as a sep-
arate leaf in the SPN, LearnRSPN summarizes a set of ex-
changeable variables with an aggregate statistic (in our ex-
periments, we used the fraction of true variables in the set,
though other statistics can be used). This summary statis-
tic is treated as a single variable in the decomposition stage
of RSPN. Thus, attributes that are highly predictive of the
statistics of the groundings of a relation will be grouped
with that relation. Subparts are similarly summarized by the
statistics of their attribute and relation predicates.

The base case of LearnRSPN (when |V | = 1) varies de-
pending on what v is. When v is an attribute, the RSPN to
be returned is simply a univariate distribution over the at-
tribute, as in the propositional version of LearnSPN. When
v is a subpart of classCchild, LearnRSPN returns an SPN for
class Cchild. Crucially, different SPNs are learned for Cchild
in different children of a sum node in parent class C (since
the recursive call is made with a different set of instances).
The final base case is when v is an aggregate over an ex-
changeable relation. In this case, the RSPN to be returned is
an EDT over the relation.

Like LearnSPN, LearnRSPN can be seen as an algorithm
schema rather than a single learning algorithm; the user is
free to choose a clustering algorithm for instances, a depen-
dency test for variable splitting, an aggregate statistic, and a
family of EDTs for exchangeable relations. Note that differ-
ent families of EDTs may require different aggregate statis-
tics for parameter estimation. The fraction of true ground-
ings is sufficient for the two EDTs described earlier.

Evaluation
Methodology
We compared a Python implementation of LearnRSPN to
the MSL learning algorithm (Kok and Domingos 2005) for
Markov Logic Networks, as implemented in the widely-used
ALCHEMY system2 (Kok et al. 2008). We also compare to
a baseline (BS) that simply predicts each atom according to
the global marginal probability of the predicate being true.
TML and propositional SPNs cannot be evaluated in this set-
ting because the training and test examples have different
structure.

To cluster instances in LearnRSPN, we used the EM im-
plementation in SCIKIT-LEARN (Pedregosa et al. 2011), with
two clusters. To test dependence between variables, we fit a
Gaussian distribution (for aggregate variables) or Bernoulli
distribution (for binary attributes), and computed the pair-
wise mutual information (MI) between the variables. The
test statistic used was G = 2N ×MI , which in the discrete
case is equivalent to the G-test used by Gens and Domin-
gos (2013). We used a threshold of 0.5 for dependence. For
EDTs, we used the independent Bernoulli form, as described
in example 1. All Bernoulli distributions were smoothed
with a pseudocount of 0.1.

For MLNs, we used the MSL learning algorithm and MC-
SAT inference algorithm, the default choices in ALCHEMY
2.0, with the default parameters.

We report results in terms of area under the precision-
recall curve (AUC; Davis and Goadrich 2006) and the av-
erage conditional marginal likelihood (CMLL) of the test
atoms. AUC is a measure of prediction quality that is insen-
sitive to imbalance in the number of true and false atoms.
CMLL directly measures the quality of the probability esti-
mates. For LearnRSPN, we also report the test set likelihood
normalized by the number of queries, as an alternate mea-
sure of prediction quality. (ALCHEMY does not compute this
quantity.)

2ALCHEMY 2.0, http://code.google.com/p/alchemy-2/

66

Table 1: UW-CSE results. The five areas are AI, Graphics, Languages, Systems and Theory.
Area |Q| Learning time (s) Inference time (s) AUC-PR CMLL LL/|Q|

