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Abstract

Self-play reinforcement learning has proved to be suc-
cessful in many perfect information two-player games.
However, research carrying over its theoretical guaran-
tees and practical success to games of imperfect infor-
mation has been lacking. In this paper, we evaluate self-
play Monte-Carlo Tree Search (MCTS) in limit Texas
Hold’em and Kuhn poker. We introduce a variant of
the established UCB algorithm and provide first empiri-
cal results demonstrating its ability to find approximate
Nash equilibria.

Introduction
Reinforcement learning has traditionally focused on station-
ary single-agent environments. Its applicability to fully ob-
servable multi-agent Markov games has been explored by
(Littman 1996). Backgammon and computer Go are two
examples of fully observable two-player games where re-
inforcement learning methods have achieved outstanding
performance (Tesauro 1992; Gelly et al. 2012). Computer
poker provides a diversity of stochastic imperfect informa-
tion games of different sizes and has proved to be a fruitful
research domain for game theory and artificial intelligence
(Sandholm 2010; Rubin and Watson 2011). Therefore, it is
an ideal research subject for self-play reinforcement learn-
ing in partially observable multi-agent domains.

Game-theoretic approaches have played a dominant role
in furthering algorithmic performance in computer poker.
The game is usually formulated as an extensive-form game
with imperfect information and most attention has been di-
rected towards the two-player Texas Hold’em variant. Ab-
stracting the game (Billings et al. 2003; Gilpin and Sand-
holm 2006), by combining similar nodes, reduces the size of
the game tree and has allowed various approaches to com-
pute approximate Nash equilibria. Common game-theoretic
methods in computer poker are based on linear program-
ming (Billings et al. 2003; Gilpin and Sandholm 2006), non-
smooth convex optimization (Hoda et al. 2010), fictitious
play (Ganzfried and Sandholm 2008) or counterfactual re-
gret minimization (CFR) (Zinkevich et al. 2007). Except for
Monte-Carlo counterfactual regret minimization (MCCFR)
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(Lanctot et al. 2009), these are generally full-width meth-
ods and therefore are particularly exposed to the curse of di-
mensionality. This might prevent them from scaling to larger
games, e.g. multi-player poker. In addition, some methods
are undefined for games with more than two players, e.g.
the excessive gap technique (Hoda et al. 2010), while other
approaches lose their theoretical guarantees, e.g. CFR. In
spite of this, CFR has achieved strong performance in three-
player limit Texas Hold’em (Risk and Szafron 2010). The
MCTS methods discussed in this paper are well defined
for any number of players but do not yet have any es-
tablished theoretical convergence guarantees even for two-
player zero-sum imperfect information games.

MCTS is a simulation-based search algorithm that has
been successful in high-dimensional domains, e.g. computer
Go (Gelly et al. 2012). Selective sampling of trajectories
of the game enables it to prioritise the most promising re-
gions of the search space. Furthermore, it only requires a
black box simulator and might therefore plan in complex
environments, e.g. with approximate generative models of
real world applications. Finally, it is built on principles of
reinforcement learning and can therefore leverage its well-
developed machinery. For example, function approximation
and bootstrapping are two ideas that can dramatically im-
prove the efficiency of learning algorithms (Tesauro 1992;
Silver, Sutton, and Müller 2012).

(Ponsen, de Jong, and Lanctot 2011) compared the quality
of policies found by MCTS and MCCFR in computer poker.
They concluded that MCTS quickly finds a good but subop-
timal policy, while MCCFR initially learns more slowly but
converges to the optimal policy over time.

In this paper, we extend the evaluation of MCTS-based
methods in computer poker. We introduce a variant of UCT,
Smooth UCT, that combines MCTS with elements of fic-
titious play and provide first empirical results of its con-
vergence to Nash equilibria in Kuhn poker. This algorithm
might address the inability of UCT to converge close to a
Nash equilibrium over time, while retaining UCT’s fast ini-
tial learning rate. Both UCT and Smooth UCT achieve high
performance against competitive approximate Nash equilib-
ria in limit Texas Hold’em. This demonstrates that strong
policies can be learned from UCT-based self-play methods
in partially observable environments.
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Background
Extensive-Form Games
Extensive-form games are a rich model of multi-agent in-
teraction. The representation is based on a game tree. Intro-
ducing partitions of the tree that constrain the players’ infor-
mation about the exact position in the game tree allows to
add versatile structure to the game, e.g. simultaneous moves
and partial observability. Formally, based on the definition
of (Selten 1975),
Definition 1. An extensive-form game with imperfect infor-
mation consists of
• A set of players N = {1, ..., n} and a chance player c.
• A set of states S corresponding to nodes in a rooted game

tree with initial state s

0

. S
Z

⇢ S is the set of terminal
states.

