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Abstract

We have proposed a novel data mining method called
co-occurring cluster mining (CCM) for mining patterns
from a sequence of multidimensional event data. The
CCM first generates cluster candidates and then test
the candidates based on clustering in the data space
as well as co-occurrence degree in the event sequence.
In searching appropriate clusters associated with co-
occurrence, the search space is reduced by obtaining a
dendrogram from a hierarchical clustering as the clus-
tering procedure. In this paper, we show the potential of
CCM with following two applications: (1) damage pat-
terns in fuel cell and (2) earthquake occurrence patterns.
In the fuel cell application, given a sequence of acous-
tic emission events, which comprise of waveform signal
data of damages to a fuel cell, the mechanical interac-
tions between components of the fuel cell are inferred
from the mined co-occurrence patterns. Similarly, in the
application of earthquakes, the interactions between dis-
tant earthquakes are extracted as co-occurrence patterns
from a hypocenter catalog.

Introduction
Data mining is essentially the inductive extraction of knowl-
edge from observed data and is now widely applied in var-
ious fields because of its generality. In this study, we fo-
cus on a novel task that combines well-known clustering
techniques and frequent pattern mining or association rule
mining. Clustering(Everitt et al. 2011; Xu and Wunsch-II
2008) attempts to produce groups of similar objects within
a so-called data space or feature space, which is typi-
cally represented by a multidimensional numerical vector.
Frequent pattern or association rule mining(Agrawal and
Srikant 1994; Han, Pei, and Yin 2000) attempts to extract
and list frequently appearing item sets, wherein an item is
typically identified via nominal variables.

In this study, given a sequence of events, where each
event is represented by a multidimensional numerical vec-
tor (e.g., sequence of signal events, image events, and po-
sition events), the goal is to find and list pairs of clusters
that co-occur in a sequence. This task may induce novel
applications—e.g., identify weather change patterns from a

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sequence of satellite images, infer health change patterns
from a sequence of medical inspection data, and infer me-
chanical interaction patterns between components from a se-
quence of sounds of damage.

A straightforward method to achieve the above task is to
first generate clusters within the data space, and then extract
frequent patterns or association rules from the sequence of
clusters as items. For example, Honda et al. quantized by
self-organizing map (SOM) images of cloud data obtained
via satellite, and then applied association rule mining to ex-
tract climate change information(Honda et al. 2002). As an-
other example, Yairi et al. extracted association rules regard-
ing anomaly detection after clustering time-series data trans-
mitted via satellite(Yairi et al. 2001).

In the two-step approach that these examples utilized,
clusters may contain data points that do not contribute to
a certain pattern in a sequence, or may not contain data
points that contribute to a pattern at all. The contribution
to a pattern can be justified by co-occurrence degree of the
data points within the different clusters. The cluster ranges
should be selected by co-occurrence degree to exclude non-
contributing data points to a pattern and include contributing
data points.

To solve the above problem, we have proposed a novel
algorithm called co-occurring cluster mining (CCM). The
CCM generates cluster candidates and test the candidates
based on clustering in the data space as well as co-
occurrence degree in the sequence(Inaba et al. 2012). More
specifically, CCM extracts and lists pairs of clusters that
have high intra-cluster density in the data space and simulta-
neously high inter-cluster co-occurrence in the sequence of
events.

Various works have been done in spatio-temporal data
mining. Especially, space-time scan statistics(Kulldorff
2001) detects outbreak regions (clusters) in certain period
based on statistical tests, for example detecting region(s)
and period(s) of infection disease. However, space-time scan
statistics does not extract co-occurrence of different regions,
the purpose is to detect single region and its period.

