Statistical Relational AI: Papers from the AAAI-14 Workshop

Efficient Probabilistic Inference for Dynamic Relational Models

Jonas Vlasselaer and Wannes Meert and Guy Van den Broeck and Luc De Raedt
Department of Computer Science, KU Leuven, Belgium
firstname.lastname @cs.kuleuven.be

Abstract

Over the last couple of years, the interest in combin-
ing probability and logic has grown strongly. This led
to the development of different software packages like
PRISM, ProbLog and Alchemy, which offer a variety
of exact and approximate algorithms to perform infer-
ence and learning. What is lacking, however, are algo-
rithms to perform efficient inference in relational tem-
poral models by systematically exploiting temporal and
local structure. Since many real-world problems require
temporal models, we argue that more research is neces-
sary to use this structure to obtain more efficient infer-
ence and learning. While existing relational representa-
tions of dynamic domains focus rather on approximate
inference techniques we propose an exact algorithm.

Motivation

A dynamic relational model allows to compactly model a
stochastic process by means of a relational or logic repre-
sentation. Although temporal domains can be modeled in
many statistical relational languages, only some represen-
tations have been proposed that treat time as a first-class
citizen, e.g. CPT-L (Thon, Niels, and De Raedt 2011) and
Relational Dynamic Bayesian Networks (RDBNs) (Manfre-
dotti 2009). Hence, only some languages offer specific tech-
niques for inference and learning in temporal models. Exist-
ing general-purpose implementations typically scale expo-
nentially with the number of time steps.

There are two distinct properties of dynamic relational
representations that can be exploited for efficient inference.
First, the logical structure that is abundant in relational mod-
els leads to local structure in the probabilistic dependencies
and determinism in the distribution. It is well-known that
exploiting such properties leads to exponential speed gains
(Darwiche 2009). Second, these models contain repetitive
structures, both over time, and within one time slice.

To the best of our knowledge, no existing work exploits
both of the aforementioned properties for exact inference.
Most research on inference for (R)DBNSs is centered around
approximate techniques like (relational) particle filters and
sampling. In this work, however, we focus on exact in-
ference and propose a knowledge compilation approach to

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

131

maximally exploit all the available structure: we compile a
circuit once, and reuse it multiple times in the course of an-
swering a single query.

Example Below we show a temporal model which han-
dles the task of finding failures in a digital circuit (see Fig-
ure 1). The model is expressed in ProbLog', but any prob-
abilistic logic language can be used. The goal is to com-
pute the health state of a digital component at time 7', i.e the
probability the component is faulty, given a set of electrical
inputs and outputs up until time 7. As such, the query is
P(healthy(G,T) | input(W, 0:7), output(W,0:7)).

wire(l). wire(2). wire(3).
in(1l). in(2). out (4).

gate(a,not, [1],3). gate(b,and, [3,2],4).

wire (4) .

0.990::healthy (G,0) :- gate(G,_,_,_).
0.990::healthy (G, T) :— T>0, healthy (G, T-1).
0.001::healthy(G,T) :- T>0, \+healthy(G,T-1).
0.5::high (W, T) :- in(W).

0.5::high(W,T) :- gate(G,_,_,W), \+healthy(G,T).

high(W,T) :- gate(G,not,[I],W), healthy(G,T), \+high(I,T).
high(w,T) :- gate(G,and, [I,J],W), healthy(G,T),
high(I,T), high(J,T).
input (W, T) :- in(W), high(W,T).
output (W, T) :- out (W), high(w,T).
Inference in (R)DBNs

None of the deterministic facts in our logic program depend
on time as the structure of a digital circuit typically does
not change. Hence, the model defined above can be seen as
a Relational Dynamic Bayesian Network (RDBN) which is
fully defined by a pair of networks (Mg, M;_¢+1) with My
a Relational Bayesian Network (RBN) that defines the prior
state distribution, and M;_,; 1 a two-time-slice RDBN that
defines the transition model. In the transition model, every
predicate at time ¢ has a set of parent predicates at time t — 1
or t. As the structure does not change over time, grounding
out the relational DBN results in a propositional DBN which
is completely defined by a pair of static BNs (Bg, Bi—¢+1)-

One way to do inference in DBNSs is to unroll the network
and apply any algorithm for Bayesian Networks. This ap-
proach, however, is not guaranteed to scale linear with the

"http://dtai.cs kuleuven.be/problog

number of time steps. To obtain an algorithm which does
scale linear in time, one has to define a set of variables in
the transition model which d-separate the past from the fu-
ture. Typically, this set is called the inferface and contains
all variables at time ¢ which have an outgoing arc to ¢ 4 1.