• A partition of the state space into player sets P

i, i 2
N [ {c}. Each state s 2 P

i represents a decision node
of player i and A(s) is the set of actions available to this
player in s. In particular, P c is the set of states at which
chance determines the successor state.

• For each player a set of information states Oi and a surjec-
tive information function Ii that assigns each state s 2 P

i

to an information state o 2 Oi. For any information state
o 2 Oi an information set Ii = (Ii

)

�1

(o) is a set of
states s 2 P

i that are indistinguishable for player i.
• A chance function T c

(s, a) = P(ac
t

= a | s
t

= s),
s 2 P

c, that determines chance events at chance nodes.
Transitions at players’ decision nodes are described by
their policies.

• For each player a reward function R

i that maps terminal
states to payoffs.
For each player i 2 N the sequence of his informa-

tion states and own actions in an episode forms a history
h

i

t

= {oi
1

, a

i

1

, o

i

2

, a

i

2

, ..., o

i

t

}. A game has perfect recall if
each player’s current information state oi

t

implies knowledge
of his whole history h

i

t

of the episode. If a player only knows
some strict subset of his history h

i

t

, then the game has im-
perfect recall.

The following definition is similar to (Waugh et al. 2009)
but makes use of information functions.
Definition 2. Let � be an extensive-form game. An abstrac-
tion of � is a collection of surjective functions f

i

A

: Oi !
˜Oi that map the information states of � to some alternative

information state spaces ˜Oi. By composition of the abstrac-
tion with the information functions Ii of �, we obtain alter-
native information functions, ˜Ii

= f

i

A

� Ii, that induce an
abstracted extensive-form game.

Mapping multiple information states to a single alterna-
tive information state results in the affected player not being
able to distinguish between the mapped states.

Each player’s behavioural strategy is determined by his
policy ⇡

i

(o, a) = P(ai
t

= a | oi
t

= o), which is a probability
distribution over actions given an information state, and �

i

is the set of all policies of player i. A policy profile ⇡ = (⇡

1,
... , ⇡n

) is a collection of policies for all players. ⇡�i refers

to all policies in ⇡ except ⇡i. Ri

(⇡) is the expected reward
of player i if all players follow the policy profile ⇡. The
set of best responses of player i to his opponents’ policies
⇡

�i is b

i

(⇡

�i

) = argmax

⇡

i2�

i R
i

(⇡

i

,⇡

�i

). For ✏ > 0,
b

i

✏

(⇡

�i

) = {⇡i 2 �

i

: R

i

(⇡

i

,⇡

�i

) � R

i

(b

i

(⇡

�i

),⇡

�i

) �
✏} defines the set of ✏-best responses to the policy profile
⇡

�i.

Definition 3. A Nash equilibrium of an extensive-form
game is a policy profile ⇡ such that ⇡i 2 b

i

(⇡

�i

) for all
i 2 N . An ✏-Nash equilibrium is a policy profile ⇡ such that
⇡

i 2 b

i

✏

(⇡

�i

) for all i 2 N .

MCTS

MCTS (Coulom 2006) is a simulation-based search algo-
rithm. It is able to plan in high-dimensional environments by
sampling episodes through Monte-Carlo simulation. These
simulations are guided by an action selection mechanism
that explores the most promising regions of the state space.
This guided search results in efficient, asymmetric search
trees. MCTS converges to optimal policies in fully observ-
able Markovian environments.

A MCTS algorithm requires the following components.
Given a state and action, a black box simulator of the game
samples a successor state and reward. A learning algorithm
uses simulated trajectories and outcomes to update some
statistics of the visited nodes in the search tree. A tree pol-
icy is defined by an action selection mechanism that chooses
actions based on a node’s statistics. A rollout policy deter-
mines default behaviour for states that are out of the scope
of the search tree.