In this paper, we added one more application of the CCM
to show the generality of the methodology; (1) damage pat-
terns in fuel cell, which is already written in Inaba et al.(In-
aba et al. 2012) and (2) earthquake occurrence patterns,
which is a new application. In the fuel cell application, from
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a sequence of acoustic emission events, which are comprised
of waveform signal data derived from damages to a fuel
cell, the mechanical interactions between components of the
fuel cell can be inferred from the mined co-occurrence pat-
terns, which were reasonable and confirmed by domain ex-
perts. Similarly, in the application of earthquake analysis,
interactions between distant earthquakes are extracted as co-
occurrence patterns from the 2011 Tohoku Earthquake in
Japan.

Co-occurring Cluster Mining
Problem Definition
In this section, we define the characteristics of data that our
current work focuses on, and then define requirements of the
co-occurrence pattern.
Definition 1 (event sequence). Suppose data set D with N

numerical event data points xi = (xi,1, · · · , xi,v), (i =
1, · · · , N) in v-dimensional space are obtained in order
x1 ≺ · · · ≺ xN .

Definition 2 (segment). Suppose an event sequence is di-
vided into segments. More specifically, let data set D be
denoted by

D = [x1, · · · ,xi][xi+1, · · · ,xj ] · · · [xk, · · · ,xN ],

where i < j < k < N and “[·]” refers to a segment
(similar to market basket analysis).

The segments above are measured in minutes, days, and so
on; furthermore, the length of these segments need not be
regular. Given the above, the extracted co-occurrence pat-
terns must satisfy the following three requirements:
Requirement 1 (co-occurrence). For two sets composed of

events A,B ⊂ D (A ∩ B = ∅), the co-occurring ratio
of A and B must be high. Co-occurrence can be evalu-
ated by the Jaccard coefficient by counting the number of
segments that contain A and B, and A or B.

Requirement 2 (frequency). The number of times in which
A and B co-occur in an event sequence must be high.
Such occurrence frequency can be evaluated, for example,
by the support score by counting the number of segments
that contain A and B.

Requirement 3 (similarity). For two event sets A and B,
events x ∈ A(B) must be similar. The within-cluster
similarity can be evaluated by the sum of squares within
clusters (SSW), the average distance among all data
points in a cluster, etc.

Requirements 1 and 2 are derived from frequent pattern min-
ing between event sets (clusters), whereas requirement 3 is
derived from the clustering of events. Given the above, we
define the co-occurring cluster and co-occurrence pattern as
follows:
Definition 3 (co-occurring cluster). If two sets A,B ⊂
D satisfy the above three requirements, set A is a co-
occurring cluster of B and vice versa.

Definition 4 (co-occurrence pattern). With co-occurring
clusters A and B, P(A,B) = {A,B|A ∩ B = ∅} is
called a co-occurrence pattern.

Evaluation Function
In this section, we define an evaluation function to search
for co-occurrence patterns defined in the above section. We
search pairs of clusters A,B ⊂ D that maximize the follow-
ing evaluation function:

L(A,B) = F(A,B)α · G(A,B)(1− α). (1)

Function F(A,B) evaluates the co-occurrence ratio for
requirement 1. The higher the F(A,B) value is, the higher
the co-occurrence ratio. Note that because requirement 1 de-
notes the co-occurrence among many separated segments,
co-occurrence in the short and sequential period must be ex-
cluded. Therefore, even if events from A and B co-occur
several times in the same segment, this is considered only
once. Function G(A,B) denotes similarity within a cluster
for requirement 3. The higher the G(A,B) value is, the more
dense the clusters are.

Evaluation function (1) is defined as the product of F ∈
[0, 1] and G ∈ [0, 1] to simultaneously satisfy the re-
quirements of co-occurrence and similarity. α is a hyper-
parameter to weight F or G. In this work, α = 0.5 is used
for simplicity. In addition, requirement 2 for occurrence fre-
quency can be satisfied using minimum support Suppmin as
a threshold.

