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Abstract

Automatically computing a cinematographically con-
sistent sequence of shots over a set of actions occur-
ring in a 3D world is a complex task that requires
not only the computation of appropriate shots (view-
points) and appropriate transitions between shots (cuts),
but more importantly the ability to encode and repro-
duce elements of cinematographic style that exist in real
movies. In this paper, we propose an expressive auto-
mated cinematography model that learns some elements
of style from real movies and reproduces them in syn-
thetic movies. The model relies on a Hidden Markov
Model representation of the editing process. The pro-
posed model is more general than existing representa-
tions that encode cinematographic idioms and proves to
be more expressive in the possible variations of style it
offers.

Introduction
The recent possibilities in rendering increasingly realistic
3D virtual environments in real-time contexts urges the need
for novel techniques to automatically and efficiently con-
vey these contents through the use of appropriate cinemato-
graphic techniques. Indeed, there is a clear shift towards
a more and more cinematographic experience of 3D envi-
ronments especially in gaming contexts. More specifically,
the reproduction of elements of cinematographic genre and
style (war scenes, investigation scenes, etc.) plays a key role
in the immersion of users. However most applications, in-
cluding games, rely on manually preset camera viewpoints,
pre-authored camera paths and triggered cuts between view-
points.

In attempts to replace this manual endeavor, the re-
search community has proposed a number of automated ap-
proaches. The computation of automated cinematographic
sequences either relies on search techniques in film-tree rep-
resentations (Christianson et al. 1996) (a film-tree is the rep-
resentation of a film in a hierarchical structure of scenes,
shots, and frames), dynamic programming over collections
of template shots (Elson and Riedl 2007), hierarchical plan-
ning (Jhala and Young 2005), or finite state machine repre-
sentations (He, Cohen, and Salesin 1996) (in which a state
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is a shot, and a transition is a cut between shots). While
appraised for their generality, such representations display
limitations when trying to perform variations in the way the
sequence is shot and edited. Finite state machines encode
filmic idioms (which are prototypical ways of shooting ac-
tions and actor blockings), and require the manual design
of new idioms to perform variations. Film-tree techniques
require the design of new heuristics to perform a different
search in the film-tree. And dynamic programming tech-
niques over collections of shots require the specification of
different costs to perform variations in the generated results.
Therefore, the task of mimicking elements of style from real
movies is not straightforward.

In this paper, we propose a new expressive model which
can compute significant variations in terms of cinemato-
graphic style, with the ability to control the duration of
shots, and adding specific constraints on the computed se-
quence. Furthermore, the model is parameterized in a way
that facilitates the application of learning techniques so as
to reproduce elements of style extracted from sequences of
real movies. The approach is founded on a Hidden Markov
Model representation of the editing process, where the states
represent the shots and the observations are the events re-
lated to the shots.

Related work
A number of approaches have been proposed in the litera-
ture to partially or fully automate the computation of view-
points and edits. The seminal work of He etal. (He, Cohen,
and Salesin 1996) proposes to encode the directorial pro-
cess (placing the cameras and selecting the cuts between
the cameras) as a finite state machine (FSM). A state in
the FSM represents a canonical shot (eg. apex shot, over-
the-shoulder shot or panoramic), while a transition between
states represents a cut. The transitions are either triggered
by scene events (eg. when the distance between two char-
acters reaches a threshold) or temporal events (duration of
the current shot). The FSM representation is then used in a
real-time context to compute a cinematographic sequence:
as the 3D scene evolves, the FSM places the camera cor-
responding to the shot expressed in the current state, and
performs the cut when events occur. By relying on Arijon’s
cookbook (Arijon 1976) of camera setups, the authors en-
code different filmic idioms (stereotypical ways of shooting
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character configurations and actions) as different finite state
machines, organized in a hierarchical representation that en-
ables transitions between FSMs. This hierarchical represen-
tation can be viewed as a mean to encode some aspects of
filmic style (choice in shots, rhythm of cuts). However, the
nature of the triggers on the transitions together with the
complexity of associating idioms to all possible character
configurations restricts the applicability of the technique to
well-known scenarios. Furthermore, it is necessary to spec-
ify different FSMs to encode different filmic styles.

