
Plexil-Like Plan Execution Control in Agent Programming

Pouyan Ziafati
SnT, University of Luxembourg

Intelligent Systems Group, Utrecht University

Abstract
BDI-based agent programming languages are well-known
technologies for implementing autonomous agents in dy-
namic environments. Supporting robot programming how-
ever requires the plan representation and execution control
capabilities of these languages to be extended for 1-) con-
trolling and monitoring the execution of actions in complex
arrangements and 2-) coordinating the parallel execution of
plans over shared resources. To this end, this paper adapts
and extends PLEXIL, an expressive and well-defined robotic
plan execution language, for plan representation and execu-
tion in BDI-based agent programming languages. The syn-
tax and semantics of the new language is presented and its
integration in operational semantics of BDI-based agent pro-
gramming languages is discussed.

Introduction
In order to achieve complex goals in dynamic environments,
a robot needs to reason on its objectives and the state of
its environment to select appropriate course of actions. Var-
ious agent programming languages (APLs) (Bordini et al.
2006) have been developed to facilitate the implementation
of such deliberative behaviour based on the well studied BDI
(Belief-Desire-Intention) model of practical reasoning(Brat-
man 1999). An agent operation in BDI architecture (Rao and
Georgeff 1995; 1991) is a cyclic execution of a so called de-
liberation cycle in which the agent processes its input data,
updates its goals and beliefs, applies a set of plan gener-
ating rules to plan upon its goals and beliefs and executes
some of its planned actions. To achieve its goals, BDI agent
usually does not plan from the scratch, but selects from a
set of plan templates and instantiate them based on its con-
text (i.e. goals and beliefs). Such “reactive planning” capa-
bility makes BDI-based agent programming languages par-
ticularly useful for programming agents such as robots op-
erating in dynamic environments.

While agent programming languages provide a suitable
level of abstraction and programming support for imple-
menting deliberative behaviour, the plan representation and
execution capabilities of these languages needs to be ex-
tended to facilitate their applications in robotics. Robot pro-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gramming requires these languages to support (Ziafati et al.
2013) 1-) hierarchical task decomposition and controlling
and monitoring the plan execution at different levels of plan
hierarchy, 2-) supporting conditional contingencies, loops,
temporal constraints and floating contingencies (i.e. event
driven task execution) in the task tree decomposition, 3-)
coordinating the parallel execution of plans over shared re-
sources by their priorities and deadlines and 4-) performing
clean-up and wind-down activities when pre-empting, abort-
ing, suspending or resuming plans.

In order to extend the plan execution capabilities of
agent programming languages, we opt to build upon the
PLEXIL(Verma et al. 2005; Gilles et al. 2008) plan execution
language developed in NASA due to the following reasons.
PLEXIL offers a simple structure for plan representation, a
hierarchy of nodes with few syntactic constructs, but it is
one of the most expressive plan execution languages unify-
ing many of the existing ones. Moreover, PLEXIL has formal
semantics which allows for the formal study of various types
of determinism of plan execution. In addition, the opera-
tional semantics of PLEXIL is presented in a modular way
at various levels of plan execution easing the formal study
and modification of the language. Finally, the languages has
been successfully used in various robotic applications.

This paper adapts the PLEXIL syntax and semantics to
be integrated in BDI-based agent programming languages
for representing and executing plans. This includes introduc-
ing basic execution nodes for querying and manipulating the
agent’s beliefs and goals in the BDI architecture and present-
ing an operational semantics for PLEXIL-like plan execution
in BDI deliberation cycle. Moreover, PLEXIL is extended
to support pausing, resuming and pre-empting plans, per-
forming clean-up and wind-down activities when pausing,
resuming, pre-empting or aborting plans, and coordinating
the parallel execution of plans over shared resources.

The remainder of this paper is as follows. We first pro-
vide a short introduction of BDI-based agent programming
languages, focusing on main aspects of the BDI architec-
ture rather than language specific features of such languages,
and present a proposal for PLEXIL-like plan execution in
BDI architecture. Then we present syntax and semantics of a
PLEXIL-like language for plan representation and execution
in agent programming languages. Finally we present future
work and conclude.

