
Self-Reconfigurable Control,
Application to Smart Environments

Sébastien Guillet, Bruno Bouchard, Abdenour Bouzouane
{sebastien.guillet1,bruno.bouchard,abdenour.bouzouane}@uqac.ca

Abstract

This work addresses the problem of controlling smart
homes dedicated to people with disabilities when their
disabilities evolve. These people being usually frail by
nature, keeping their environment constantly safe and
adapted is crucial. While it is possible to prove the se-
curity of such an environment given both its behavioral
definition and a patient profile, proving that it will re-
main secure for all possible profile evolution is a combi-
natorial problem. A solution to this problem is to define
secure execution points on which the control of the en-
vironment’s behavior can be changed for a new one that
is adapted to an evolution of the patient’s profile. This
paper presents the methodology to implement this solu-
tion based on the definition of the environment as a syn-
chronous program containing controllability informa-
tion. From such a program, we use a synthesis technique
named Discrete Controller Synthesis to obtain — when
it exists — a control function that will enforce tempo-
ral properties on the execution of the synchronous pro-
gram. A use case is presented, showing a partial model
of a smart home, on which security properties are de-
fined to be enforced at runtime. During execution, the
patient profile is updated, and a new controller obtained
through DCS is integrated to adapt the environment’s
behavior appropriately.

Introduction
Designing environments dedicated to frail people involves
many challenges, like blending unobtrusively into the home
environment (Novak, Binas, and Jakab 2012), recogniz-
ing the ongoing inhabitant activity (Bouchard, Giroux, and
Bouzouane 2007), localizing objects (Fortin-Simard et al.
2012), adapting assistance to the person’s cognitive deficit
(Lapointe et al. 2012), and securing the environment (Pigot,
Mayers, and Giroux 2003).

Given the high degree of vulnerability of people with
cognitive deficiencies, securing the house is a primary con-
cern. Indeed, an adequately designed smart home for dis-
abled people should be able to provide both assistance and
protection. In (Guillet, Bouchard, and Bouzouane 2013), we
addressed one major security aspect regarding failure toler-
ance: even if a smart home system is usually build to last, it

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

might no be the case for its very own components — lights,
screens, sound system, and many other important equip-
ments can fail during the lifetime of the system — in this
context, we provided a methodology to automatically obtain
the code of a controller component, able to keep the smart
home system in safe states for all possible executions: a safe
state representing a situation where the system always has
at least one way to communicate appropriately with the user
(depending on its impairments) even in case of failures on
its components.

However, the solution we presented did not take into ac-
count the evolution of the system: if a new component is
added, or if the user’s impairments are updated, a new con-
trol system has to be found, but no methodology was defined
to include this new controller into the smart home execu-
tion without requiring external intervention. Defining such
a methodology is the aim of this study which starts by giv-
ing the essential notions of the underlying execution model
(the synchronous framework), then explains how models de-
fined within this framework can be used to performed vali-
dation and synthesis techniques (Discrete Controller Syn-
thesis), and gives the model instrumentation methodology
to enforce the capacity of the smart home to be reinitial-
ized at any moment. This methodology is then employed in
a case study, using a partial smart home model to show the
important steps of the execution when the control system is
replaced at runtime.

Synchronous framework: basic notions
Synchronous languages are optimized for programming re-
active systems, i.e. systems that react to external events. This
section aims at presenting the similarities between a reactive
system under control and a controlled smart home, so that a
synchronous framework – essentially adopted from (Marc-
hand and Samaan 2000) and (Altisen et al. 2003) – gets jus-
tified as appropriate to specify smart home systems.

Execution model
In (Guillet et al. 2012), the execution model of a reactive
system under control is depicted. Such a system contains a
global execution loop, which starts by taking events from the
environment. Then these events get processed by a task (Re-
configuration controller), which chooses the system’s con-
figuration. Finally, this configuration order gets dispatched

Artificial Intelligence Applied to Assistive Technologies and Smart Environments: Papers from the AAAI-14 Workshop

16

through the system’s tasks following its model of computa-
tion, and another iteration of the loop can start again. If a
system can be represented within this execution model, then
the proposition of this work can help to design and formally
obtain its Reconfiguration controller task.