Other approaches rely on a combinatorial branching sys-
tem (see the film-tree proposed by Christianson etal. (Chris-
tianson et al. 1996)) that represents a movie as a hierarchical
structure of sequences decomposed into scenes, candidate
idioms and candidate frames. Computing the best sequence
of frames consists in searching the best frames, the best id-
ioms and the best transitions between idioms by exploring
and evaluating all the possibilities in the film tree.

A more general process that includes the tasks of block-
ing (placing the characters and the scene), shooting and edit-
ing has been proposed by Elson and Reidl (Elson and Riedl
2007). The authors rely on a combination of search and dy-
namic programming to identity the best shots and best block-
ings, by processing a library of canonical shots associated to
canonical blockings. The search step explores the best loca-
tions where to stage the scene, while the dynamic program-
ming step searches for the best sequence of shots to convey
the beats (where a beat is a sequence of actions, representing
a unit in the narrative). While the approach enables varia-
tions in the style (through directorial heuristics), the control
of these variations seems to be performed through manual
parameter weighting.

Jhala and Young (Jhala and Young 2005) propose to en-
code filmic idioms as a hierarchy of plan operators and rely
on a partial order causal link planning system to generate a
cinematographic sequence that fulfills directorial goals and
conveys a sequence of actions. The planner recursively ex-
plores the plan operators, adds and propagates constraints
until reaching primitive camera actions. To perform varia-
tions in the generated sequence, the specification of a heuris-
tic search function is necessary (cost function).

Therefore, we believe there is a need for a more general
representation that is both expressive enough to represent
different cinematographic styles, and is able to be driven by
data extracted from real movies so as to reproduce elements
of style.

Beyond the Markovian assumption
Let X be the set of all possible shots in a cinematographic
language and let E be the set of all event types existing
in a given scene script. The objective of automated cine-
matography process is to associate the best sequence of shots
ṡ = s1, s2, · · · , sN with si ∈ X within all possible shot se-
quences ŝ to a given sequence of events ê = e1, e2, · · · , eN
with ei ∈ E (see equation 1).

ṡ = arg max
ŝ

(p(ŝ|ê)) (1)

The easiest way to compute the sequence ṡ for a given

script ê would be simply to ignore the sequential aspects be-
tween the shots and treat them as Independent and Identical
Distributed Shots (IIDS), corresponding to Figure 1. In such
case, each event ei is treated independently and each shot si
depends only on the event ei. Therefore, the probability of a
sequence of shots ŝ given a sequence of events ê is given in
equation 2.

S1 S2 S3 SN

e1 e2 e3 eN

Figure 1: Independent and identical distributed shots.

p(ŝ|ê) = p(s1, s2, · · · , sN |e1, e2, · · · , eN ) =
N∏
i=1

p(si|ei)

(2)
Such an approach, however, fails to exploit sequential pat-

terns that appear in the scene, such as transition patterns
between shots. Furthermore, if we treat the script consider-
ing this hypothesis, then the only information we can extract
from the learned data is the relative frequency of shots used
to shoot a single event. However, practice in cinematography
shows that there is a strong dependency between shots (Ma-
scelli 1965).

To express such dependencies in a probabilistic model,
we need to relax the independent distribution IIDS assump-
tion, and one of the simplest ways to do this is to consider
a Markov Model (Bishop 2006). First of all we note that,
without loss of generality, we can use the chain rule to ex-
press the joint distribution for a sequence of observations in
the form:

p(ŝ) = p(s1, s2, · · · , sN ) = p(s1)
N∏
i=1

p(si|s1, · · · , si−1)

(3)
If we, now, assume that each of the conditional distributions
on the right-hand side is independent of all previous obser-
vations except the most recent one, we obtain the first-order
Markov chain (Bishop 2006), which is depicted as a graph-
ical model in Figure 2. From the d-separation property, we
see that the conditional distribution for the shot sn, given all
of the observations up to time n, is given by:

p(sn|s1, · · · , sn−1) = p(sn|sn−1) (4)