AI and Robotics: Papers from the AAAI-14 Workshop

63

Deliberation Cycle in BDI-based APLs
Presenting a detailed account of BDI-based agent program-
ming languages is out of the scope of this paper. Moreover,
our aim is to provide a general support for extending the
plan representation and execution capabilities of a variety of
such languages. Therefore we consider a simple model of
such languages representing their core components and op-
erations to abstract away from their implementation details
or specific features. We call this language RobAPL.

RobAPL has the following components: 1- a belief base
and a goal base representing beliefs and goals of the agent at
the time, 2- an event base representing goals/events received
from the outside world or generated internally by execution
of the agent program during the last execution cycle, 3- a
plan base containing plans that are being executed by the
agent at a time and 4- a rule base containing a set of plan
generating rules that are applied to find a suitable plan for
achieving a goal or responding to an event.

We treat goals and events uniformly and call them events
in the rest of this article. The difference between events and
various types of goals in agent programming languages is
in semantics of their dynamics. For example a goal of type
achievement can be interpreted as a belief state that the agent
wish to brings about. In this case, if the execution of a plan
for that goal fails, the goal is still in the goal set of the agent
and is not removed from the agent goals. Our uniform treat-
ment of event and goals does not put any restriction on se-
mantics of events and goals. To support various semantics
for events and goals, we assume that at the beginning of each
deliberation cycle, some goals and events from previous de-
liberation cycles are added to the event base for example be-
cause the agent has not yet found a suitable plans for them.

A plan generating rule specifies a partially instantiated
plan that can be applied in a certain belief state to reach a
goal or to respond to an event. Such a plan is built upon the
following basic types of actions.
• Belief-update: updating the belief base. A belief update

action has a pre and post conditions. If the pre-condition is
entailed by the agent belief base, the belief update action
can be executed. The execution alters the belief base such
that post-condition of the belief update action is entailed
by the belief base.

• Goal-update: updating the goal base by adopting a new
goal or dropping an existing one.

• External: performing an external action by invoking a
function call. An external action can return a result value.

• Test: performing queries to the agent belief and goal bases
to check whether the agent has certain beliefs and goals.
If the action succeeds, it bounds the free variables of the
queries as result of performing the queries.

• Abstract: performing an abstract action which replace this
node with a plan that is associated to the abstract action
by a plan generating rule.
RobAPL deliberation cycle consists of a planning and an

execution step. In a planning step, plan generating rules are
applied to plan for events in the event base. The result of
this step is generation of a number of plans added to the
plan base. In a execution step, events in the event base are
processed again but this time for event-drivel controlling of

the plans. Events can be of a type for which a plan needs
to be generated, of a type which is used for execution and
monitoring of plans or it can be of both types.

RobAPL Plan Overview
A RobAPL plan consists of a hierarchical set of 8 types of
nodes. Belief-update, goal-update, external, test and abstract
nodes are analogous to belief-update, goal-update, external,
test and abstract basic actions. There are also list nodes, re-
sume/pause list nodes and abort/pre-empt list nodes contain-
ing other nodes as their children. The root node of each plan
is always a list node.

The execution of RobAPL plans (i.e. nodes) is controlled
and monitored by a set of conditions on occurrences of
events, the agent beliefs and a number of implicit and ex-
plicit attributes assigned to nodes. A node’s attributes are
the following ones among which the ID, priority, estimated
execution time and resources are assigned by the program-
mer.
• ID: is a unique identifies of a node. Each node is uniquely

identified by its own name and the name of its ancestors.
The name of the list node at the root of a plan is randomly
assigned at the run time.

• Status: represents the execution state of a node such as
running, finished, etc.

• Outcome: represents the outcome of a node such as suc-
cess, failed, etc.

• Execution Priority: is an Integer value used for resolving
conflicts in parallel execution of nodes.

• Start time: indicates the system time at which a node starts
execution.