CCM Algorithm
Our proposed method searches pairs of clusters that have
high L(A,B), utilizing aggregative hierarchical clustering
(AHC) to reduce the search cost. To generate candidate clus-
ters of A and B, partition-based clustering techniques, such
as k-means clustering, and probability-distribution-based
clustering techniques, such as Gaussian mixture model clus-
tering, need to be executed every time variables in the search
are changed. Conversely, in AHC, once the merge pro-
cess of clustering is obtained, co-occurrence patterns can
be searched during the merge process. The other benefit of
using AHC is to reduce the search space, although the de-
gree of freedom for the cluster shape decreases. The number
of sub-clusters from the dendrogram obtained by AHC—
except for individual data points and whole data points as a
cluster—is N − 2. Taking combinations of the sub-clusters
as candidate patterns, the approximate computational com-
plexity is O(N2).

The pseudocode and conceptual diagram of the CCM al-
gorithm are presented in Algorithm 1 and Fig. 1, respec-
tively. The algorithm first generates possible sub-clusters
from the dendrogram obtained by AHC in the data space.
All combinations of sub-clusters can be candidate patterns
(Step 1, Fig. 1(a)). Second, the algorithm evaluates each
candidate pattern via function L, which evaluates the co-
occurrence degree of sub-clusters in the event sequence and
similarity within each sub-cluster in the data space. If the
evaluation value exceeds the minimum thresholds Lmin and
Suppmin , then these patterns are added to output pattern list
P (Step 2, Fig. 1(b)). Here, the definition of support score (l.
6 of Algorithm 1) is Supp(Hi,Hj) = count(Hi ∩Hj)/S,
where count(Hi) denotes the number of segments that con-
tain event(s) with cluster label Hi, and S is the number of
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If Evaluation(P1) > Evaluation(P2)

then remove P2

Co-occurrence patterns

with higher evaluation value

(c) step 3: checking of in-
clusion between patterns

Figure 1: Conceptual diagram of co-occurring cluster min-
ing algorithm

total segments. Third, the algorithm checks the inclusion be-
tween the patterns and removes patterns from P that have a
lower evaluation score (Step 3, Fig. 1(c)). In the algorithm
description, Pl ∩Pm (l. 13 of Algorithm 1) means Al ∩Am

or Al ∩Bm or Bl ∩Am or Bl ∩Bm.

Application 1: Damage Patterns in Fuel Cell
Background
A fuel cell, especially a solid oxide fuel cell (SOFC), is a
promising power generation device that produces electric-
ity by direct chemical reaction; however, SOFC operates in
harsh environments (i.e., high temperatures, oxidation, and
reduction), and therefore, the reaction area is decreased by
fracture damage, which reduces cell performance (Krishna-
murthy and Sheldon 2004).

We have previously used a kernel self-organizing map
(kernel SOM) approach to successfully model and visually
understand the overview of the damage process from acous-
tic emission (AE) events(Fukui et al. 2011). Acoustic emis-
sion is an elastic wave (i.e., vibration, sound waves, includ-
ing ultrasonic waves) produced by damage, such as cracks in
the material, or by friction between materials. Depending on
the “fracture mode” (i.e., opening or shear), the type of ma-
terial, fracture energy, shear rate, and other factors, distinct
AE waveforms are produced.

Little knowledge about the mechanical interactions of
damages has been obtained until now. Hence, we applied

Algorithm 1 Co-occurring cluster mining algorithm
Input: event sequence with segments:
D = [x1, · · · ,xi][xi+1, · · · ,xj ] · · · [xk, · · · ,xN ]
dendrogram by hierarchical clustering from D′ =
{xk}Nk=1:HC
minimum evaluation function value: Lmin
minimum support value: Suppmin

Output: Co-occurrence patterns:
P = {Pk(A,B)|A ∩B = ∅,A,B ⊆ D}

1: //Step 1: Generate sub-clusters
2: Generate possible sub-clusters fromHC:

H1,H2, · · · ,HN−2 ⊂ HC;
3: //Step 2: Evaluate candidate patterns
4: Initialize k ← 0;
5: for all combinations of H do
6: if Hi ∩ Hj = ∅ and L(Hi,Hj) > Lmin and