RSPN MLN RSPN MLN RSPN MLN BS RSPN MLN BS RSPN
AI 1414 8.85 12,137.74 0.10 5.88 0.73 0.25 0.25 -0.09 -0.19 -0.16 -0.09

Grph. 171 8.60 6,464.82 0.03 0.55 0.63 0.44 0.26 -0.25 -0.31 -0.30 -0.24
Lang. 17 8.46 20,294.36 0.01 0.04 1.00 0.42 0.43 -0.10 -1.35 -0.37 -0.07
Sys. 1120 10.90 9,106.62 0.09 6.99 0.54 0.30 0.13 -0.09 -0.17 -0.14 -0.09
Th. 308 6.93 17,435.36 0.03 1.11 0.75 0.30 0.33 -0.13 -0.37 -0.21 -0.12
Avg. 606 8.75 13,087.80 0.05 2.91 0.73 0.34 0.27 -0.13 -0.47 -0.23 -0.12

Experiment
The UW-CSE database (Richardson and Domingos 2006)
has been used to evaluate a variety of statistical relational
learning algorithms. The dataset describes the University of
Washington Compute Science & Engineering department,
and includes advising relationships, paper authorships etc.
The database is divided into five non-overlapping mega-
examples, by research area.

To generate a part structure for this domain, we sepa-
rated the people into one research group per faculty mem-
ber, with students determined using the AdvisedBy and
TempAdvisedBy predicates (breaking ties by number of
coauthored papers). Publications are also divided among
groups: each paper is assigned to the group of the profes-
sor who wrote it, voting by the number of student authors
in the group in the event of a tie. The prediction tasks are
to infer the roles of faculty (Professor, Associate Professor
or Assistant Professor) and students (Pre-Quals, Post-Quals,
Post-Generals), as well as paper authorships. The part struc-
ture is also made available to ALCHEMY in the form of
predicates Has(Area,Group), Has(Group, Professor),
Has(Group, Student), Has Group(Group, Paper), and
Has NonGroup(Group, Paper).

We performed leave-one-out testing by area, testing on
each area in turn using the model trained from the remain-
ing four. 80% of the groundings of the query predicates were
provided as evidence, and the task was to predict the remain-
ing atoms. Table 1 shows the results on all five areas, and
the average. LearnRSPN is orders of magnitude faster than
ALCHEMY at both training and inference time, and consid-
erably more accurate than either ALCHEMY or the baseline.

Discussion
Statistical relational learning algorithms have been success-
fully applied to several problems, but the difficulty, cost
and unreliability of approximate inference has limited their
wider adoption. In practice, applying statistical relational
methods to a new domain requires substantial engineering
effort in choosing and configuring the approximate learning
and inference algorithms. The expressiveness of languages
like Markov logic is both a boon and a curse: although these
languages can compactly represent sophisticated probabilis-
tic models, they also make it easy for practitioners to unin-
tentionally design models too complex even for state-of-the-
art inference algorithms.

In the propositional setting, several approaches have been
recently proposed for learning high-treewidth tractable mod-

c l a s s Area :
e x c h a n g e a b l e p a r t Group

c l a s s Group :
un iq ue p a r t P r o f e s s o r
e x c h a n g e a b l e p a r t S t u d e n t
e x c h a n g e a b l e p a r t GroupPaper
e x c h a n g e a b l e p a r t NonGroupPaper
r e l a t i o n Author (P r o f e s s o r , GroupPaper)
r e l a t i o n Author (P r o f e s s o r , NonGroupPaper)
r e l a t i o n Author (S t u d e n t , GroupPaper)
r e l a t i o n Author (S t u d e n t , NonGroupPaper)

c l a s s P r o f e s s o r :
a t t r i b u t e P o s i t i o n F a c u l t y
a t t r i b u t e P o s i t i o n A d j u n c t
a t t r i b u t e P o s i t i o n A f f i l i a t e

c l a s s S t u d e n t :
a t t r i b u t e I n P h a s e P r e Q u a l s
a t t r i b u t e I n P h a s e P o s t Q u a l s
a t t r i b u t e I n P h a s e P o s t G e n e r a l s

Figure 4: Part structure for UW-CSE domain

els (Lowd and Domingos 2008; Roth and Samdani 2009;
Gogate, Webb, and Domingos 2010; Poon and Domingos
2011). To our knowledge, LearnRSPN is the first algo-
rithm for learning high-treewidth tractable relational mod-
els. (TML is also a high-treewidth relational representa-
tion, but is unsuitable for learning, as explained earlier.) In
preliminary experiments, LearnRSPN outperforms conven-
tional statistical relational methods in accuracy, inference
time and training time.