For a specified amount of planning time the algorithm re-
peats the following. It starts each Monte-Carlo simulation at
the root node and follows its tree policy until either reaching
a terminal state or the boundary of the search tree. Leav-
ing the scope of the search tree, the rollout policy is used to
play out the simulation until reaching a terminal state. In this
case, we expand our tree by a state node where we have left
the tree. This approach selectively grows the tree in areas
that are frequently encountered in simulations. After reach-
ing a terminal state, the rewards are propagated back so that
each visited state node can update its statistics.

Common MCTS keeps track of the following node val-
ues. N(s) is the number of visits by a Monte-Carlo sim-
ulation to node s. N(s, a) counts the number of times ac-
tion a has been chosen at node s. Q(s, a) is the estimated
value of choosing action a at node s. The action value
estimates are usually updated by Monte-Carlo evaluation,
Q(s, a) =

1

N(s,a)

P
N(s,a)

i=0

R

s

(i), where R

s

(i) is the cumu-
lative discounted reward achieved after visiting state s in the
i-th Monte-Carlo simulation that has encountered s.

(Kocsis and Szepesvári 2006) suggested using the bandit-
based algorithm UCB (Auer, Cesa-Bianchi, and Fischer
2002) to select actions in the Monte-Carlo search tree. The
resulting MCTS method, Upper Confidence Trees (UCT),
selects greedily between action values that have been en-
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hanced by an exploration bonus,

⇡

tree

(s) = argmax

a

Q(s, a) + c

s
logN(s)

N(s, a)

. (1)

The exploration bonus parameter c adjusts the balance be-
tween exploration and exploitation. For suitable c the prob-
ability of choosing a suboptimal action has been shown to
converge to 0 (Kocsis and Szepesvári 2006). The appropri-
ate scale of c depends on the size of the rewards.

Other MCTS methods have been proposed in the litera-
ture. (Silver and Veness 2010) adapt MCTS to partially ob-
servable Markov decision processes (POMDPs) and prove
convergence given a true initial belief state. (Auger 2011)
and (Cowling, Powley, and Whitehouse 2012) study MCTS
in imperfect information games and use the bandit method
EXP3 (Auer et al. 1995) for action selection.

Self-Play MCTS in Extensive-Form Games
Our goal is to use MCTS-based planning to learn an opti-
mal policy profile of an extensive-form game with imperfect
information.

Planning in a multi-player game requires simulation of
players’ behaviour. One approach might be to assume ex-
plicit models of player behaviour and then use a planning
algorithm to learn a best response against these models.
However, the quality of the policy profile learned with this
approach will depend on the assumed player models. In
particular, to learn an optimal policy profile, we will most
likely need a player model that produces close to optimal
behaviour in the first place. We will therefore pursue an al-
ternative approach that does not require this type of prior
knowledge. Self-play planning does not assume any explicit
models of player behaviour. Instead, it samples players’ ac-
tions from the current policy profile, that is suggested by the
planning process. E.g. self-play MCTS samples player be-
haviour from the players’ tree policies.

The asymmetry of information in an extensive-form game
with imperfect information generally does not allow us to
span a single collective search tree. We will therefore de-
scribe a general algorithm that uses a separate search tree
for each player. For each player we grow a tree T

i over his
information states Oi. T i

(o

i

) is the node in player i’s tree
that represents his information state o

i. In a game with per-
fect recall a player remembers his sequence of previous in-
formation states and actions hi

t

= {oi
1

, a

i

1

, o

i

2

, a

i

2

, ..., o

i

t

}. By
definition of an extensive-form game, this knowledge is also
represented in the information state o

i

t

. Therefore, T i is a
proper tree. An imperfect recall extensive-form game yields
a recombining tree.

Algorithm 1 describes MCTS that has been adapted to
the multi-player, imperfect information setting of extensive-
form games. The game mechanics are sampled from transi-
tion and reward simulators G and R. The transition simula-
tor takes a state and action as inputs and generates a sample
of a successor state s

t+1

⇠ G(s
t

, a

i

t

), where the action a

i

t

belongs to the player i who makes decisions at state s

t

. The
reward simulator generates all players’ payoffs at terminal
states, i.e. rT ⇠ R(s

T

). The information function, Ii

(s),

determines the acting player i’s information state. OUT-
OF-TREE keeps track of which player has left the scope
of his search tree in the current episode.