Supp(Hi,Hj) > Suppmin then
7: Pk(A,B)← {Hi,Hj};
8: k ← k + 1;
9: end if

10: end for
11: //Step 3: Eliminate co-occurrence patterns with inclu-

sion relation
12: for all combinations of P do
13: if Pl ∩ Pm 6= ∅ then
14: Remove Pi from P such that

i = argmin{L(Pl),L(Pm)};
15: end if
16: end for

CCM to extract co-occurrence damage patterns that repre-
sent major mechanical interactions among components in
SOFCs. Our experiments show that we can acquire novel
knowledge—even for the SOFC experts—about damage
mechanisms from co-occurrence damage patterns.

Experimental Conditions
A schematic of the apparatus used to perform SOFC dam-
age testing is shown in Fig. 2. The test section was initially
heated to 800◦C to melt a soda glass ring, and was then grad-
ually decreased to room temperature. Note that this dam-
age evaluation test was designed to intentionally rupture the
cells while lowering the temperature. Therefore, the knowl-
edge obtained through this experiment is not directly avail-
able to actually run the SOFC; however, it is sufficient to
demonstrate and confirm the reasonableness of our proposed
method.

The AE measurement was performed using a wide-band
piezoelectric transducer1. The AE transducer was attached
to an outer Al2O3 tube away from the heated section. The
sampling rate was 1 MHz, and so the observable maximum
frequency was 500 KHz.

Preprocessing
Running the SOFC for over 60 h, 1,429 AE events were ex-
tracted using the burst extraction method (Kleinberg 2002;

1PAC UT-1000: http://www.pacndt.com
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Figure 2: SOFC damage test apparatus

Fukui et al. 2011). In our research, the observed AE event se-
quence was divided into segments based on (Ohsawa 2002),
assuming a sequence until a large-energy AE event occurs
to be a chain of damage progression. Fig. 3 shows an ex-
ample of the divided segments. These segments are used in
CCM for calculating a co-occurrence. Note that because the
damage process of SOFC is a complicated system, it is dif-
ficult to extract co-occurrence patterns considering the order
of occurrence or the precise time intervals between the AE
events. Therefore, we do not consider the order of occur-
rence of AE events in the same segment or the time intervals
between the AE events.

More concretely, after the burst extraction method, an AE
event sequence can be described by Dae = {ei|e1 ≺ · · · ≺
eN}Ni=1, ei = (zi,1, · · · , zi,p), where zi,j is an observed
value (mV) from an AE sensor. The approach is to first cal-
culate the energy for all AE events, E1, E2, · · · , EN , where
Ei =

∑
j z

2
i,j .

Next, divide the AE event sequence into segments s =
[et, · · · , et+l], each of which satisfies the following condi-
tion:

Et+i ≤ Eσ and Et+l > Eσ (i = 0, · · · , l − 1), (2)

whereEσ is an energy threshold;Eσ = 1, 500(mV2) is used
in this paper. Just as in (Ohsawa 2002), there is no optimal
threshold; however, the threshold was determined by finding
a balance between the number of segments and the number
of events contained within each segment. The AE event se-
quence was divided into 123 segments.

Also referring to our previous study (Fukui et al. 2011),
each AE event was transformed into the frequency power
spectrum espi = (spi,1, · · · , spi,v) by Fourier transform,
where sp is a power of a certain frequency with v =4,000
discrete points in this study.

Design of the Evaluation Function
To extract a symmetric pattern, we used the Jaccard coeffi-
cient as F(A,B) as follows:

F(A,B) =
count(A ∩B)

count(A ∪B)
. (3)

For G(A,B), we cannot obtain the centroid of clusters,
but can instead obtain the distance between the prototype

...

segment of AE event series

(4,6)

The best matching
unit in SOM

AE events with high energy

Co-occurring AE events

(7,8) (1,5)

...... ...