• End time: indicates the system time at which a node fin-
ishes its execution.

• Estimated Execution time: is an estimated amount of
overall time required for executing a node.

• Variables: containing all free and bounded variables used
by a node.

• Resources: is a set of resource usages of the form
〈Name, Type, V alue〉 where Name is a unique identi-
fier of a resource, Type is one of the blocking, using and
adding usage types and Value is an amount of resource
usage.

The following are the conditions programmed for each node
to control and monitor its execution.
• Start: determines when a node should start executing.
• End: determines when a node should stop executing.
• Invariant: determines when a node should abort executing.
• Pre: is checked right before executing a node and deter-

mines whether a node can start executing. If it does not
hold, the node finishes its execution with the failure out-
come.

• Post: is checked right after a node finishes its execution
and determines whether the execution was successful. If
it does not hold, the node finishes its execution with the
failure outcome.

• Pre-empt: determines when a node should be pre-empted.
• Pause: determines when a node should pause executing.
• Resume: determines when a paused node should resume

executing.

64

• Repeat: determines whether a node should repeat execut-
ing.

• Resource: determines when required resources of a node
is available.

The start, end, invariant, pre-empt, pause and resume condi-
tions are of the form 〈Event,Expression〉. Thereby, Event
denotes an occurrence of an event e[ts,te] and Expression is
a boolean expression over the content e and the occurrence
time interval [te, ts] of event e[ts,te], the node’s attributes, the
status, outcome, start time and end time of other nodes qual-
ified by their unique IDs and the system time. A condition
〈Event,Expression〉 holds whenever an event Event oc-
curs and the expression Expression holds true. The event
Event can be empty which is defined as an atomic event
empty[t,t] occurring at every time t. The pre, post and repeat
conditions are logical queries to the agent belief base com-
bined with a boolean expression over the node’s attributes,
status, outcome, start time and end time of other nodes and
the system time. Such queries can only contain anonymous
variables. In other words, no variable is bounded as result
of these queries. These three types of conditions are only
checked once when a node is going to start execution or it
finishes its execution. The other conditions are continuously
monitored during the time that they are allowed to make
transition in a node execution status. An agent has a pool
of resources that nodes can query for resource availability.
Moreover, the resource pool notifies the availability of re-
sources when a node is waiting to acquire some resources.

RobAPL Operational Semantics
In the execution step of a deliberation cycle, plans are exe-
cuted by processing all events of the event base in first-come
first-served order by so called macro steps. In the beginning
of a macro step, an event is processed making some con-
ditions of some nodes in the plan base true. All such nodes
make parallel and synchronous atomic transitions referred to
as micro step. These transitions alter nodes’ attributes which
can make other conditions true resulting in another micro
step. Micro steps are applied until no more micro step is
possible.

The atomic transitions are defined in terms of atomic
changes in execution status of individual nodes. At the be-
ginning, all nodes are initialized in the Inactive state except
the root node of each plan which is initialized in the Wait-
ing state. In the Inactive state, none of the conditions of a
node is monitored. A node in a Waiting state transits to the
Executing state whenever its start condition becomes true,
its pre-condition holds and its required resources are avail-
able. If the pre-condition does not hold, the node transits to
the Iteration-Ended state having the Failure outcome. If re-
quired resources are not available, the node transits to the
Waiting-Resource state from which it transits to the Waiting
state again when resources become available. Upon transit-
ing to the Executing state, the action of an action node is
executed which succeeds or fails. We assume all actions are
performed in a synchronous way. By the synchronous exe-
cution we mean the next micro step is performed when all
actions of action nodes in the Executing states are finished.