In (Bouchard, Bouchard, and Bouzouane 2012), guide-
lines to build the software architecture of a smart home sys-
tem are presented. Such a software follows a loop-based ex-
ecution, in which a database containing an updated system
state and event values is read and processed by eventual ar-
tificial intelligence (AI) modules to transform raw data into
high level information. This information can then be used
by third party applications. If we add a reconfiguration con-
troller as a third party application in this software architec-
ture, then we obtain the same execution principle presented
in (Guillet et al. 2012): in each iteration of the execution
loop a controller can be designed to 1) take events and/or
high level information provided by the system and its envi-
ronment, 2) perform a reconfiguration decision, and 3) give
this decision back to the system using some of its actuators
(i.e. its controllability) before the next iteration.

Designing the aforementioned controller by constraint so
that it can be obtained automatically through DCS becomes
possible, but it requires the use of formal a model to specify
the behavior of the underlying system under control. Behav-
ioral modeling can be performed using various formal rep-
resentations, e.g. Statecharts, Petri-nets, Communicating Se-
quential Processes or other ways. The toolset we use in this
work – BZR and SIGALI – brings us to define our system
in terms of synchronous equations and Labelled Transition
Systems.

Synchronous equation
In a declarative synchronous language, semantic is ex-
pressed in terms of dataflows: values carried in discrete time
are considered as infinite sequence of values, or flows. At
each discrete instant, the relation between input and out-
put values is defined by an equational representation be-
tween flows, it is basically a system of equations: equa-
tions are evaluated concurrently in the same instant and not
in sequence, the real evaluation order being determined at
compile-time from their interdependencies. For example, let
x and y be two dataflows such that x = x0, x1, ... and
y = y0, y1, Evolution of y over time is given by the fol-
lowing system of equations:{

y0 = x0

yt = yt−1 + xt if t ≥ 1

In this example, y is defined, amongst others, by a refer-
ence to its value at a previous discrete instant. Each declar-
ative synchronous language has a syntax to define such a
system. The corresponding BZR program is: y = x ->
pre(y) + x;, meaning that in the first step, y takes the
current value of x, and for all next steps y will take its pre-
vious value incremented by x. (Other syntactic features of
BZR can be found online 1). To represent the system exe-
cution modes, BZR also allows to define automata, or La-

1http://bzr.inria.fr/pub/bzr-manual.pdf

belled Transition Systems, each state encapsulating a set of
synchronous equations evaluated only when the state is ac-
tivated.

Labelled Transition System (LTS)
A LTS is a structure S = 〈Q, q0, I,O, T 〉 where Q is a
finite set of states, q0 is the initial state of S, I is a finite set
of input events (produced by the environment), O is a finite
set of output events (emitted towards the environment), and
T is the transition relation, that is a subset ofQ×Bool(I)×
O∗ ×Q, where Bool(I) is the set of boolean expressions of
I. If we denote by B the set {true, false}, then a guard g ∈
Bool(I) can be equivalently seen as a function from 2I into
B.

Each transition has a label of the form g/a, where g ∈
Bool(I) must be true for the transition to be taken (g is the
guard of the transition), and where a ∈ O∗ is a conjunction
of outputs that are emitted when the transition is taken (a is
the action of the transition). State q is the source of the tran-
sition (q, g, a, q′), and state q′ is the destination. A transition
(q, g, a, q′) will be graphically represented by (q

g,a−−→ q′).
The composition operator of two LTS put in paral-

lel is the synchronous product, noted ||, and a char-
acteristic feature of the synchronous languages. The
synchronous product is commutative and associative.
Formally: 〈Q1, q0,1, I1,O1, T1〉||〈Q2, q0,2, I2,O2, T2〉 =
〈Q1 × Q2, (q0,1, q0,2), I1 ∪ I2,O1 ∪ O2, T 〉 with T =

{((q1, q2)
(g1∧g2)/(a1∧a2)−−−−−−−−−−−→ (q′1, q

′
2))|(q1

g1/a1−−−→ q′1) ∈
T1, (q2

g2/a2−−−→ q′2) ∈ T2}.
Note that this synchronous composition is the simplified

one presented in (Altisen et al. 2003), and supposes that g
and a do not share any variable, which would be permitted
in synchronous languages like Esterel.

Here (q1, q2) is called a macro-state, where q1 and q2
are its two component states. A macro-state containing one
component state for every LTS synchronously composed in
a system S is called a configuration of S.