Joint distribution for a sequence of N observations under
this model is given by:

p(ŝ) = p(s1, s2, · · · , sN ) = p(s1)
N∏
i=1

p(si|si−1) (5)

From these equations and considering that each shot si
depends on one single event ei, we can represent the joint
probability as:

p(ŝ|ê) = p(s1|e1)
N∏
i=2

p(si|si−1, ei) (6)
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S1 S2 S3 SN

e1 e2 e3 eN

S1 S2 S3 SN

e1 e2 e3 eN

a) first order dependency shots. b) second order dependency shots.

Figure 2: Shot dependency.

which is easily verified by direct evaluation starting from
equation 3 and using the product rule of probability. Thus if
we use such a model to predict the next shot in a sequence,
the distribution of predictions will depend only on the the
value of the corresponding event and the value of the imme-
diately preceding shot and will be independent of all earlier
shots.

Transitions between shots are represented as transition
matrix, each element of which is determined by an event.
The matrix defines a first order Markov model. Let us as-
sume a shot s takes values from a set X = {x1, x2, x3}, the
transition matrix can be represented as a Markov automaton
(see Figure3). A sequence ŝ is simply a feasible path in the
automaton.

x2
x1

x3

in out

Figure 3: Finite state Markov automaton Illustrating transi-
tions between three shots x1, x2 and x3

Although this is more general than the IIDS model, it
is still very restrictive. In many cinematographic shot se-
quences, the choice of a shot depends on a number of pre-
vious shots. One way to allow earlier shots to have an influ-
ence is to move to higher-order Markov chains. If we allow
the predictions to depend also on the previous-but-one value,
we obtain a second-order Markov chain, represented by the
graph in Figure 2.b. The joint distribution is now given by:

p(s1, s2, · · · , sN ) = p(s1)p(s2|s1)
N∏
i=2

p(si|si−2, si−1)

(7)
Similarly to equation 4 and from the equations 3 and 5 the

joint probability will be:

p(ŝ|ê) = p(s1|e1)p(s2|s1, e1)
N∏
i=2

p(si|si−2, si−1, ei) (8)

Each shot is now influenced by two previous shots. We
can similarly consider extensions to an M th order Markov
chain in which the conditional distribution for a particular
variable depends on the previous M variables. However, for
this increased flexibility, the cost will be much larger due to
the number of parameters in the model.

In our work, to address this issue, we propose to reverse
this vision: the relationship between events and shots is ex-
pressed in the inverse direction. We consider that the shot in-
forms us of the type of event. The information that we need
to learn now becomes: p(ei|si). Modeled this way (Figure
4), our model looks like a fairly known model in the litera-
ture: Hidden Markov Model.

S1 S2 S3 SN

e1 e2 e3 eN

Figure 4: Hidden Markov Model representation of a cine-
matographic sequence.

Hidden Markov Models (quick reference)
A hidden Markov model (HMM) is a statistical model
in which the system being modeled is assumed to be
a Markov process with unknown parameters. HMMs are
widely used especially in pattern recognition, artificial intel-
ligence or automatic natural language processing (Boudaren
et al. 2008)(Rabiner 1989). A HMM is defined as a tuple
{X,O,Π, A,B} where :

• X is a set of states which here denotes the set of possible
shots: X = {x1, x2, ..., xk}

• O is a set of observations which here denotes the set of
possible events: O = {o1, o2, ..., ol}
• Π = {π1, π2, ..., πk}where πi is the probability for which

the shot s1 is equal to xi: πi = p(s1 = xi)

• A is the transition matrix. Each element aij |i, j < k is the
probability of transition from a state xi to another state xj

aij = p(sn = xj |sn−1 = xi)