(7,8) (1,5)(10,2)

Figure 3: An example illustrating damage segments

Table 1: Average of evaluation scores of the extracted 100
patterns in different hierarchical clustering methods, includ-
ing single linkage, complete linkage, group average, cen-
troid, median, and Ward’s method

Single Comp. Group Cent. Med. Ward’s
Ave. 0.443 0.494 0.482 0.444 0.459 0.487

vectors, with dave as the average distance among all pairs
of prototype vectors in the cluster. Hence, G(A,B) can be
given by

G(A,B) = 1−

√
daveA · daveB
d2aveALL

, (4)

daveA =
∑

xi,xj∈A

dc(i),c(j)

NA
, (5)

daveB =
∑

xi,xj∈B

dc(i),c(j)

NB
, (6)

daveALL =
∑

xi,xj∈D

dc(i),c(j)

ND
, (7)

where i < j, NA is the number of combinations among the
events in A, and dc(i),c(j) denotes a distance between the
best matching units for xi and xj in the topology space of
the kernel SOM.

Results
The topology of the kernel SOM was set to a two-
dimensional square grid, and the number of neurons is
15×15. The nodes in the SOM represent microclusters, and
this number was sufficient for the interpretation, just as in
(Fukui et al. 2011).

Table 1 shows the average values of the evaluation func-
tion using different hierarchical clustering methods. The val-
ues are averaged by the extracted 100 patterns when the min-
imum support Suppmin is set to 0.04. The complete linkage
method shows the best results. Therefore, the following re-
sults are obtained using the complete linkage method in the
hierarchical clustering.

Tables 2 and 3 show the estimated interpretation of ex-
tracted damage patterns2, which were provided by two of

2The interpretations were based on clustered AE events (wave-
forms and frequency spectrum), temperature at the time, and refer-
ring to the image of actual internal damages by an electron micro-
scope after the operation.
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Table 2: Major damage types corresponding to the results of
the kernel SOM (Fukui et al. 2011)

region damage type
(A) squeaking of the members during heating
(B) progression of the initial cracks
(C) squeaking of the members followed by (B)
(D) cracks in the electrolyte
(E) cracks in the glass seal
(F) cracks in and exfoliation of the electrode

Table 3: Number of extracted damage patterns in each dam-
age type; the corresponding damage types are listed in Table
2, and the inter-region damage types are represented with
“{,}”

pattern number pattern number
(B)-(B) 2 (E)-(F) 5
(B)-(C) 3 (E)-{(A),(D)} 3
(B)-(D) 2 (E)-{(D),(E)} 1
(B)-(E) 2 (F)-{(A),(D)} 1
(C)-(C) 1 (F)-{(D),(E)} 1
(D)-(D) 1 {(A),(D)}-{(D),(E)} 1
(D)-(E) 1 {(D),(E)}-{(D),(E)} 1
(E)-(E) 4

the SOFCs and fracture mechanics experts, and the number
of extracted damage patterns by CCM, respectively. With
parameters Lmin = 0.47 and Suppmin = 0.043, 29 pat-
terns were extracted. The computational time when using
the original 1,429 AE events was 888.7 s with an Intel Xeon
CPU running at 2.66 GHz with 6 GB RAM. When using
prototypes of the kernel SOM, the computational time in 225
(15×15) objects was reduced to 25.6 s.

Fig. 4 shows examples of the results of extracted damage
patterns from the kernel SOM. The correspondence of the
regions on the map to damage types is shown in Table 2.
Each damage pattern is distinguished using different colors,
and the typical waveforms and spectra of the damage types
are shown.