Discrete Controller Synthesis (DCS) on LTS
A system S is specified as a LTS, more precisely as the re-
sult of the synchronous composition of several LTS. F is
the objective that the controlled system must fulfill, and H
is the behavior hypothesis on the inputs of S. The controller
C obtained with DCS achieves this objective by restraining
the transitions of S, that is, by disabling those that would
jeopardize the objective F , considering hypothesis H. Both
F and H are expressed as boolean equations. The set I of
inputs of S is partitioned into two subsets: the set IC of
controllable variables and the set IU of uncontrollable in-
puts. Formally, I = IC ∪ IU and IC ∩ IU = ∅. As a
consequence, a transition guard g ∈ Bool(IC ∪ IU) can
be seen as a function from 2IC × 2IU into B. A transi-
tion is controllable if and only if (iff) there exists at least
one valuation of the controllable variables such that the
boolean expression of its guard is false; otherwise it is un-
controllable. Formally, a transition (q, g, a, q′) ∈ T is con-
trollable iff ∃X ∈ 2IC such that ∀Y ∈ 2IU , we have

17

g(X,Y) = false. In the proposed framework, the following
function Sc = make invariant(S,E) from SIGALI is used to
synthesize (i.e. compute by inference) the controlled system
Sc = S||C where E is any subset of states of S, possibly
specified itself as a predicate on states (or control objective)
F and predicate on inputs (or hypothesis) H. The function
make invariant synthesizes and returns a controllable sys-
tem Sc, if it exists, such that the controllable transitions lead-
ing to states qi /∈ E are inhibited, as well as those leading to
states from where a sequence of uncontrollable transitions
can lead to such states qi /∈ E. If DCS fails, it means that
a controller of S does not exist for objective F and hypoth-
esis H. In this context, the present proposition relies on the
use of DCS to synthesize a controller C, which makes in-
variant a safe set of states E in a LTS-based system where
E is inferred by boolean equations defining a control objec-
tive and an hypothesis on the inputs. The controller C given
by DCS is said to be maximally permissive, meaning that it
doesn’t set values of controllable variables that can be either
true or false while still compliant with the control objective.
Actually, the BZR compiler defaults these variables to true.
Optimization can be done at this level if this type of decision
is too arbitrary (Guillet et al. 2012), but it goes beyond the
scope of this work, which focuses on security, so the stan-
dard decision behavior given by BZR is kept. A smart home
system, following the aforementioned execution principle,
can now be designed using this framework.

Model instrumentation
When the various components and properties of a system
are defined as behavior models (LTS, etc.) and synchronous
equations, setting both the controllability and execution con-
straints enables the use of DCS.

Controllability
Controllability occurs naturally in the smart home domain.
In the synchronous model, inputs are received each time the
system is triggered, and these can come from both the envi-
ronment – uncontrollable inputs IU (e.g. a button is pressed
by a human) – and the system itself – controllable inputs IC
(e.g. a device is forced to shut down by control system which
is part of the execution loop).

node Controller

Contract
 assume(¬(fail1 ⋀ fail2))
 enforce(¬(problem) ⋁ light1 ⋁ light2)
 with(c1,c2)

fail1 = LightBulb(switch1,c1,lightIsOn1);
fail2 = LightBulb(switch2,c2,lightIsOn2);

problem:bool

lightIsOn1:bool

lightIsOn2:bool

switch1:bool

switch2:bool c1:bool

c1:bool

node LightBulb

¬lightIsOn

lightIsOn¬switch ⋀ c

switch ⋀ lighIsOn ⋁ c
switch ⋀ ¬lighIsOn

Off
failed=false

Fail
failed=true

On
failed=false

¬switch

lightIsOn:bool

failed:bool

c:bool

switch:bool

Figure 1: Controllable light bulb model

For example, let’s take a system allowing a third party ap-
plication to control two failure-prone light bulbs so that they
can be forced to light up or remaining lit even if their switch
is turned off by a human. Figure 1 represents the designed
by constraint controller of this small system, instantiating
two times the LightBulb node with a boolean variable c rep-
resenting the aforementioned controllability), which takes
amongst others the switches values as uncontrollable inputs
switch1, switch2 ∈ IU and the values given by the third
party application as controllable boolean inputs c1, c2 ∈ IC .
The statement with, declaring controllable variables, is ac-
tually implemented in BZR, which also allows to declare
security constraints so that these variables can be valuated
accordingly at each instant of the synchronous execution.