• B is called the emission matrix. Each element is the prob-
ability of an event knowing the shot:

bij = p(en = oj |sn = xi)

with the constraints:

k∑
i=1

πi = 1, ∀i,
∑
j

aij = 1, ∀i,
∑
j

bij = 1

There are three typical examples of problems that can
be resolved with an HMM: evaluating, decoding and learn-
ing (Rabiner 1989). The decoding problem consists, given
a HMM, to find out the most probable sequence of hidden
states (shots in our case) which generates a given sequence
of observations (Input script). This problem is, in general,
solved using a dynamic algorithm of quadratic complex-
ity well known as the Viterbi algorithm (Viterbi 1967). The
learning problem, which consists in building and parameter-
izing a HMM is often addressed using the iterative ”Baume-
Welch” algorithm (Baum et al. 1970).
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Script Annotation Shot Annotation

Shot SequencessEvent Sequences

Shot Transitions

Event/Shot Analysis Shot Analysis

Event/Shot Relationship

Learning

Original ScriptStyle extra constraints

Director

Cinematographer

Event Sequence

Shot Sequence

Script Annotation

Camera Settings

Renderer

On the left, cinematographic style is learned from sequences of annotated movies. On the
right, the learned cinematographic style is applied to generate a sequence of shots for a
new script.

Figure 5: Overall process.

Overview
The main objective of our work is to propose an expressive
editing model that is able to generate a sequence of view-
points from a script describing events occurring in a 3D en-
vironment. We first propose a Director that has the ability
to reproduce a given cinematographic style. Learning cine-
matographic style consists in extracting cinematographic el-
ements such as shot description: which type of shot, which
actors are composed in the shot and which ones are in focus;
shot transitions: towards which shots the cuts are performed;
and relations between shot descriptions and events (see sec-
tion ).

The overall process is the organized as follows (see figure
5): first, a Script Analyzer transforms the original script of
the scene into an augmented script by applying a semantic
segmentation and attaching meta-information to the differ-
ent segments. The meta information is the annotation of the
events to be performed by the actors. Second, the Director,
encoded using a hidden Markov model representation, relies
on this event sequence to produce the the resulting sequence
of shot descriptions. This sequence of shot descriptions will
then be used by a Cinematographer (Lino and Christie 2012)
to position the camera and set its parameters in a 3D envi-
ronment.

Director
In this paper, we propose to tackle our problem of reproduc-
ing cinematographic style by using a probabilistic learning
technique. We first describe how to model the problem.

Modeling
Augmented Script (Observations) The first step consists
in providing a formalization of the input script as a sequence
of real events and meta-events (see Figure 6). Real events

Label Details

HIGH HIGH

The actor of the highest hierarchy
exit the stage and replaced by an-
other with a highest hierarchy than
the remaining one

HIGH LOW

The actor of the highest hierarchy
exit the stage and replaced by an-
other with a lower hierarchy than
the remaining one

LOW LOW

The actor of the lower hierarchy exit
the stage and replaced by another
with a lower hierarchy than the re-
maining one

LOW HIGH

The actor of the lower hierarchy exit
the stage and replaced by another
with a highest hierarchy than the re-
maining one

BOTH Both actors of the current stage were
not participating in the last one

Table 1: List of meta-events related to the actors importance
and presence.

specify the nature of dialogues in the script and we propose
to classify these dialogues into three categories: symbolic,
moral and narrative as described in (Boussion 2013). Meta-
events describe changes of actors between real events such
as when an important actor in a scene is replaced by an-
other one of less importance (see Table 1). Meta-events are
modeled using discrete variables which provide information
about the actors entering and leaving the stage. This infor-
mation is inserted into the event list as a meta-event before
the real event occurs in the script. These meta-events there-
fore describe the role of an actor expressed as (i)his impor-
tance with respect to other actors in the current event, and
(ii)his presence or not in the related events. The presence,
which is the information about the evolution of participat-
ing actors in the event sequence, helps shooting scenes with
more than two actors.