The basic idea of searching trees over information states
is similar to (Auger 2011; Cowling, Powley, and Whitehouse
2012). However, algorithm 1 defines a more general class of
MCTS-based algorithms that can be specified by their action
selection and node updating functions. These functions are
responsible to sample from and update the tree policy. In this
work, we focus on UCT-based methods.

Algorithm 1 Self-play MCTS in extensive-form games
function SEARCH(�)

while within computational budget do
s

0

⇠ �

SIMULATE(s
0

)
end while
return ⇡

tree

end function

function ROLLOUT(s)
a ⇠ ⇡

rollout

(s)

s

0 ⇠ G(s, a)
return SIMULATE(s0)

end function

function SIMULATE(s)
if ISTERMINAL(s) then

return r ⇠ R(s)

end if
i = PLAYER(s)
if OUT-OF-TREE(i) then

return ROLLOUT(s)
end if
o

i

= Ii

(s)

if oi /2 T

i then
EXPANDTREE(T i

, o

i)
a ⇠ ⇡

rollout

(s)

OUT-OF-TREE(i) true
else

a = SELECT(T i

(o

i

))

end if
s

0 ⇠ G(s, a)
r  SIMULATE(s0)
UPDATE(T i

(o

i

), a, r

i

)

return r
end function

Information State UCT (IS-UCT)
IS-UCT uses UCB to select from and update the tree pol-
icy in algorithm 1. It can be seen as a multi-player version
of Partially Observable UCT (PO-UCT) (Silver and Veness
2010), that searches trees over histories of information states
instead of histories of observations and actions of a POMDP.
In fact, assuming fixed opposing players’ policies, a player
is effectively acting in a POMDP. However, in self-play
planning, player’s policies might never become stationary
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and keep changing indefinitely. Indeed, (Ponsen, de Jong,
and Lanctot 2011) empirically show the inability of UCT
to converge to a Nash equilibrium in Kuhn poker. However,
it seems to unlearn dominated actions and therefore might
yield decent but potentially exploitable performance in prac-
tice.

Smooth IS-UCT
To address the lack of convergence guarantees of IS-UCT in
partially observable self-play environments, we introduce an
alternative tree policy algorithm. It has similarities to gener-
alised weakened fictitious play (Leslie and Collins 2006), for
which convergence results have been established for some
types of games, e.g. two-player zero-sum games.
Definition 4. A Smooth UCB process is defined by the fol-
lowing sequence of policies:

⇡

i

t

= (1� ⌘

t

)⇡̄

i

t�1

+ ⌘

t

UCB

i

t

,

a

i

t

⇠ ⇡

i

t

⇡̄

i

t

= ⇡̄

i

t�1

+

1

t

(a

i

t

� ⇡̄

i

t�1

) (2)

for some time t adapted sequence ⌘

t

2 [c, 1], c > 0. ⇡
t

is the behavioural policy profile that is used for planning at
simulation t. Players’ actions, ai

t

, i 2 N , are sampled from
this policy. ⇡̄

t

is the average policy profile at time t.
UCB plays a greedy best response towards its optimistic

action value estimates. Smooth UCB plays a smooth best
response instead. If UCB were an ✏-best response to the op-
ponents’ average policy profile, ⇡̄�i

t

, with ✏! 0 as t!1,
then the Smooth UCB process would be a generalised weak-
ened fictitious play. E.g. this would be the case if the action
value estimates were generated from unbiased samples of
the average policy. However, this is clearly not what hap-
pens in self-play, where at each time players are trying to
exploit each other rather than playing their average policy.
Intuitively, mixing the current UCB policy with the average
policy might help with this policy evaluation problem.

Algorithm 2 instantiates general self-play MCTS with a
Smooth UCB tree policy. For a constant ⌘

t

= 1, we obtain
IS-UCT as a special case. We propose two schedules to set
⌘

t

in the experiments section. Note that for a cheaply deter-
mined ⌘

t

the update and selection steps of Smooth UCB do
not have any overhead compared to UCB.

We are currently working on developing the theory of this
algorithm. Our experiments on Kuhn poker provide first em-
pirical evidence of the algorithm’s ability to find approxi-
mate Nash equilibria.

Experiments
We evaluate IS-UCT and Smooth IS-UCT in Kuhn and
Texas Hold’em poker games.