A limitation of RSPNs is that they require a known, fixed
part decomposition for all training and test mega-examples.
Applying RSPNs to a new domain requires the user to spec-
ify the part decomposition; this is analogous to specifying
the class structure in object-oriented programming. Many
domains have a natural part structure that can be exploited
(like the UW-CSE database); in other cases, part structure
can be created using existing graph-cut or community de-
tection algorithms. An important direction for future work
is to develop an efficient, principled method of finding part
structure in a database.

67

Acknowledgments
This research was partly funded by ARO grant W911NF-08-
1-0242, ONR grants N00014-13-1-0720 and N00014-12-1-
0312, and AFRL contract FA8750-13-2-0019. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of
ARO, ONR, AFRL, or the United States Government.

References
Amer, M. R., and Todorovic, S. 2012. Sum-product net-
works for modeling activities with stochastic structure. In
CVPR.
Bach, F., and Jordan, M. I. 2001. Thin junction trees. In
NIPS.
Chechetka, A., and Guestrin, C. 2007. Efficient principled
learning of thin junction trees. In NIPS.
Davis, J., and Goadrich, M. 2006. The relationship between
precision-recall and ROC curves. In ICML.
Delalleau, O., and Bengio, Y. 2011. Shallow vs. deep sum-
product networks. In NIPS.
Dennis, A., and Ventura, D. 2012. Learning the architecture
of sum-product networks using clustering on variables. In
NIPS.
Diaconis, P., and Freedman, D. 1980. De Finetti’s gener-
alizations of exchangeability. Studies in Inductive Logic &
Probability 2.
Domingos, P., and Webb, W. A. 2012. A tractable first-order
probabilistic logic. In AAAI.
Flach, P., and Lachiche, N. 2004. Naive Bayesian classifi-
cation of structured data. Machine Learning 57.
Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999.
Learning probabilistic relational models. In IJCAI.
Gens, R., and Domingos, P. 2012. Discriminative learning
of sum-product networks. In NIPS.
Gens, R., and Domingos, P. 2013. Learning the structure of
sum-product networks. In ICML.
Gogate, V., and Domingos, P. 2011. Probabilistic theorem
proving. In UAI.
Gogate, V.; Webb, W. A.; and Domingos, P. 2010. Learning
efficient Markov networks. In NIPS.
Kok, S., and Domingos, P. 2005. Learning the structure of
Markov logic networks. In ICML.
Kok, S.; Sumner, M.; Richardson, M.; Singla, P.; Poon, H.;
Lowd, D.; Wang, J.; and Domingos, P. 2008. The Alchemy
system for statistical relational AI. Technical report, Univer-
sity of Washington. http://alchemy.cs.washington.edu.
Lowd, D., and Domingos, P. 2008. Learning arithmetic cir-
cuits. In UAI.
Natarajan, S.; Khot, T.; Kersting, K.; Gutmann, B.; and
Shavlik, J. 2012. Gradient-based boosting for statistical re-
lational learning: The relational dependency network case.
Machine Learning 86.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12.
Peharz, R.; Geiger, B. C.; and Pernkopf, F. 2013. Greedy
part-wise learning of sum-product networks. In ECML-
PKDD.
Poon, H., and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In UAI.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62.
Roth, D., and Samdani, R. 2009. Learning multi-linear rep-
resentations of distributions for efficient inference. Machine
Learning 76.
Webb, W. A., and Domingos, P. 2013. Tractable probabilis-
tic knowledge bases with existence uncertainty. In StaR-AI.

68