The classification of the semantics in dialogues (sym-
bolic, moral and narrative) provides a more fine-grained rep-
resentation than most approaches (Lino et al. 2010), and is
better suited to the way filmmakers construct dialogues. Sec-
ond, the introduction of the varying actor importance allows
modeling sequences with multiple actors entering and leav-
ing the scene, an aspect only partially addressed by previous
works.

Shot specification (Hidden States) Constructing shots
for cinematography and photography consists in specifying
a number of features: the shot type, the composition, the fo-
cus, the lighting and the color (Ward 2003). In our work, we
only consider the three first features. These features are the
minimal set for a virtual cinematographer to shoot scenes
comprising two actors (Lino and Christie 2012), i.e. to de-
cide camera position, orientation, zoom and depth of field.

In our representation, a shot sn is considered as a
generic shot independently of the actors involved. How-
ever, it encompasses the relative importance (highest or
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Jack: Gentlemen, what do keys do? 

Turkish Pirate: Keys unlock things? 

Gibbs: And whatever this key unlocks, inside there's something 

valuable. So we're setting out to find whatever this key 

unlocks.  

Jack: No. If we don't have the key, we can't open whatever we 

don't have that it unlocks. So what purpose would be 

served in finding whatever need be unlocked, which we 

don't have, without first having found the key what 

unlocks it? 

Gibbs: So we're going after this key. 

Jack: You're not making any sense at all. 

Jack: Any more questions? 

a. Original script scene

\meta_shot{  new actor (Jack)}

Jack to All:" \mor{Gentlemen,} \que{what do keys do?}" 

\meta_shot{  new secondary actor(TP)}

Turkish Pirate to Jack: " \que{Keys unlock things?}"  

\meta_shot{  TP replaced by secondary actor(Gibbs)}

Gibbs to Jack: "\nar{And whatever this key unlocks, inside 

there's something valuable.} \nar{So we're setting out to 

find whatever this key unlocks.}"  

Jack to Gibbs: " \mpl{No.} \mgl {If we don't have the key, we 

can't open whatever we don't have that it unlocks.} 

\mpl{So what purpose would be served in finding whatever 

need be unlocked,} \nar{which we don't have,} \mpl{without 

first having found the key what unlocks it?}"  

Gibbs to Jack: "\nar{So we're going after this key.}"  

Jack to Gibbs: "\mpl{You're not making any sense at all.}"  

Jack to All: "\que{Any more questions?}" 

b. Augmented script scene

Figure 6: Original and augmented (annotated) script

lowest) of each actor in the shot. Let us take an exam-
ple of a shot sn corresponding to a shot type ”Medium
Over the Shoulder” with the focus set on an actor
of highest importance, denoted H , in the corresponding
event en. The description of the state (shot) is denoted
sn = MediumOverShoulder(H). Additional informa-
tion on the position of the two actors on the screen, can
be specified using a set of possible compositions (ex.
sn = MediumOverShoulder(H,Hleft Lright) where
Hleft Lright specifies that actor of lowest importance L is
in the right of the screen and H is on the left). At this point,
the shot sn does not precisely specify which are the actors
composed in the shot.

Now, in order to determine which actors are composed
in the shot, a second type of hidden state is introduced: the
prep-shot. A prep-shot is a state that helps to prepare a sub-
sequence of shot states by precisely defining who is the ac-
tor of highest, respectively lowest, importance in the shot.
Prep-shot states are associated to meta-events observations
in the script. Meta-events define changes between the actors
as well as changes in their relative importance and prep-shot
states reflect these changes in the shots.

Matrix representation We propose to represent an in-
stance of an HMM (i.e. a cinematographic style) as two ma-
trices (see Figure 7). The left and right matrices respectively
represent the transition and the emission matrices of the
HMM. The transition matrix is a square matrix (figure 7.left)
where each element (i, j) provides the probability of transi-
tion from a shot xi to a shot xj : p(sn = xi|sn−1 = xj).
The highlighted bottom-right square in the transition matrix
represents transitions between shots, while other areas rep-
resent the transitions including prep-shots.