Kuhn Poker
Kuhn poker (Kuhn 1950) is a small extensive-form game
with imperfect information. It features typical elements of
poker, e.g. balancing betting frequencies for different types
of holdings. However, it does not include community cards

Algorithm 2 Smooth IS-UCT
SEARCH(�), SIMULATE(s) and ROLLOUT(s) as in algo-
rithm 1

function SELECT(T i

(o

i

))
u ⇠ U [0, 1]

if u < ⌘

t

then
return argmax

a

Q(o

i

, a) + c

q
logN(o

i
)

N(o

i
,a)

else
8a 2 A(o

i

) : p(a) N(o

i
,a)

N(o

i
)

return a ⇠ p

end if
end function

function UPDATE(T i

(o

i

), a, r

i)
N(o

i

) N(o

i

) + 1

N(o

i

, a) N(o

i

, a) + 1

Q(o

i

, a) Q(o

i

, a) +

r

i�Q(o

i
,a)

N(o

i
,a)

end function

and multi-street play. As there exist closed-form game-
theoretic solutions, it is well suited for a first overview of
the performance and calibration of different methods.

(Ponsen, de Jong, and Lanctot 2011) tested UCT against
MCCFR in Kuhn poker. We conducted a similar experiment
with Smooth IS-UCT. We calibrated the exploration param-
eter for both IS-UCT and Smooth IS-UCT, and set it to 2 and
1.75 respectively. We tested two choices of Smooth UCB’s
mixing parameter sequence ⌘

t

:
⌘

i

t

(o

i

) = max

a

⇡̄

i

t�1

(o

i

, a) (3)

⌘

i

t

(o

i

) = 0.9

10000

10000 +

p
N

t�1

(o

i

)

(4)

Both worked well in standard Kuhn poker. However, only
schedule (3) yielded stable performance across several vari-
ants of Kuhn poker with varying initial pot size. All reported
results for Smooth IS-UCT on Kuhn poker were generated
with schedule (3). The average policies’ squared (SQ-ERR)
and dominated (DOM-ERR) errors were measured after ev-
ery 10

4 episodes. The squared error of a policy is its mean-
squared error measured against the closest Nash equilib-
rium. The dominated error of a policy is the sum of the prob-
abilities with which a dominated action is taken at an infor-
mation state. The results, shown in figures 1 and 2, were av-
eraged over 10 identically repeated runs of the experiment.

In standard Kuhn poker, Smooth IS-UCT performs better
both in terms of squared and dominated error. We repeated
the experiment for variants of Kuhn poker with higher ini-
tial pot sizes. This is supposed to emulate the varying opti-
mal action probabilities that in poker depend on the bet size
relative to the pot. Using mixing schedule (3), Smooth IS-
UCT was able to converge close to a Nash equilibrium in
each variant. For larger pot sizes, Smooth IS-UCT seems to
suffer a larger dominated error than IS-UCT.

To conclude, Smooth IS-UCT might focus its self-play
search on regions of the policy space that are close to a Nash
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Figure 1: Learning curve of IS-UCT and Smooth IS-UCT
in Kuhn poker. The x-axis denotes the number of simulated
episodes. The y-axis denotes the quality of a policy in terms
of its dominated and squared error measured against a clos-
est Nash equilibrium.
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Figure 2: Learning curve of IS-UCT and Smooth IS-UCT in
a Kuhn poker variant with an initial pot size of 8.

equilibrium. However, in large games, the number of visits
to a node might be too low to provide a stochastic average
policy with small dominated error.

Limit Texas Hold’em
We consider limit Texas Hold’em with two and three play-
ers. The two-player variants’ game tree contains about 1018
nodes. In order to reduce the game tree to a tractable size,
various abstraction techniques have been proposed in the lit-
erature (Billings et al. 2003; Gilpin and Sandholm 2006;
Johanson et al. 2013). The most common approach is to
group information states according to strategic similarity of
the corresponding cards and leave the players’ action se-
quences unabstracted.

A player’s information state can be described as a tuple
o

i

t

= (ā
t

, c
t

,pi

t

), where ā
t

is the sequence of all players’
actions except chance, pi

t

are the two private cards held by

player i and c
t

is the sequence of community cards publicly
revealed by chance by time t. In Texas Hold’em only the
private cards constitute hidden information, i.e. each player
observes everything except his opponents’ private cards.