Constraints
We consider two types of security constraints expressed as
boolean synchronous expressions: 1) Hypothesis, which are
supposed to remain true for all executions, and 2) Guaran-
tee, which are enforced to remain true using controllable
variables if and only if the Hypothesis stays true form the
beginning of the execution.

For example, let’s say we want to be sure that, for all
possible executions, at least one light bulb is lit up if a
problem (uncontrollable information coming from obser-
vation) arises: this can be specified using the guarantee
¬problem ∨ light1 ∨ light2 (cf. enforce statement). How-
ever, the system is not controllable with this rule alone: light
bulbs can be in fail mode at the same time while the sys-
tem receives a problem, and thus the guarantee cannot be
fulfilled for this specific execution. This situation would be
found automatically when applying DCS, which would fail
to build a controller.

Now, let’s say that the light bulbs can still fail but are sup-
posed to be repaired quickly enough so that they don’t fail
at the same time. This is an example of fault tolerance: ulti-
mately everything can fail but if there is enough redundancy
we can safely state that not everything will fail at the same
time. The hypothesis ¬(fail1 ∧ fail2) (cf. assume state-
ment) represents this assumption in a synchronous boolean
expression. Applying DCS using the BZR toolset on such
a model gives back the C code of a controller taking IU as
inputs and providing the computation of IC as outputs so
that the system can now be executed, receiving both IU and
IC . DCS is able in this example to find automatically the
correct controller code so that c1 and c2 can be valuated to
true or false exactly when they should (e.g. when a prob-
lem arises, and lights are off, and light1 has failed, then
c2 will be forced to false, etc.). From such a minimal ex-
ample, we understand how DCS becomes interesting when
the system’s complexity increases while having to maintain
its safety. If we add other failure-prone devices, impairment
models, security constraints, etc. both designing and verify-
ing the maximally permissive controller quickly start to be
hard without appropriate tools.

Anticipating control evolution
Some modifications about the smart home model can hardly
be modeled statically, for example, the evolution of the im-

18

pairment model associated to the user as defined in (Guil-
let, Bouchard, and Bouzouane 2013) cannot be known in
advance. A solution to this problem would be to define the
new model and constraints upon evolution, then apply DCS
to obtain a new controller, and stop the current smart home
system so that it can be replaced. However, this solution does
not take the current system state into account. If the smart
home is not in the same state as the one defined in the new
model on which we applied DCS, then the new system can-
not start securely (because the smart home model and the
physical smart home have to react synchronously so they
must be in the same corresponding state). This means that
someone has to take care of setting the smart home back to
its initial state.

Then a question arises : can the patients put the system
back into the initial state, given their own impairments ?
With the help of the system itself ? And if yes, can it be
done at any time in a limited number of steps ?

This gives us a new verification problem: we want to en-
sure that before the next system modification (ie. impaire-
ment model evolution) the user can always put the system
back to its initial state, possibly with the help of the system
itself, and in a given number of steps (such that DCS will
search a solution that does not require an infinite amount of
steps, and will fail if such a solution doesn’t exist, indicating
that external help will be needed to do it).

During the execution, the system will update two vari-
ables by LTS, reflecting the amount of steps remaining to
reach the initial state: currentCtrlLimit and currentUser-
Limit. currentCtrlLimit will be decreased each time a con-
trollable transition is taken: a transition is controllable if
the controller can always force it to be taken whatever the
values of the other inputs. Figure 2 shows the instrumen-
tation of such a state (UnsafeY2) of a LTS named Y, hav-
ing a controllable transition towards the initial state (Close-
ToSafeY1 bringing the system closer to SafeY). In this tran-
sition, gY2to1 is a boolean equation encapsulating various
inputs, and ctrlY2to1 is a controllable variable, allowing to
force this transition. The source state of such a transition
has to be instrumented with the encapsulated equations: a
boolean waitForUserY indicates that in this LTS Y, the state
UnsafeY2 has a controllable transition towards the initial
state. In such a state, currentUserLimitY remains either the
same or gets reinitialized depending on the value of goSafe,
a global variable indicating the order to set the system in the
initial state. In Y, currentCtrlLimitY is decreased if 1) the
reinitialize order is received, 2) we are not waiting for the
user and 3) Y is not in its initial state; else it is set back to 0,
so we add this equation globally for Y:

currentCtrlLimitY = if (goSafe ∧ ¬(waitForUserY) ∧
¬(inSafeY)) then (currentCtrlLimitY− 1) else (0)