Valid results based on the knowledge of SOFC experts:
Damage pattern 1 in Fig. 4 is a co-occurring pattern of
(B) “the progression of the initial cracks” and (D) “cracks
in the electrolyte.” Therefore, damage pattern 1 indicates
that the progression of the initial cracks causes cracks in
the electrolyte because of mechanical rationality. Table
3 indicates that the progression of the initial cracks co-
3These parameters were empirically determined after several

trials with a comprehensive checking— i.e., scores of F and G
should be well-balanced; the number of extracted patterns should
be approximately less than 30 in order to manually analyze the pat-
terns; when we set Lmin < 0.47, some co-occurring clusters are
spread in very wide area which is intuitively a meaningless cluster;
Suppmin = 0.04 means actually 5 times or more (segments) of
co-occurrence, and we assumed patterns that have less than 5 times
are low reliability.

pattern 1

pattern 2
pattern 3

Damage pattern 1 
Jaccard: 0.364 

Number: 8

Damage pattern 2 
Jaccard 0.424 

Number 14

Damage pattern 3 
Jaccard 0.375 

Number 15

AE wave

Frequency spectrum

(A)

(C)

(D)

(E)

(F)

(B)

Figure 4: Examples of extracted damage patterns; the central
map shows visualization results from the kernel SOM

occurs with various damages. We can interpret that the
progression of the initial cracks largely affects various
damage types.

Damage pattern 2 entails co-occurrence patterns (E)
“cracks in the glass seal” and (F) “cracks in and exfoli-
ation of the electrode.” In particular, co-occurring cluster
(E) is the latter period of cracks in the glass seal (from
cluster change analysis in (Fukui et al. 2011)). The tem-
perature is decreasing and the glass seal is congealed at
the temperature of damage pattern 2. The glass seal and
electrode are not directly connected, but it is supposed that
the shrinking and transformation of the cell due to the co-
agulation of the glass seal produces the indirect mechani-
cal effect.

Novel results even for the experts: According to Table 3,
no damage patterns that include both regions (D) and (F)
are extracted. Although the electrolyte and electrode are
connected, damage patterns that include both were not ex-
tracted at all. This result was interesting to SOFC experts.

Furthermore, since damage pattern 3 exists in the inter-
regions, it may contain novel damage types. Since these
damages cause AE events containing high peaks in the
low frequencies of the spectrum, the damages between
regions (A) and (D) are estimated as “the exfoliation of
the electrolyte,” and those between regions (D) and (E)
are estimated as “the exfoliation of the electrolyte or the
glass seal.” Damage pattern 3 has never been discovered
from earlier research based only on the occurrence fre-
quency of each AE event. Considering the co-occurrence
relationship of AE events, damage pattern 3 is discovered
and identified for the first time.
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Application 2: Earthquake Occurrence
Patterns

Background
In this section, we describe our application of CCM to ex-
tract earthquake co-occurring patterns among areas afflicted
by the 2011 Tohoku Earthquake in Japan, revealing affected
areas and certain relationships between earthquakes. In seis-
mology, it is said that earthquake activities are not pre-
dictable only from time, location, and magnitude, because
they are highly sensitive and nonlinearly dependent (Geller
et al. 1997); however, the seismic activities represent, in part,
the internal state of the Earth’s crust at the time. Thus, the
analysis of such activities advances the understanding of the
seismic occurrence mechanism.

Numerous studies utilize data mining for the analysis
of seismic activities, including, for example, density-based
clustering (Lei 2010) and fuzzy clustering (Ansari, Noorzad,
and Zafarani 2009), which are used to find earthquake hot
spots. Lee et al. (Lee, Han, and Chi 2009) used quanti-
tative association rule mining and found relationships be-
tween features such as depth and magnitude, and location
and frequency. Martı́nez-Álvarez et al. (Martı́nez-Álvarez et
al. 2011) utilized a quantitative association rule and regres-
sion to investigate earthquake prediction in a specific area.

From the perspective of co-occurrence of earthquakes, to
the best of our knowledge, Ohsawa’s study (Ohsawa 2002) is
the only one that extracted frequent co-occurrence patterns
among active faults by KeyGraph, which was originally de-
signed as a keyword-extraction method. His research con-
sidered seismic events that occurred in all Japanese islands
from 1985 to 1992; earthquakes that occurred off the coast
were excluded. This study also utilized a two-step approach,
wherein hypocenters were categorized using the nearest ac-
tive fault names rather than via clustering.