For a Long running action which could long delay a micro
step, the node can start the action by commanding an ex-
ternal component and then wait for the result to be received
as an external event. When the end condition of a node be-
comes true, an action node transits to Iteration-Ended state
and its success or failure is determined by checking its post
condition. Then if the repeat condition of the node is evalu-
ated to true, the node repeats its execution by transiting from
the Iteration-Ended state to the Waiting state. Otherwise it
transits to the Finished state. List nodes act as container of
other nodes. After a list node transits to the Executing state,
its child nodes transit to the waiting state which are then
monitored for execution. When the end condition of a list
node becomes true, the list node does not immediately tran-
sit to the Iteration-Ended state but to the Finishing state wait-
ing for its children being executed to finish their executions.

A node fails whenever one of its pre, post, invariant or
pre-empt conditions is violated. A node also fails if one of
its ancestor fails or a pause condition of one of its ancestor
evaluates to true. When a failure occurs, action nodes in the
Executing state abort their executions, list nodes being ex-
ecuted transit to the Failing state waiting for their children
to be aborted and action and list nodes in inactive or wait-
ing states skip execution. The outcome of a node specifies
whether the execution of a node for the current iteration was
skipped, successful or failure, whether it was failure of the
node itself or its ancestors or whether it was due to the pre-
emption of the node or its ancestors.

A node pauses its execution when its pause condition be-
comes true. The node first fails its children and then goes
to the Paused state. When the resume condition of a paused
node evaluates to true, it goes to the Resume state waiting
for its resume list nodes to finish executing and then transits
to the Waiting state. When a node is paused, its children are
put in the Inactive state if they were in the Inactive or Wait-
ing state or if their repeat condition evaluates to true. Other
children transit and remain in the Finish state.

The execution semantics of resume/pause and abort/pre-
empt list nodes are different than of the other types of
nodes. These special types of nodes are for handling clean-
up and wind-down activities when other nodes are paused,
resumed, failed or pre-empted. The abort/pre-empt and re-
sume/pause nodes transit from the Inactive state to the Wait-
ing state when their ancestors are aborting/pre-empting or
resuming/pausing. A list node which is failing/pre-empting
or pausing/resuming waits for its abort/pre-empt or re-
sume/pause children nodes to finish their executions before
aborting or pausing/resuming its execution.

A difference between RobAPL and PLEXIL is the intro-
duction of resume/pause and abort/pre-empt list nodes in
RobAPL. The abort, pre-empt and pause list nodes are con-
sidered for execution before their parents are failed, pre-
empted or paused. Similarly, resume list nodes are con-
sidered for execution before their parents are resumed.
This facilitates a structured and bottom-up implementation
of clean-up and wind-down activities for nodes that are
failed, pre-empted or paused and support performing pre-
resumption tasks before resuming nodes. Another differ-
ence is the distinction made between failing and pre-empting

65

Figure 1: RobAPL atomic transition Diagrams

66

Figure 2: Figure 1 Continued

67

nodes in RobAPL to distinguish between execution failure,
and pre-emption as the result of resource scheduling. This
supports utilizing an external scheduler to monitor the plan
execution to control pausing or pre-emption of plans based
on their deadlines, priorities and available resources.

In each micro step, node transitions are performed in par-
allel and synchronously. There can be two sources of con-
flicts in parallel transitions of nodes. One type of conflict is
when two nodes require a common resource of which is not
enough available to be assigned to both. Similarly, access to
shared variables and belief base and goal base needs to be
synchronized. For example, two test nodes could attempt to
bound a shared variable to two different values. Whenever
the execution of two nodes is conflicting, they are executed
in the order of their priorities. The other source of conflict is
when more than one transition is available for a node. Such
conflicts are resolved based on priorities of transitions.

Figure 1 presents semantics of atomic transitions in sim-
ilar notations to transition diagrams of Plexil (Tara et al.
2006) as follows. The eclipses represent node states. The
rectangles represent condition changes that cause a transi-
tion from a node state. Only the condition change explicitly
represented causes the transition. The diamonds represent
checks and the hexagons represents node outcomes. Tran-
sitions are represented by directed arrows. If multiple tran-
sitions are simultaneously enabled, the top-down order of
presenting transitions represent the precedence order. The T,
F and U represents the evaluation of a condition to true, false
and unknown. The abbreviations Inv, Prmt, P-failure and P-
Prmt correspondingly represent Invariant Pre-empt condi-
tions and Parent-Failure and Parent-Pre-empt outcomes.