Figure 3 shows the instrumentation of a state UnsafeX2
of a LTS named X, being source of a transition toward the
initial state SafeX. In such a state, one must be sure that the
transition can always be forced by the user (through an un-
controllable input). If their is a conflict (both the user and
the controller can force the transition), the designer decides
which instrumentation to apply, they are both valid. Un-
safeX2 is instrumented by the indicated equations, which re-

CloseToSafeY1

UnsafeY2
...
waitForUserY = false
currentUserLimitY =

if (goSafe) then (pre(currentUserLimit))
else (0)

...

...

...

...gY2to1 ⋀ ctrlY2to1

...

...

SafeY ...
... ...

Figure 2: Instrumentation for controllable transitions toward
the initial state

flect the fact that we are waiting for a user action upon the
reception of a reinit order (when goSafe is true) and the asso-
ciated currentUserLimitX gets decreased each time we enter
this state. It has to be noted that because currentUserLimitX
is decreased only on entering the state, user controlled self
transitions are not allowed in the model (because it counts
as a user action, however because the state is not entered,
currentUserLimitX does not get decreased accordingly).

CloseToSafeX1

UnsafeX2
...
inUnsafeX2 = true
waitForUserX = goSafe
playMsgUserCtrlX2to1 = goSafe ⋀ gX2to1
currentUserLimitX =

if (goSafe) then (
if (pre(inUnsafeX2)) then (

pre(currentUserLimit))
else (pre(currentUserLimit)-1))

else (0)
...

...

...

...gX2to1 ⋀ userCtrlX2to1

...

...

SafeX ...
... ...

Figure 3: Instrumentation for manual transitions toward the
initial state

When this instrumentation is carried through all the sys-
tem’s LTS, the associated defined by constraint controller
can declare the following equations and enforce statement,
meaning that when the number of actions has been reached
during a system reinitialization, the initial state much be ac-
tive (safe variable is true):
ctrlLimit = number of allowed controllable steps
userLimit = number of allowed user controlled steps
currentctrlLimit = currentCtrlLimitX + ...Y + ...
currentuserLimit = currentUserLimitX + ...Y + ...
safe = inStateSafeX ∧ ...Y ∧ ...
reinitRule = ((ctrlLimit + currentctrlLimit) ≥ 0) ∧
((userLimit + currentuserLimit) ≥ 0) ∧ ¬((ctrlLimit +
userLimit) == 0) ∨ safe

A use case of this instrumentation methodology is shown
in the next section.

19

Experiment
This section shows a partial smart home model, defined and
instrumented with the previous methodology to ensure that
the initial state is always reachable within a given number
of steps. DCS is performed on this model, and a controller
is obtained. Then a scenario in which the user impairments
are modified is played, such that the smart home is forced
to be properly reinitialized with the help of both the con-
troller and the user. And finally, a new adapted controller
replaces the old one, and the smart home continues its ex-
ecution without being stopped at any time. Let’s focus on
two smart home components that will later be indirectly con-
nected by a global constraint to enforce: a kitchen stove and
its range hood fan.

node Kitchen
kTwo ⋀ cKTwo

KOff
inKOff=true

KTwo
inKOff=false

KOne
inKOff=false

kOne:bool inKOff:bool

kTwo:bool

kOff:bool kOne

kOff ¬ cKTwo

Figure 4: Kitchen model

Figure 4 shows a simplified behavior for the kitchen stove,
allowing the activation of two stove burners, the activation
of the second being potentially prevented by a controllable
variable cTwo (which of course must have a physical cor-
respondence: the control system is connected to the kitchen
stove and can physically prevent the activation of the sec-
ond stove if cTwo is set to false by the controller that will be
obtained through DCS).

node Fan
fanMax ⋀ cFanMax

fanNormal¬cFanOff

fanNormal ⋀ ¬cFanOff
FanOff

inFanOff=true
FanMax

inFanOff=false
FanNormal

inFanOff=false
fanNormal:bool

inFanOff:bool
fanMax:bool

fanOff:bool

Figure 5: Range hood fan model

Figure 5 represents the behavior model of the range hood
fan, which can be forced to go to (and prevented to exit) Fan-
Normal with the help of the controllable variable cFanOff,
and prevented to go to FanMax with cFanMax.