Data Preprocessing
We applied CCM to the hypocenter catalog data recorded
for the calendar year 2011, as released by the Japan Mete-
orological Agency (JMA) through the Japan Meteorologi-
cal Business Support Center4. Each event has an origin time
(JST), a hypocenter (latitude, longitude, and depth), a mag-
nitude, and a hypocenter area name. Events with the max-
imum seismic intensity greater than three were recorded in
the catalog; 738 seismic events were recorded in that pe-
riod. We used only latitude and longitude as the attributes
for merging clusters because there are only a few differences
among depths in the same areas.

Regarding segmentation of the seismic event sequence,
much the same as in the fuel cell application, the key idea is
based on Ohsawa’s study (Ohsawa 2002)—i.e., the segment
division was performed utilizing the magnitude of the seis-
mic events. When a large energetic event occurs, the struc-
ture of the Earth’s inner crust changes, and the seismic pro-
cess will transit to another condition; however, in the To-
hoku Earthquake, quakes greater than M6.0 occurred near

4http://www.jmbsc.co.jp

the mainshock5 at short time intervals. Therefore, the length
of the segments decreased immediately after the mainshock.
We then introduced time constraints for segment length to
eliminate very short segments.

On the basis of the above ideas, a seismic event sequence
can be divided into segment s = [xs, · · · ,xs+l] by the fol-
lowing two conditions:

Es+i ≤ Eσ and Es+l > Eσ (i = 0, · · · , l − 1), (8)
ts+l − ts > tσ, (9)

where Ei and ti denote corresponding magnitude and ori-
gin time of earthquake event xi, respectively; Eσ is set to
M6.0 and tσ is one hour. With these conditions, we obtained
59 segments with an average segment length of 12.5 events,
which is approximately the same as that seen in Ohsawa’s
study (Ohsawa 2002).

Design of the Evaluation Function
For F(A,B), the Jaccard coefficient (eq. (3)), same as in
the fuel cell application, was used. Unlike the fuel cell ap-
plication, G(A,B) is defined by the following function:

G(A,B) = exp

(
−SSW (A)2 + SSW (B)2

2σ2

)
. (10)

Here, we apply an exponent because of a bias of SSW in this
dataset, where σ is a parameter to control correction of the
bias. We used σ = 0.05 in this dataset, which maximizes the
average evaluation function values.

Results
Validation of the Extracted Patterns The functional pa-
rameters were set to Lmin = 0.60 and Suppmin = 0.086,
and Ward’s method was used for hierarchical clustering.
With these parameters, 15 earthquake co-occurrence pat-
terns were obtained via CCM. All extracted patterns with
evaluation scores are listed in Table 4. The symbols within
parentheses indicate certain geometric areas corresponding
to co-occurring clusters, and the inclusion of a prime indi-
cates a hierarchical relation of clusters, for example, A′ ⊂
A.

Here, the suspected patterns may also be extracted. If both
events A and B occur in most segments, the Jaccard coeffi-
cient appears to be high since it does not consider the case
in which neither event A nor B occurs. We checked these
suspected patterns by using Fisher’s exact probability test.
For example, the component of [A+,B+] (both A and B are
positive) in the contingency table was determined by calcu-
lating the number of segments in which both events A and
B occur. If the p-value was greater than 0.05, we regarded
the pattern as a suspected pattern. As a result, all extracted
patterns satisfied p-value< 0.05, as shown in Table 4, which
signifies that no patterns were obtained simply by chance.

Fig. 5(a) shows representative seismic patterns plotted
with a geographic information system. We obtained distant

5A mainshock is the largest earthquake in a series of related
earthquakes.