Conclusion
The paper presents a work toward addressing plan represen-
tation and execution control requirements of agent program-
ming languages presented in (Ziafati et al. 2013) to facili-
tate their use in robot programming. The PLEXIL language
is adapted to be integrated in the BDI-architecture imple-
mented by BDI-based agent programming languages. This
includes introducing execution nodes for querying and ma-
nipulating agent’s beliefs and goals and presenting a theo-
retical framework for interleaving the execution of PLEXIL-
like plans with the plan generating phase of agent program-
ming languages in each deliberation cycle of an agent. The
paper also extends the PLEXIL language to support pausing,
resuming and pre-empting plans and facilitating the imple-
mentation of clean-up and wind-down activities when paus-
ing, resuming, pre-empting and aborting plans.

Various future works are foreseen to mature the presented
work. The proposed language should be implemented and
used in practice to justify its usability for robot program-
ming. Moreover, it is hard to manually verify whether the
presented semantics follow the intuitions behind various op-
erations of the language. It is also hard to manually verify
whether various determinism properties of PLEXIL hold for
the RobAPL language. However, similarity of RobAPL syn-
tax and semantics to PLEXIL makes it amenable for for-
mal analysis of its properties similar to formal analysis of
PLEXIL.

Another interesting future work is to look into research in
the agent community on life cycle of goals (Thangarajah and
Harland 2011) and their various types such as achievement
and maintenance. Investigating the relation between seman-
tics of execution, suspension and abortion of goals and se-
mantics of similar states of plans can help to better under-
stand and model the both. Finally, for the better usability,
syntax sugars and programming patterns are to be identified
to support higher level macros such as IF, For and While
statements in the definition of plans.

Acknowledgement
Pouyan Ziafati is supported by the National Research Fund
(FNR), Luxembourg.

References
Bordini, R. H.; Braubach, L.; Gomez-sanz, J. J.; Hare,
G. O.; Pokahr, A.; and Ricci, A. 2006. A survey of pro-
gramming languages and platforms for multi-agent systems.
INFORMATICA- . . . 30:33–44.
Bratman, M. E. 1999. Intention, Plans, and Practical Rea-
son. Cambridge University Press.
Gilles, D.; Cesar, M.; ; and Corina, P. 2008. A small-step
semantics of PLEXIL. NIA Technical Report (2008-11).
Rao, A. S., and Georgeff, M. P. 1991. Modeling Ratio-
nal Agents within a BDI-Architecture. In Allen, J.; Fikes,
R.; and Sandewall, E., eds., Proceedings of the 2nd interna-
tional conference on principles of knowledge representation
and reasoning (KR’91), 473–484. Morgan Kaufmann pub-
lishers Inc.: San Mateo, CA, USA.
Rao, A. S., and Georgeff, M. P. 1995. Bdi agents: From
theory to practice. In Proceedings of the first international
conference on multi-agent systems (ICMAS-95), 312–319.
Tara, E.; Ari, J.; Corina, P.; Reid, S.; Kam, T.; and Vandi,
V. 2006. Plan Execution Interchange Language (PLEXIL).
NASA Technical Memorandum (TM-2006-213483).
Thangarajah, J., and Harland, J. 2011. Operational be-
haviour for executing, suspending, and aborting goals in
BDI agent systems. Declarative Agent
Verma, V.; Estlin, T.; Pasareanu, C.; Simmons, R.; and Tso,
K. 2005. Plan Execution Interchange Language (PLEXIL)
for Executable Plans and Command Sequences. Interna-
tional symposium on artificial intelligence, robotics and au-
tomation in space (iSAIRAS) 2005(September):5–8.
Ziafati, P.; Dastani, M.; Meyer, J.-J.; and Torre, L. 2013.
Agent programming languages requirements for program-
ming autonomous robots. Programming Multi-Agent Sys-
tems 7837:35–53.

68