Regarding the emission matrix (the rightmost image),
each couple (i, k) provides the probability of an event
ok given the shot xi: p(en = ok|sn = xi). The high-
lighted bottom-right square in the emission matrix repre-
sents probabilities of real events regarding shots. While the
top-left framed area represents the relationships between
meta-events and prep-shots. Probabilities in other areas are
set to zero, meaning that there is no relation between meta-
events and shots or between real events and prep-shots.

Learning
The learning process consists in determining the parame-
ters of hidden Markov model. Each HMM can be initial-
ized manually so as to reproduce academic cinematography
style that will express all the constraints and techniques em-
pirically designed and taught in art schools (see Figure 7).
However, the aim of our work is to be able to reproduce a
specific style of a real film director. We therefore rely on
some of their movies to decide the HMM’s parameters by
resorting to an iterative learning technique (Rabiner 1989).

In our approach, the parameters of a HMM are initialized
manually basing on an academic cinematography style. We
fulfill all the possible transitions, authorized in cinematog-
raphy (Mascelli 1965), in the transition matrix with regular
values. The emission matrix is initialized in the same way
with all the doable shot/event. This way for initialization
permit to our HMM to find a path (shot sequence) in all
cases.

Then, we adjust them iteratively using the Baume-Welch
algorithm for every sequence retrieved from a movie pro-
duced by the director for which we hope to learn the style.
Each sequence is obtained from dialog scenes. These scenes
are first annotated to get two sequences: (i) a sequence of
events and (ii) the corresponding sequence of shots. Then,
the sequences are automatically analyzed to insert meta-
events and prep-shots. This annotation is performed using
a manual process. Shots are easily observed and classified
to get the needed features (shot type, composition and fo-
cus). By contrast, event annotation still more complicated to
be processed due to its subjective aspect. This annotation is
based on the semantics of the script which can be interpreted
differently from an operator to another.

Once the sequences of shots and events are annotated
and meta-events and prep-shots are inserted, we apply
the Baume-Welch algorithm (Rabiner 1989) to update our
HMM parameters to converge to better represent the style
that we want to learn.

Cinematographer
Automatically positioning a virtual camera in a 3D environ-
ment given the specification of our shot’s properties to be
satisfied (on-screen layout of subjects, visibility, shot type)
is a complex problem. Most approaches address the problem
by expressing visual properties as constraints or functions to
optimize over the camera parameters, and rely on computa-
tionally expensive search techniques to explore the solution
space.

In our approach, we rely on the manifold representation
introduced by (Lino and Christie 2012) to express and solve
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States: 1.init 2.set(2actors) 3.set(1actor) 4.update(2act) 5.update(Xact) 6.update(Yact) 7.update(Up) 8.update(Down) 9.invert() 10.update(Symb) 11.fullBody(X) 12.medium(X) 13.close(X)
14.extCloseUp(X) 15.fullBody(Y) 16.medium(Y) 17.close(Y) 18.extCloseUp(Y) 19.fullBody2Shots(X) 20.Medium2Shots(X) 21.CloseUp2Shots(X) 22.FullBodyOverShoulder(X)
23.medOverShoulder(X) 24.closeOverShoulder(X) 25.fullBody2Shots(Y) 26.medium2Shots(Y) 27.close2Shots(Y) 28.fullBodyOverShoulder(Y) 29.medOverShoulder(y) 30.closeOver-
Shoulder(Y) 31.symbShot(A) 32.overAllShot() 33.final
Events: 1.update(X,Y) 2.updateUp(X,Y) 3.updateDown(X,Y) 4.update(X) 5.update(Y) 6.update(S) 7.neutral 8.symbolic(S) 9.sementic(X,Y) 10.semantic(Y,X) 11.semantic(X,All)
12.semantic(Y,All) 13.narration(X,Y) 14.moralGle(X,Y) 15.moralPle(X,Y) 16.moralOrder(X,Y) 17.question(X,Y) 18.narration(X,All) 19.moralGle(X,All) 20.moralPle(X,All)
21.moralOrder(X,All) 22.question(X,All) 23.narration(Y,X) 24.moralGle(Y,X) 25.moralPle(Y,X) 26.moralOrder(Y,X) 27.question(Y,X) 28.narration(Y,All) 29.moralGle(Y,All)
30.moralPle(Y,All) 31.moralOrder(Y,All) 32.question(Y,All) 33.indetermined()