6These thresholds were also determined by the same way of
comprehensive checking in the fuel cell application.
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Table 4: Scores of the extracted seismic patterns; pattern IDs
correspond to Fig. 7

Pattern L F G p-value number
P1(B

′′,D) 0.91 0.83 0.99 1.19e-06 5
P2(C, J) 0.61 0.38 0.96 1.59e-03 5
P3(M

′,F) 0.63 0.42 0.97 8.99e-04 5
P4(N,A

′) 0.77 0.63 0.94 2.44e-05 5
P5(A,D) 0.74 0.56 0.98 2.52e-05 5
P6(A,B

′) 0.70 0.50 0.98 1.42e-04 5
P7(E

′,D) 0.76 0.63 0.91 1.12e-05 5
P8(E

′,B′′) 0.71 0.56 0.91 6.40e-05 5
P9(O,L

′) 0.60 0.42 0.87 1.16e-03 5
P10(G,B

′) 0.63 0.42 0.94 8.99e-04 5
P11(K, I) 0.63 0.45 0.87 4.65e-04 5
P12(E,A) 0.65 0.50 0.86 7.00e-05 7
P13(E,G) 0.62 0.46 0.82 1.30e-04 6
P14(H,M) 0.62 0.50 0.78 1.42e-04 5
P15(L

′,B) 0.66 0.52 0.82 1.50e-05 11

seismic patterns, such as P2, and patterns between inland
and shore events, such as P9 and P11. Such patterns are diffi-
cult to extract from only the distribution of hypocenters (Fig.
5(b)).

Comparison to the Two-Step Method
Fig. 6 shows a box plot comparing F(A,B) and G(A,B)
for the 15 extracted patterns by CCM and the two-step
method. The two-step method used hypocenter area names
as clusters and extracted frequent item sets based on the
Jaccard coefficient. CCM clearly provided a higher co-
occurrence ratio by F and cluster compactness by G than
those of the two-step method, especially in cluster compact-
ness. Therefore, we conclude that CCM can determine clus-
ter ranges that are related to a co-occurrence better than the
two-step method.

Seismic Pattern Network The extracted seismic patterns
can be connected by utilizing the hierarchical relation of
clusters, as shown in Fig. 7. There are some regions in which
co-occurrence patterns exist between more than three areas.
For example, the southeastern area of Fukushima Prefecture
(A and B′′), off the coast of Miyagi Prefecture (E and E′),
and off the coast of Iwate Prefecture (D) form a complete
graph. These areas can be highly seismically related. Off the
coast of Iwate Prefecture (D) is discriminative; even though
only one area was extracted, this area is a co-occurrence
cluster of three patterns P1, P5, and P7, indicating that (D)
is a highly influential area. We can also interpret from the
network that the northern area of the Ibaraki Prefecture (M′,
M, L′, and L) is a highly influential area that has relations in
the four patterns P3, P9, P14, and P15.

Conclusion
We described CCM as a novel data mining approach for ex-
tracting pairs of clusters corresponding to co-occurrences in
a sequence of events. The CCM algorithm searches clusters

P2

P9

P11

P7

J

C

D

E’

O

L’
I

K

(a) Examples of extracted earthquake
co-occurrence patterns

Main shock

(b) All earthquake events in 2011 with
maximum seismic intensity greater than
three

Figure 5: Distribution of hypocenters

that are dense in the data space and simultaneously co-occur
in the sequence of events. The co-occurrence patterns are
searched within the dendrogram obtained by a hierarchical
clustering, which reduces the search space, and are extracted
by maximizing the evaluation function of both similarity
within clusters and co-occurrence of clusters.

In the application of a fuel cell, from a sequence of acous-
tic emission events of damage to the cell, we demonstrated
that CCM can reveal mechanical interactions among compo-
nents of the fuel cell. Next, in the application of earthquake
analysis, from a sequence of seismic events of hypocenters,
interactions among seismic activities can be obtained via
CCM. Some seismic patterns were geographically distant
or between island and shore; also, highly influential areas
were identified; however, verification of the extracted pat-
terns on seismological adequateness is difficult, but impor-
tant for our future work. These applications show the gener-
ality of CCM, and CCM has a potential to open new analyt-
ics for multidimensional event sequences to reveal interac-
tions among such events.
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