Let g

A

(c,pi

) 2 N be a function that maps tuples of
public community cards and private cards to an abstraction
bucket. The function f

A

(ā, c,pi

) = (ā, g
A

(c,pi

)) defines
an abstraction that maps information states O = [

i2N

Oi

to alternative information states ˜O = [
i2N

˜Oi of an ab-
stracted game. An abstracted information state is a tuple
(ā, n) where ā is the unabstracted sequence of all players’
actions except chance and n 2 N identifies the abstraction
bucket.

In this work, we use a metric called expected hand
strength squared (Zinkevich et al. 2007). At a final betting
round and given the corresponding set of community cards,
the hand strength of a holding is defined as its winning per-
centage against all possible other holdings. On any betting
round, E[HS2

] denotes the expected value of the squared
hand strength on the final betting round. We have discre-
tised the resulting E[HS2

] values with an equidistant grid
over their range, [0, 1]. Table 1 shows the grid sizes that we
used in our experiments. We used an imperfect recall ab-
straction that does not let a player remember his E[HS2

] val-
ues of previous betting rounds, i.e. g

A

(c,pi

) is set to the
thresholded E[HS2

] value of pi given c.

Game size Preflop Flop Turn River
2p S 169 100 100 100
2p L 169 1000 500 200
3p 169 1000 100 10

Table 1: Abstraction bucket discretisation grids used in our
two and three-player Texas Hold’em experiments

In limit Texas Hold’em, there is an upper bound on the
possible terminal pot size based on the betting that has oc-
curred so far in the episode. This is because betting is capped
at each betting round. To avoid unnecessary exploration we
update the exploration parameter for the current episode at
the beginning of each betting round and set it to

c

t

= potsize + k ⇤ remaining betting potential, (5)

where k 2 [0, 1] is a constant parameter and the remaining
betting potential is the maximum possible amount that play-
ers can add to the pot in the remainder of the episode.

Each two-player policy was trained for about 7 billion
episodes, which took about 30 hours on a modern com-
puter without using parallelization. Each three-player agent
was trained for about 12 billion episodes, requiring about
48 hours of training time. After training, the policies were
frozen to return the greedy, i.e. highest value, action at each
information state. Performance is measured in milli-big-
blinds per hand, mb/h.

Two-player We evaluated the performance of the trained
policies against benchmark opponents in two-player limit
Texas Hold’em. Both opponents, Sparbot (Billings et al.
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2003) and FellOmen2, play approximate Nash equilib-
rium strategies. Sparbot is available in the software Poker
Academy Pro. FellOmen2 is a publicly available poker bot
that was developed by Ian Fellows. It plays an approximate
Nash equilibrium that was learned from fictitious play. It
placed second, tying three-way, in the AAAI-08 Computer
Poker Competition.

All two-player MCTS policies were trained using explo-
ration schedule (5), with parameter k given in the table. The
Smooth IS-UCT agents used the same mixing schedule (3)
as in Kuhn poker. The abstraction sizes are shown in table 1.

The results in table 2 show an overall positive perfor-
mance of UCT-based methods. However, some policies’ per-
formance is not stable against both opponents. This suggests
that these policies might not be a good approximation of a
Nash equilibrium. Note that we froze the policies after train-
ing and that these frozen policies are deterministic. This gen-
erally yields exploitable policies, which in turn exploit some
types of policies. This might explain some of the contrary
results, i.e. very positive performance against Sparbot while
losing a large amount against FellOmen2. A coarse abstrac-
tion might emphasize these effects of freezing policies, as
larger amounts of information states would be set to a par-
ticular action.

Due to the large standard errors relative to the differ-
ences in performance, comparing individual results is dif-
ficult. IS-UCT with a coarse abstraction and low exploration
parameter, IS-UCT S, k=0.5, trained the policy that achieves
the most robust performance against both opponents. On
the other hand, Smooth IS-UCT trained two policies, with
both fine and coarse abstractions, that achieve robust per-
formance. More significant test results and an evaluation of
performance for different training times are required to bet-
ter compare Smooth IS-UCT against IS-UCT.