(FanOff, KOff) is the initial state of this partial model.
Now we want to enforce that for all possible executions, it is
always possible to get back to this state in at most four steps,
three of them (at most) involving user intervention. And get-
ting back to this state must be done without jeopardizing the
following control constraint: if the user’s GDSAPD is above
3 units, then when the Kitchen is powered on, the range hood
fan must be activated. This rule is defined by the following
equation:

rule1 = ¬(gdsapd ∧ inKOff) ∨ ¬(inFanOff)
Then the global rule to enforce is this rule combined with

the generic rule as defined in the previous section :
enforce(rule1 ∧ reinitRule)
where ctrlLimit and userLimit are respectively set to 1 and

3. The sum of numbers represents the maximum amount of
steps to go from any state to the initial state: the transition

from KTwo to KOne is the only one controlled solely by the
controller, so KTwo is instrumented like in Figure 2; respec-
tively, KOne, FanMax, and FanNormal are instrumented like
in Figure 3.

In the following scenario, cf. Figure 6, DCS is performed
twice, the model difference being on the user GDSAPD: the
first time, it is set to 4 units, and the second time it is set to 3
units. Each time, DCS succeeds, meaning that correct con-
trollers — able to enforce the constraints for all executions
— are found. The scenario shows how and when the second
controller safely replaces the first one, accordingly to this
methodology.

Steps 1 2 3 4 5 ... 6 ... 7 ... 8 ... 9
fanOff
fanNormal
fanMax
kOff
kOne
kTwo
goSafe
cFanOff
cFanMax
cKTwo
inFanOff
inFanNormal
inFanMax
inKOff
inKOne
inKTwo
safe

1 1 1 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1
0 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0
1 0 0 1 1 0 0 1 1
1 1 1 1 1 0 0 1 1
1 1 1 1 0 0 0 1 1
1 0 0 0 0 0 0 1 1
0 1 1 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0
0 1 0 0 1 1 1 0 1
0 0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0

In
pu

ts
O
ut
pu

ts

Figure 6: Simulations steps, with controller modification be-
tween steps 8 and 9

Step 1: initialisation The system starts in the initial state
(FanOff, KOff), the variable safe is still true, and the system
is ready to behave under control to various inputs. Both user
buttons of the fan and the kitchen are set to Off.

Step 2: enforcing fan activation The user decides to ac-
tivate the first stove burner. Because the user’s GDSAPD is
equal to four units, the system has to react so that the kitchen
does not activate without its range hood fan. So cFanOff is
automatically set to false by the controller, forcing the tran-
sition to FanNormal, thus fulfilling rule1.

Steps 3 and 4: both components to max The user decides
to activate the second stove burner, which is allowed by de-
fault (cTwo remains true as there is no rule to enforce about
it). Then the fan is set to FanMax which is also allowed by
the controller (cFanOff goes back to the default value true
because the fan cannot go back to FanOff in one step now).

Step 5: going back to the initial state The system re-
ceives a value true for goSafe, meaning that it has four steps
— three of them involving a user action — to go back to
its initial state (to fulfill reinitRule). The controllable vari-
able cKTwo is forced to false, thus disabling the second stove

20

burner, and setting currentCtrlLimit to zero (no more auto-
mated steps remaining). From now on, the user has three
actions to perform. These actions are indicated by the sys-
tem with the help of various prompts (screens, lights, etc.).
The actual implementation of these prompts is not shown
in this study, the reader can refer to (Guillet, Bouchard, and
Bouzouane 2013) for more information on how to safely im-
plements the communication system.

Steps 6 and 7: trying to perform an incorrect action
The user has to turn off both the kitchen and the fan. But
these actions cannot bypass the rule1 which still holds. Be-
cause the following steps involves user actions, these are not
the actual next steps, but they can happen whenever, and the
controller avoids anything that would set its two limit vari-
ables below zero (here, it prevents the user to reactivate the
second stove burner by keeping cKTwo to false). The user
decides to disable the fan completely so in step 6, the fan is
first set to FanNormal (currentUserLimit is set to 2) and the
controller locks the fan to this mode (cFanOff and cFanMax
being set to false). However in step 7, when the user decides
to disable the fan, the controller knows that it is forbidden
because the kitchen is still activated, but because cFanOff is
false, the fan remains activated too.