Figure 7: A representation for film style encoding probability of transitions between shots, and probability of events knowing
shots

the exact on-screen positioning of two or three subjects. The
manifold representation relies on an efficient technique that
consists in expressing the solution space as a 2D manifold
surface for a specified composition with two subjects. We
therefore express a given type of shot (eg, medium over the
shoulder shot) as a point on the manifold surface. The rep-
resentation then enables the computation of a full camera
configuration (position, orientation and field of view).

Shot Generation
Given a sequence of events ê (real events or meta-events),
output shots are generated by the Director as described
in Figure 5 using a decoding process. Decoding consists
in associating a shot si for each event ei such as ṡ =
s1, s2, · · · , sN is the solution of the equation 1 using the
learnt style represented as a HMM.

Before determining the sequence ṡ in equation 1, let us
develop this equation. We first recall the Kolmogorov defi-
nition applied to our parameters:

p(ŝ|ê) =
p(ŝ) · p(ê|ŝ)

p(ê)
(9)

Now, if we replace p(ŝ|ê) in the equation 1, we obtain:

ṡ = arg max
ŝ

p(ŝ) · p(ê|ŝ)
p(ê)

(10)

The denominator of equation 9 or 10 is independent from the
argument to maximize. Therefore, equation (1) becomes:

ṡ = arg max
ŝ

p(ŝ) · p(ê|ŝ) (11)

We know that there is no dependency between any shot si
and any event ej except if i = j (see Figure 7). Furthermore,
there are no dependencies between events ei. Therefore:

p(ê|ŝ) =
N∏
i=1

p(ei|si)

On the other hand, the Markov assumption on the sequen-
tiality of shots gives us:

p(ŝ) = p(s1)
N∏
i=2

p(si|si−1)

Now, we replace these values of p(ŝ) and p(ê|ŝ) by their
respective expressions in equation 11. Then we can deduce
that:

ṡ = arg max
ŝ=s1···sN

p(s1)p(e1|s1)

N∏
i=2

p(si|si−1)p(ei|si) (12)

To compute ṡ in the equation 12, we can use the well-
known Viterbi algorithm which is exactly adapted to this
problem (Forney Jr 1973). The Viterbi algorithm is very ef-
ficient and its complexity is equal toO(N×|X|). It ensures,
given the sequence ê, the provision of the best sequence of
shots ṡ according to the learnt style.

Viterbi Algorithm
The Viterbi algorithm was introduced by Andrew Viterbi
in (Forney Jr 1973) as a dynamic programming algorithm
which computes the optimal sequence without using an ex-
haustive search process. It determines from an observation
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sequence ê the most likely sequence of hidden states ṡ (also
called: Viterbi path), that might generate it.

To compute ṡ = s1, s2, · · · , sN using the Viterbi algo-
rithm, let:

• êu:v denotes a sub-sequence of events from ê beginning
from eu and finishing at ev included.

• s̃t(xi) denotes the best shot sub-sequence of length t and
finishing by the shot st = xi.

s̃t(xi) = arg max
ŝ=s1···st

p(ŝ|ê1:t−1) · p(st = xi|ŝt−1) (13)

• σt(xi) denotes the best partial probability of reaching the
intermediate state xi at the time t.

σt(xi) = p(s̃t(xi)|ê1:t) (14)

From the definitions below, we can easily see that:

ṡ = arg max
k

s̃N (xk) (15)

Calculating sub-sequences
σ can be determined through a recursive computation. For
this, we compute partial probabilities σ as the most probable
route to our current position given a known Hmm.

When t = 1 the most probable path to a state does not
exist. We however use the probability of being in that state
given t = 1 and the observable event e1 of ê.