Sparbot FellOmen2
Coarse abstraction:
IS-UCT S, k=1 72 ± 21 -47 ± 20
IS-UCT S, k=0.5 54 ± 21 26 ± 21
Smooth IS-UCT S, k=1 51 ± 20 7 ± 21
Smooth IS-UCT S, k=0.5 56 ± 20 -41 ± 20
Fine abstraction:
IS-UCT L, k=0.5 60 ± 20 -17 ± 21
Smooth IS-UCT L, k=0.5 18 ± 19 32 ± 21

Table 2: Two-player limit Texas Hold’em winnings in mb/h
and their 68% confidence intervals. Each match-up was run
for at least 60000 hands.

Three-player In three-player limit Texas Hold’em, we
tested the trained policies against benchmark and dummy
opponents. Poki (Billings 2006) is a bot available in Poker
Academy Pro. Its architecture is based on a mixture of tech-
nologies, including expert knowledge and online Monte-
Carlo simulations. It won the six-player limit Texas Hold’em
event of the AAAI-08 Computer Poker Competition. Due
to a lack of publicly available benchmark bots capable of
playing three-player limit Texas Hold’em, we also included

match-ups against dummy agents that blindly play accord-
ing to a fixed probability distribution. We chose two dummy
agents that were suggested by (Risk and Szafron 2010). The
Always-Raise agent, AR, always plays the bet/raise action.
The Probe agent randomly chooses between the bet/raise
and check/call action with equal probability.

All three-player MCTS policies were trained with explo-
ration schedule (5) with k = 0.5. Smooth IS-UCT used mix-
ing schedule (3), with ⌘

t

set to zero for nodes that have been
visited less than 10000 times in order to avoid disproportion-
ate exploration at rarely visited nodes.

The results, shown in table 3, suggest that self-play MCTS
can train strong three-player policies. IS-UCT outperforms
Smooth IS-UCT in the match-up against two instances of
Poki. It performs slightly worse than Smooth IS-UCT in the
other two match-ups. Both MCTS policies achieve strong re-
sults against the combination of AR and Probe despite using
imperfect recall. This is notable because (Risk and Szafron
2010) reported anomalous, strongly negative results against
this combination of dummy agents when using imperfect re-
call with CFR.

Match-up IS-UCT Smooth IS-UCT
2x Poki 163 ± 19 118 ± 19
Poki, IS-UCT - 81 ± 24
Poki, Smooth IS-UCT 73 ± 24 -
AR, Probe 760 ± 77 910 ± 78

Table 3: Three-player limit Texas Hold’em winnings in mb/h
and their 68% confidence intervals. Each match-up was run
for at least 30000 hands. Player positions were permuted to
balance positional advantages.

Conclusion
This work evaluates computer poker policies that have been
trained from self-play MCTS. The introduced variant of
UCT, Smooth IS-UCT, is shown to converge to a Nash equi-
librium in a small poker game. Furthermore, it achieves ro-
bust performance in large limit Texas Hold’em games. This
suggests that the policies it learns are close to a Nash equi-
librium and with increased training time might also converge
in large games. However, the results were not conclusive
in demonstrating a higher performance of Smooth IS-UCT
than plain IS-UCT, as both UCT-based methods achieved
strong performance.

The results against FellOmen2 suggest that self-play
MCTS can be competitive with the state of the art of 2008, a
year in which algorithmic agents beat expert human players
for the first time in a public competition. However, testing
performance against benchmark opponents is only a partial
assessment of the quality of a policy. It does not explicitly
measure the potential exploitability and is therefore insuffi-
cient to assess a policy’s distance to a Nash equilibrium.

We think that the following directions of research could
improve the performance and understanding of self-play
MCTS in computer poker. A study of the theoretical prop-
erties of Smooth IS-UCT might unveil a class of algorithms
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that are theoretically sound in partially observable environ-
ments and converge to Nash equilibria. Obtaining results
from longer training periods and comparing the learning rate
against state of the art methods, e.g. MCCFR, should help
understanding the role of self-play MCTS in imperfect infor-
mation games. A more sophisticated abstraction technique,
e.g. discretisation through clustering or distribution-aware
methods (Johanson et al. 2013), should improve the perfor-
mance in Texas Hold’em. Using local or online search to
plan for the currently played scenario could scale to multi-
player games with more than three players. Due to their fast
initial learning rate, this might be a particularly suitable ap-
plication of MCTS-based methods.
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