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Abstract

Probabilistic programming languages allow domain ex-
perts to specify generative models in a high-level lan-
guage, and reason about those models using domain-
independent algorithms. Given an input, a probabilis-
tic program generates a distribution over outputs. In
this work, we instead use probabilistic programming to
explicitly reason about the distribution over programs,
rather than outputs. We propose Tractable Probabilis-
tic Programs (TPP), a language to represent rich prob-
abilistic dependencies between different parts of a pro-
gram; we make use of the recent work on sum-product
networks to ensure that inference remains tractable. We
explain how TPP can be applied to the problem of au-
tomated program debugging; given a corpus of buggy
programs, a TPP model can be learned to capture a
probability distribution over the location of the bug. The
model can also incorporate additional sources of infor-
mation, such as coverage statistics on test suites. We
also briefly outline how TPP can be used to solve the
more ambitious problem of fault correction, i.e. pre-
dicting the most probable true program conditioned on
a buggy one. The ability to learn common patterns of
bugs and incorporate multiple sources of information
potentially makes TPP useful as a unifying framework
for automated program debugging.

Introduction
The term ‘probabilistic programming’ refers to the practice
of specifying probabilistic models in a high-level language,
and reasoning about them using domain-independent algo-
rithms. This paradigm decouples model design from algo-
rithm design, simplifying the job of the domain expert (who
no longer needs to be involved in algorithm design) and
making algorithmic advances more widely applicable.

Existing probabilistic programming languages are de-
signed to answer probabilistic queries about the program’s
output variables, conditioned on some input (evidence). A
common design for probabilistic programming languages is
to add stochastic primitive functions to an existing deter-
ministic language (e.g. sampling from Bernoulli or Gaus-
sian distributions). This allows users to easily define sophis-
ticated probability distributions over the output variables.

However, probabilistic programs can also been seen
as distributions over deterministic programs (e.g. Church

(Goodman et al. 2008) programs are distributions over
Scheme programs, and ProbLog (De Raedt, Kimmig, and
Toivonen 2007) programs are distributions over Prolog pro-
grams). Seen through this lens, existing probabilistic pro-
gramming languages define trivial distributions over deter-
ministic languages, typically modeling a probabilistic pro-
gram as a set of independent distributions over statements.

In this paper, we consider the design of probabilistic pro-
gramming languages that allow probabilistic dependencies
among statements. Specifically, we define Tractable Proba-
bilistic Programs (TPP), a language for defining rich prob-
ability distributions over programs. TPP uses Sum-Product
Networks (SPNs; Poon and Domingos 2011) to model these
rich dependencies, while ensuring that probabilistic queries
about the program can be computed in polynomial time. The
design of TPP is not tied to the choice of a particular deter-
ministic language; TPP allows the user to define a proba-
bilistic version of any deterministic language.

This view of probabilistic programming is well-suited to
tackling the problem of automated debugging, a challeng-
ing task of great practical importance. Automated debugging
has been an active research area for several decades (Shapiro
1983); the bulk of the effort has gone towards the problem
of fault localization. A well-established approach in the soft-
ware engineering community is to use coverage statistics on
test suites to compute ‘suspiciousness scores’ independently
for each statement (e.g. Jones and Harrold 2005). In the fol-
lowing section, we outline how TPPs can incorporate this
coverage data into a rich probabilistic model that captures
dependencies between statements, rather than predicting the
suspiciousness of each line independently.

Tractable Probabilistic Programming
A TPP for a deterministic language L defines a probabil-
ity distribution over programs in L. The TPP contains a
rule SPN for each production rule α → β in L’s gram-
mar (α is a non-terminal symbol; β is a string of terminals
and non-terminals). The leaves of this SPN are univariate
distributions over terminals in β, and sub-SPNs for each
non-terminal in β. The SPN may also include leaf distri-
butions over additional variables, which we refer to as rule
attributes. These rule attributes can be used to represent vari-
ables of interest that are not part of the program itself. In the
fault localization setting, the important attribute is the vari-
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able ‘Buggy’, which is true iff the line contains a bug. Other
informative features may also be included as attributes; for
instance, one or more coverage-based suspiciousness met-
rics (Jones and Harrold 2005) may be included for each line.

Intuitively, the sum nodes in the SPN can be thought
of as choices between alternative subprogram distributions.
The product nodes capture context-specific independence
between subprograms.
Example 1. The following production rules are a fragment
of the grammar of a Python-like language:
while stmt→ ’while’ condition ’:’ suite
condition→ expr operator expr

The following are simple SPNs for these two rules:

Like many statistical relational representations, a TPP is
a lifted specification of a probabilistic model, and must be
grounded for a specific mega-example. In this case, a mega-
example is the parse tree of a program, along with the cor-
responding rule attributes. Sub-SPNs for non-terminals are
grounded recursively. The resulting ground SPN is linear in
the size of the parse tree, and inference on the SPN is guar-
anteed to be tractable.

Learning
TPPs build on ideas similar to Relational Sum-Product Net-
works (Nath and Domingos 2014), and their structure can
be learned similarly, using an extension of the LearnSPN al-
gorithm (Gens and Domingos 2013). Alternatively, the rule
SPN structure may be fixed, and the parameters trained by
EM. A simple option is to use a PCFG-like structure, where
each non-terminal is modeled by a sum over a fixed number
of classes, where the sum node can have different parameters
in each production rule that the symbol appears in. TPPs are
not restricted to PCFG-like structures, and can compactly
represent some high-treewidth models (due to their ability
to compactly represent context-specific independence).

An implementation of the above learning algorithm is cur-
rently in development, and we are in the process of running
experiments on a corpus of buggy Python programs. We use
the TARANTULA score (a coverage-based metric; Jones and
Harrold 2005) as a rule attribute. We hypothesize that the
learned TPPs will capture context-specific dependencies be-
tween the coverage-based metrics and the probability of a
bug (e.g. a high TARANTULA score is more informative in-
side a top-level if statement than inside a for loop).

Current Directions and Future Work
The above discussion deals with the use of TPPs for fault lo-
calization. TPPs can enrich existing fault localization meth-
ods by learning recurring patterns of errors from a corpus of
buggy programs, and combining multiple sources of infor-
mation (e.g. different suspiciousness metrics).

TPPs can also be used for the more ambitious problem of
fault correction. In the simplest case, the correct and buggy
program have identical parse trees, and TPPs can be used
to correct local bugs in the terminal symbols (e.g. incorrect
operators or variable names). In this case, the buggy termi-
nals are included as rule attributes, and the correct program
is predicted by querying the MAP state of the true terminals.

A more challenging case is when the parse tree of the true
program is unknown a priori. In this setting, fault correction
can be done by searching over parse trees when grounding
a TPP, instead of taking a fixed parse tree as input. To re-
tain tractability, the search space must be restricted (e.g. re-
ordering blocks of code, or allowing insertions or deletions
of bounded size).

Combining these (and potentially other) approaches in a
single unifying framework for automated debugging could
have significant practical importance, given the large eco-
nomic cost of software errors. TPPs may also have applica-
tions in natural language processing, and other domains that
use grammars.
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