∀k, s̃1(xk) = (xk), (16a)
σ1(xk) = πk × bk,e1 , (16b)

Now, we show that the partial probabilities σt at time t
can be calculated in terms of the vector σt−1 which denotes
the σ’s at time t− 1.

s̃t(xk) = (s̃t−1(xj), xk) (17a)
σt(xk) = max

i
(σt−1(xi)× aikbk,et) (17b)

where :
j = arg max

i
(σt−1(xi)× aik)

Results
To present the results, we built a rough 3D model mimicking
a sequence from the ”what do keys do?” scene from Pirates
of Carribeans (referred to as ”POC”).

In all the following figures, the first row represents the
script to which are applied different styles. The second
row shows the shot distances: Extreme close-up, Close-up,
Medium, Full-body, Over-all. The last three rows show the
presence of each actor: white (actor not present in the shot),
gray (partially visible) and black (actor on focus). Each row,
except the first one, is divided into two sub-rows correspond-
ing to the results obtained with two different styles, except
for figure 9 where the first sub row corresponds to the style
of the real movie.
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Figure 9: Learned POC HMM Style applied to the ”What
do keys do?” actions.

Applying a style learned from POC scenes Figure 9
shows the sequence of shots of the real POC movie as well
as those obtained with the 3D model after applying the style
learned from 60 shots of POC taken from 5 distinct scenes.

The sequence obtained with our method is very similar to
the real one, which demonstrates the capability of our sys-
tem to at least reproduce some aspects of the editing process
(viewpoints, and transitions are mostly the same).

Applying other styles To demonstrate the flexibility of
our system, we confront in Figure 10 the sequence learned
from Pirates of the Caribbean and the one learned from a
significantly different style (One piece, a Japanese manga
by Eiichiro Oda).

While distances in shots are quite similar (only 2 shot
lengths out of 13 are different), the way the main charac-
ters are being framed in these shots differ significantly (38%
of the shots are different).

FSM vs HMM We compare our HMM-based approach to
a classical finite state machine (FSM) representation ((He,
Cohen, and Salesin 1996)) on the same dataset. In a FSM
representation, each type of shot is encoded as a state, and
probabilities of transitions between shots are specified by a
transition matrix which is similar to that of an HMM. FSM
representations make a decision to select a shot for each new
event. In other words, it chooses the next shot depending
only the current shot and the next event (local decision).
In comparison, our method selects the optimal sequence
of shots while considering all the sequence of events. The
necessity to objectively compare the two methods requires
some changes. Indeed, for FSM, we propose to take into ac-
count the whole sequence of events using the Viterbi algo-
rithm and use the same learning dataset as the one used for
HMM. The resulting shots are compared to those obtained
with our method as shown in figure 11. The FSM approach
fails to reproduce the learned style between the 13th and the
23rd second, whereas our approach follows it faithfully.
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(a) learned HMM OP. (b) Edited Basic 3-states HMM. (c) learned HMM POC.

Figure 8: Used HMM styles
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Figure 10: Learned OP HMM vs Learned POC HMM on
POC actions.
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Figure 11: Learned POC Hmm VS learnd POC Fsm on the
”What do keys do?” actions.

Conclusion and Future work
We proposed a virtual director based on a hidden Markov
model in order to tackle the problem of shooting a virtual
scene with cinematographic styles either learnt from real
movies or manually edited by a user. To this end, we mod-
eled the problem as an HMM in which the hidden states
represent the shots while the observations correspond to the
script events of the scene to shoot. Determining a sequence
of shots (hidden states) from the input sequence of the events
(observations) is performed through a decoding operation.
We have shown that after learning a given style from real
movies, our method is able to reproduce it. We also demon-
strated that our HMM-based approach performs better than
finite state machine representations in terms of style repro-
duction.

In future work, we propose to study the combination and
means to perform transitions between different learnt styles,
as well a proposing more evolved representations to han-
dle discourse structures such as parallel stories, flashbacks
and foreshadows. Besides its application to automated cin-
ematography, this work may also be used as a way to help
analyzing styles and discourse of real movies.
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