Step 8: initial state is reached Finally the user disables
the kitchen completely, which also disables the fan, because
the user button modeled by fanOff was set to false, and the
system is set back to its initial state, thus setting safe to true.
From now on, as long as safe remains true, the controller
can be changed between two execution steps. Let’s say that
the user impairment model has changed (gdsapd now equals
3 units) and a new controller is synthesized. Then this con-
troller can replace the old one, without powering down the
whole system.

Step 9: the home is adapted to the evolution of its user
The user decides to activate the first kitchen stove, and now,
because the impairment model has been modified, rule1 al-
ways remains true accordingly and the fan doesn’t have to
be activated at the same time any more.

Conclusion
This study has shown first results in using a generic method-
ology to ensure the ability of the smart home system to be
reinitialized by itself and with the help of the user, depend-
ing on its impairments, thus without requiring any external
help. While the methodology is not limited to smart homes,
and can be used in other contexts as long as systems can be
defined within the synchronous framework, it is especially
useful here, as it solves the problem of modifying the con-
troller when the user health evolves, problem that was not
addressed in the previous proposition. Now when DCS is ap-
plied, the smart home controller knows 1) how to deal with
all possible executions to keep the system safe, and 2) how
to take the system back to its initial state so that the con-
troller itself can be safely replaced by a new one, synchro-
nized on this very same initial state. As a perspective, the
current methodology could be improved by defining an ade-
quate abstraction level so that smart home designers would

not even have to learn about BZR to specify their system.
Such an abstraction has for example been proposed in the
reconfigurable embedded systems domain (cf. (Guillet et al.
2012)).

References
Altisen, K.; Clodic, A.; Maraninchi, F.; and Rutten, É. 2003.
Using controller-synthesis techniques to build property-
enforcing layers. In Proceedings of the 12th European
conference on Programming, 174–188. Berlin, Heidelberg:
Springer-Verlag.
Bouchard, K.; Bouchard, B.; and Bouzouane, A. 2012.
Guidelines to efficient smart home design for rapid AI proto-
typing: a case study. In Proceedings of the 5th International
Conference on Pervasive Technologies Related to Assistive
Environments. New York, NY, USA: ACM.
Bouchard, B.; Giroux, S.; and Bouzouane, A. 2007. A
keyhole plan recognition model for Alzheimer’s patients:
first results. Journal of Applied Artificial Intelligence (AAI)
21(7):623–658.
Fortin-Simard, D.; Bouchard, K.; Gaboury, S.; Bouchard,
B.; and Bouzouane, A. 2012. Accurate passive RFID local-
ization system for smart homes. In IEEE 3rd International
Conference on Networked Embedded Systems for Every Ap-
plication (NESEA), 1–8.
Guillet, S.; de Lamotte, F.; Le Griguer, N.; Rutten, É.; Gog-
niat, G.; and Diguet, J.-P. 2012. Designing formal re-
configuration control using UML/MARTE. In 7th Interna-
tional Workshop on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC).
Guillet, S.; Bouchard, B.; and Bouzouane, A. 2013. Cor-
rect by construction security approach to design fault toler-
ant smart homes for disabled people. In EUSPN.
Lapointe, J.; Bouchard, B.; Bouchard, J.; Potvin, A.; and
Bouzouane, A. 2012. Smart homes for people with
Alzheimer’s disease: adapting prompting strategies to the
patient’s cognitive profile. In Proceedings of the 5th Inter-
national Conference on Pervasive Technologies Related to
Assistive Environments, 30:1–30:8. ACM.
Marchand, H., and Samaan, M. 2000. Incremental De-
sign of a Power Transformer Station Controller using a Con-
troller Synthesis Methodology. IEEE Trans. Software Engin.
26(8):729–741.
Novak, M.; Binas, M.; and Jakab, F. 2012. Unobtrusive
anomaly detection in presence of elderly in a smart-home
environment. In ELEKTRO.
Pigot, H.; Mayers, A.; and Giroux, S. 2003. The intel-
ligent habitat and everyday life activity support. In 5th
International Conference on Simulations in Biomedicine.
Slovénie: 5 th international conference on Simulations in
Biomedicine, avril 2003.

21