Exploiting Recursive Structure

The recursive structure in (R)DBNSs, given by the transition
model, in combination with the definition of the interface al-
lows to perform inference by recursively computing the joint
probability distribution of the interface, often referred to as
the forward and backward message (Murphy 2002). We pro-
pose to use knowledge compilation (Darwiche 2009) to first
compile the structure into an Arithmetic Circuit (AC) and,
next, evaluate the obtained circuit multiple times to com-
pute the messages. As the transition model remains static
over time, it suffices to compile it only once. As such, this
one time compilation cost is amortized over all evaluation
steps necessary to compute the messages. One evaluation
can be done in time polynomial in the size of the AC.

The recursive structure which we need to compile con-
tains all nodes from the second time slice in the transition
model together with all their parents in the first time slice.
As this does not take into account the dependencies between
the variables of the incoming interface, i.e. the variables
from the first time-slice, we introduce a second compilation
step. This step is necessary and conditions the obtained AC
on all combinations of truth values of the incoming inter-
face variables. Once this is done, the circuit is reused NV - M
times to recursively compute the messages, where N = 27
(with I the number of variables in the interface) and M is
the number of time steps.

Exploiting Local Structure

Our proposed approach is closely related to the interface al-
gorithm (Murphy 2002) where one constructs a junction tree
for the recursive structure. Murphy’s approach, however,
only exploits conditional independences while our compi-
lation approach also exploits local structure. Compiling a
network results in an AC which is not necessary exponential
in the treewidth. This allows inference in cases where this is
impossible with other algorithms which do not exploit this
structure. As relational models typically introduce determin-
ism and equal parameters, our approach should outperform
the classic implementation of the interface algorithm.

Proof of Concept

As a proof of concept we generated random digital circuits
of varying size where we also modeled digital gates with
more than two input wires. To vary both the complexity
(size) of the digital circuit and the number of variables in
the interface, we allowed multiple digital gates to have the
same health state. Gates share a health variable, for example,
when they share a power line.

We implemented our approach in ProbLog and did some
preliminary experiments to compare it with the DBN al-
gorithms implemented in the Bayesian Network Toolbox

132

(bnt). The task was to compute the probability of the health
predicates at 7' = 10, given evidence on the input and out-
put of the circuit up until 7 = 9. The experiments were con-
ducted on a computer with a working space of 4GB RAM.
We can drawn two conclusions from the results shown
in figure 1. Firstly, the compilation approach is somewhat
faster compared to bnt. Secondly, and more importantly, is
that our approach allows inference in RDBNs for digital cir-
cuits that are almost three times larger compared to bnt as the
latter already runs out of memory for models with more than
about 30 digital gates. Also important to notice is that, al-
though the total inference time takes approximately 120 sec-
onds for the biggest circuit, the computation of the forward
message (the recursive step) only takes approximately 0.5
seconds. As such, most of the time is spent in the (off-line)
compilation step which only needs to be conducted once.

Hbnt ¢ Problog
120

o
3
3

®
3

Total time in seconds
@
38

40 PN -
20 - *
oo oo?
= *
JEEEERREREREER R A R N s
I T A R T PO

Logical gates in the digital circuit } Interface

Figure 1: The digital circuit used as running example and
the experimental results. The x axis shows the number of
gates in the digital circuit and the number of ground atoms
h in the interface at each time ¢. The y axis shows the total
inference time in seconds (compilation + evaluation).

Conclusion and Challenges

We presented an algorithm for exact inference in relational
DBNS, based on knowledge compilation, to exploit as well
the recursive as the local structure in the model. The prelimi-
nary results show the promise of our technique for relational
DBNs with closed domains. Two remaining challenges are
(i) relational DBNs with open domains, i.e. where the num-
ber of ground atoms might change over time, and (ii) apply-
ing the insights from exploiting local structure to approxi-
mate inference techniques.

References
Darwiche, A. 2009. Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press.
Manfredotti, C. 2009. Modeling and inference with relational dy-
namic Bayesian networks. In Advances in artificial intelligence.
Springer. 287-290.

Murphy, K. 2002. Dynamic Bayesian Networks: Representation,
Inference and Learning. Ph.D. Dissertation, UC Berkeley.

Thon, I.; Niels, L.; and De Raedt, L. 2011. Stochastic relational
processes: Efficient inference and applications. Machine Learning
82(2):239-272.

*https://github.com/bayesnet/bnt

